
Structured
Evaluation of
Computer Systems
Gunter Bockle
Hermann Hellwagner
Roland Lepold
Gerd Sandweg
Burghardt Schallenberger
Raimar Thudt
Stefan Wallstab
Siemens AG

=
Evaluating how well a system

will perform is difficult

because it is seldom done

systematically. An approach

developed at Siemens makes

decisions explicit and the

process reproducible.

0018-9162/96/$5 O O Q 1996 IEEE

ystem development involves deciding which configuration and
characteristics will determine a successful design. Suppose you S must evaluate cache designs for a new computer system. The pro-

ject manager might say something like “Determine the best cache for our
new computer.” You know that you have to evaluate cach.e systems, but
what does ‘‘best’’ really mean? High performance? Low hi:at? Low cost?
Minimum space? Even if you learn that performance is irhe goal, what
technical properties must your evaluation consider? Is it just cache size
or cache organization? The replacement and refill strategy? The consis-
tency strategy? Which architectures must you consider? What kind of
workload will this computer system have to handle? A cache that offers
high performance for computer-aided engineering tasks might perform
poorly for text processing.

Even if you perform the evaluation satisfactorily, six months later a cus-
tomer could ask what a different cache parametrization might yield. Will
your documentation reveal why you chose a particular range of architec-
tures and workloads? Why you chose a set of criteria for evaluation? Will you
be able to repeat the evaluation and produce the same reisults? Can you
extend the evaluation to different sets of parameters to back up your results?

Problems with evaluation
Evaluating computers and other systems is difficult for a couple of rea-

sons. First, the goal of evaluation is typically ill-defined: Customers, some-
times even designers, either don’t know or can’t specify exactlywhat result
they expect. Often, they don’t specify the architectural variants to con-
sider, and often the metrics and workload they expect yo11 to use are ill-
defined. Second, they rarely clarify which kind of model and evaluation
method best suit the evaluation problem.

These problems have consequences. For one thing, the decision-maker
may not trust the evaluation. For another, poor planning means the eval-
uation cannot be reproduced if any of the parameters are changed slightly.
Finally, the evaluation documentation is usually inadequate, and so some
time after the evaluation you might ask yourself, “How did I come to that
conclusion?”

Structuring the evaluation process
Our experiences with evaluation projects motivated us tcI develop a sys-

tematic approach to evaluating computer systems. We wanted to develop
a methodology that structures the evaluation process, not ,a general eval-
uation-problem solver. Our methodology aims to

Make the entire evaluation process explicit, systematic, and repro-

Decompose the evaluation problem into subproblems.
Determine the main aspects for each evaluation subproblem: the sys-
tem to evaluate at that level, the evaluation criteria (metrics), the
workload (typical application), and the evaluation method (such as
simulation).

ducible.

June 1996 -

Determine how the subproblems relate to each other
and how to combine their results to solve the total
evaluation problem.
Document for each evaluation subproblem what is to
be evaluated and why and its characteristics and con-
straints.

D EVALUATION P
A computer-system evaluation seeks to answer partic-

ular questions about the system, such as its performance
or availability. The customer, designer, or manager must
make architectural decisions or assertions about the sys-
tem. These assertions are usually framed in indistinct, non-
technical terms.

Therefore, the very first step is to analyze the questions,
understand the problem, and state the goals and con-
straints as precisely as possible.

Four evaluation aspects
An evaluation problem has four basic aspects:

the system or subsystem (architecture) under con-

the metrics (criteria) to evaluate the system; and
the requests (workloads) the system has to cope with.
the solution, reached by applying an evaluation

sideration;

method.

ARCHITECTURE. To specify the system’s or subsystem’s
architecture, identify its components (hardware, software,
firmware, network) and delineate its boundaries. The sys-

tem might be a hardware system (like a
CPU or a cache), a software system (like a
database-management system or file sys-
tem), or a network (comprising hardware,
software, and networking components).
However, we’ve applied the concept to
other technical systems as well, for tele-
communications, manufacturing, traffic
control, and power plants.

To evaluate a system, define its compo-
nents, structure, and parameters that affect
the evaluation. Parameters can be variable

or fixed; either way, you must determine and document
their values. For example, when evaluatingvarious cache
designs, cache size and organization could be variable
parameters, whereas the replacement and consistency
strategies could be fixed.

CRITERIA. Evaluation criteria are system properties that
help the customer make a decision. The criteria must appro-
priately and comprehensively capture the performance,
quality, or availability of system services. Define the crite-
ria so they correspond with the architecture and workload.
Consider the available evaluation methods, because each
method can answer only particular questions.

For example, an important criterion in evaluating the
performance of different cache designs is the cache-miss
rate. The miss rate depends on the reference pattern that
a specific workload submits to the cache, which differs
significantly among applications.

Important criteria for computer systems are perfor-

mance, dependability, and functionality. Refine and quan-
tify these criteria into metrics so you can use them for com-
parisons. For example, typical performance metrics are
throughput, bandwidth, utilization, response time, and
miss rate.l

Besides these technical criteria, economic and strategic
criteria are also important-in fact, they often determine
a product’s success. Economic criteria include cost, time to
market, sales, and profit. Strategic criteria include stan-
dards conformance, compatibility, and new market expe-
rience. A thorough, well-structured evaluation process
can also assess a system’s nontechnical criteria.

WORKLOAD. Workload denotes representative tasks or
service requests, which stimulate the components rele-
vant to the study and characterize the system’s applica-
tions concisely. Obtaining the cache-miss rate, for
example, requires an appropriate description of an appli-
cation’s reference pattern (the number of different
addresses referenced, the length of the reference string,
and the distribution of references across the address range,
among other things).

There are four major classes of load models:2

Paper-and-pencil benchmarks, which denote com-
prehensive, high-level, implementation-independent
specifications of tasks a system should perform. The
TPC benchmark specifications3 for transaction pro-
cessing are an example.
benchmark program^,^,^ which consist of standard-
ized source code like the SPEC benchmark suites.
Traces, which denote collections of system requests,
such as sequences of memoryreferences.
Distributions and parameters, which characterize
workloads and are used mainly in conjunction with
analytical models.

Our experience shows that people often approach this
workload modeling unsystematically, which can yield in-
adequate workload models. Systematic load modeling is
an important research area that demands more ~ t u d y . ~ , ~ , ~

METHOD. The evaluation method you choose can em-
ploy analytical modeling, simulation, system measure-
ment, or a combination ofthese techniques.l To determine
which technique to use for a first, coarse specification, try
partitioning the problem recursively into subproblems
until the subproblems are small or detailed enough to
solve with a single technique. In general, solving a sub-
problem means determining criteria values by solving or
running the architecture/workload model with specific
architecture/ workload parameters.

Delta charts
Our structured approach is similar to the systematic ap-

proach to performance evaluation that Jain prop0sed.l
However, we base our evaluation method on a graphical
visualization scheme called the delta chart, shown in
Figure 1. The delta chart is the building block for struc-
turing and visualizing the entire evaluation process.

A delta chart depicts the three aspects of system evalua-
tion as the three edges of a triangle. On the architecture

Computer

edge, dots mark specific system components and para-
meters (or parameter values, depending on the level of
evaluation detail). On the criteria edge, dots denote the
criteria or metrics to be determined (again, their level of
detail corresponds to the other problem aspects). On the
workload edge, dots list service requests, request para-
meters, or specific system requirements. These range from
application or benchmark programs to parameters of syn-
thetic workloads. The evaluation method is written inside
the triangle. To simplify the notation, the type of model-
Petri-net, for example-can replace the modeling and
evaluation technique.

You must specify each edge of the delta chart precisely
and comprehensively, in correspondence with the other
edges. Visualizing an evaluation problem like this supports
understanding and partitioning of the problem, illustrates
alternatives, documents the work done, and facilitates
communication. We recommend that both the customer
and the evaluating engineer approve the initial delta chart
that defines the problem. This ensures that you’re solving
the right problem and improves the likelihood that the
decision-maker will accept the results.

Most likely, one delta chart will not suffice to formulate
and solve the evaluation problem for a complex system
like a multiprocessor. You must decompose the problem
recursively into ever smaller and more tractable subprob-
lems, represented by more detailed delta charts.

EVALUATION PROCESS
In our method, the evaluation process consists of two

basic sets of activities: Create the evaluation graph, and
then use it to perform the evaluation itself. To make this
process easier, we created a Motif-based graphical editor.
We hope the easy-to-use interface will encourage people
to adopt systematic evaluation.

Creating the evaluation graph
Creating an evaluation graph has four steps:

create an initial delta chart,
refine that chart,
determine system parameters, and
combine, or generalize, delta charts to reduce evalu-
ation time.

These steps help document the evaluation so that we
can repeat it using different conditions, as well as defend
the results.

INITIAL DELTA CHART. Begin the evaluation by speci-
fymg the goals-the result you want to derive and the con-
straints you must consider. Then formulate the evaluation
problem in the initial delta chart according to the three
main aspects: architecture, criteria, and workload. Figure
2 shows an example in which the evaluation problem is
the performance of a multiprocessor system that will run
database and office applications.

REFINING THE CHART. To perform the evaluation, we
must refine each edge of the chart in Figure 2. The archi-
tecture specification, “multiprocessor,” is rather general.
Analyzing all features of a multiprocessor that can influ-

ence performance is a
costly, unmanageable task.
We start the chart refine-
ment by specifying which
architectural properties we
actually need to measure or
model.

In this example, we can
separate the multiproces-
sor architecture into three
parts: processors, caches,
and buses. The other parts
of the architecture, such as
I/O, memory, and software,
are fixed. The processor
type is also fixed, but the
number of processors is an
architectural property that
the evaluation should con-
sider. Thus, refining the first

Criteria
Evaluation

Architecture

Figure 1. Delta chart
template. A delta chart
is a graphical visualiza-
tion scheme for
structuring and visualiz-
ing the entire
evaluation process.

triangle yields the chart in Figure 3. Next we refine “cache
architecture.” The example represents cache architecture
by two main properties, “cache size” and “associativity.”
This produces a new delta chart, shown in Figure 4a. We
refine cache size further, as Figure 4b shows, by listing
cache sizes of 1,2, and 4 megabytes. We refine associa-

-. - -.

Office applications

Nt ulti pr ocesor

Figure 2. Initial delta chart for the multiprocessor
example.

Figure 3. Refined multiprocessor delta chart.

June 1996

tivity by listing the number of sets (two, four, or eight)
(Figure 4c).

We can refine more than the architecture. The “per-
formance” attribute on the criteria edge of our triangle is
quite general. Here we show “system performance” and

“bus throughput,” although our example
will consider only system performance.
The example represents the workload for
office and database applications by bench-
marks for each of these kinds of process-
ing. Figure 4d depicts all of this.

These examples demonstrate concreti-
zation, a particular kind of refinement.
Concretization can separate an archi-
tecture (or criterion, or load) into one or
more submodules. Alternatively, it can
realize an evaluation aspect more spe-

cifically. We continue the concretization refinement until
we get delta charts that we can solve by applying a single
evaluation method.

DETER~MINING PARAMETERS. To determine system per-
formance, the criterion for our evaluation goal, we use a
Petri-net cache model. However, for Petri nets, the load
cannot consist of benchmarks themselves. Instead we must
represent the load by parameters that characterize the
benchmarks. Such parameters are average memory request
length, average interrequest time (the average time between
two memory accesses), and cache-miss rate. This further
concretization leads to the delta chart in Figure 4e, anno-
tated with the method to be applied, “Petri-net model.”

To derive the parameters for Petri-net analysis for
these applications, the single process and the single
processor on which each application runs determine
request length and interrequest time. Therefore, we can
find the parameters by measuring them on a single-
processor system running the actual benchmarks. This
measurement, an evaluation problem itself, appears as
the delta chart in Figure 4g.

The kind of refinement we applied to create Figure 4g
differs from the previous ones. So far, the left edge has
become the left edge of the succeeding triangle after a
refinement. This time, the right edge, with the cache-load
parameters, switched to the left side. The new right edge
shows measures of new criteria. This kind of refinement is
calledparameter determination. The delta chart in Figure
4g needs no further refinement. We can solve it as a
straightforward evaluation by applying the method “mea-
surement.” However, the measurement task might not be
so simple. We need experts to perform these measure-
ments, a tool to get the desired data, and benchmarks that
characterize the applications.

A third load parameter, the cache miss rate, remains
from the delta chart in Figure 4e. An expert can derive this
parameter by modeling the cache and evaluating its per-
formance. This example uses the Petri-net modeling
method. Again, we observe a change in the triangle’s edge
from 4e to 4f The load in 4e becomes the measure of the
criterion determined by the next step. This chart employs
the analytical cache-modeling method. We must then
adapt the load representation to the kind of model. Figure
4f specifies the load with the following parameters: num-

ber of addresses, reference string length, and static and
dynamic sequence length.

Nowwe face the same problem as before: The load con-
sists of parameters we cannot yet measure. However, for
the applications in the example, these parameters depend
mostly on the kinds of processors used, not the number.
Thus, we can determine these parameters by measuring
them on a single-processor system running the bench-
marks that represent the applications.

GENERALIZING CHARTS. That last step gives us a delta
chart, Figure 4h, that needs no further refinement. We can
perform the measurement as a straightforward evalua-
tion problem, as above. Delta charts 4g and 4h differ only
in one edge, the criteria. They both represent measure-
ments on the same processor using the same kind ofload.
Therefore, we can combine both delta charts into a new
one, reducing the work we need to do. For the resulting
delta chart 4i, we need only one set of measurements for
both sets of criteria on the left edge.

Joining two delta charts that differ only in one edge by
combining the items on the differing edges is calledgener-
alization. This combination reduces the cost of our evalua-
tion by avoiding multiple applications of evaluation
methods.

EVALUATION PROCESS RULES. As the preceding ex-
ample illustrates, there are the following rules for devel-
oping an evaluation process.

The basic evaluation graph starts with an initial delta
chart that uses architecture, evaluation criteria, and
workload as its edges.
We then refine each delta chart in the graph by cre-
ating new triangles until we get charts that we can
process as simple evaluation problems. Each delta
chart represents an evaluation subproblem. An eval-
uation method written into the triangle characterizes
these subproblems.

Our approach uses three kinds of refinement to produce
an evaluation graph:

Concretization copies a delta chart to one or more new
ones by changing one edge. The technique replaces a
part by its major subparts or subfunctions. For exam-
ple, we can concretize “cache” by “cache size” and
“cache associativity.” Bifurcating the evaluation
graph denotes cases where we evaluate these parts
separately.
Parameter determination, as in our example, spawns
successors for a delta chart by copying its right edge
(load parameters) to their left edges (the criteria).
Generalization combines two delta charts that differ
only in one edge into a new chart. The union of the
items attributed to the differing edges becomes the
new delta chart’s corresponding edge.

Of course, the evaluation graph is not fixed indefinitely.
We can change it whenever a particular solution turns out
to be infeasible. Documenting each decision by noting the
reasons for choosing each refinement or generalization

Computer

supports an important goal of our evaluation methodol-
ogy: The graph makes the whole evaluation process
repeatable and plausible.

Performing the evaluation
Once we have created the graph, the actual evaluation

begins. The evaluation process corresponds to a bottom-
up walk through the evaluation graph, from the leaves to
the root. The graph‘s leaves contain evaluation methods
we apply by building and evaluating models, whether ana-
lytically or by simulation. First, we process all leaves by
applying their methods. Next, we process the leaves’ pre-
decessor nodes. When a leaf is a generalization of several
predecessors, we simply divide the results into subsets. In
the example (Figure 4i), we divided the measurement
results into two subsets: “number of addresses, reference
string length, static sequence length, dynamic sequence
length” and “average memory request length, average
interrequest time.” This solves the evaluation task repre-
sented by such a delta chart.

To determine a predecessor’s parameters, we can insert
values derived by evaluating a leaf into the correspond-
ing edge of the preceding delta chart. Then we can solve
the problem the preceding delta chart represents by
applying the corresponding evaluation method (see
Figure 40.

When a delta chart is a concretization of a predecessor,
we must combine the results of all this predecessor’s suc-
cessors. This can meanjust noting the results, such as when
we concretize one application into several workload repre-
sentations. This combination can also mean a complicated
analytical composition, for example, combining perform-
ability measures of different parts. Some cases, particu-
larly in their uppermost triangles, produce a set of
alternative results, such as
performance curves for arch-
itectural alternatives.

Supporting
evaluation
graph ica Ily

To promote dissemina-
tion and acceptance of
systematic evaluation in
industry, we have developed
a graphical editor for evalu-
ation graphs. The Motif-
based tool, called Graphedit,
lets users conveniently con-
struct, annotate, modify, dis-
play, print, and store eval-
uation graphs.

In addition to the usual
graphical editor functions,
Graphedit has the follow-
ing notable features:

You can annotate indi-
vidual delta charts and
arcs, as well as entire
subgraphs, with key-
words, short texts, and

Figure 4. Multiprocessor evaluation graph. (a) Delta chart refining cache archi-
tecture; decomposed by (b) cache size and (c) associativity; (d) workload mea-
sured by application benchmarks; (e) parametrized for Petri-net analysis; (f)
determining the cache-miss rate; (g) determining the other load parameters for
the Petri-net model; (h) determining cache workload parameters; (i) generaliz-
ing 4g and 4h for measurement.

June 1996

Figure 5. Graphedit, a graphical editor for evaluation graphs.

comprehensive texts. For instance, you can use this
feature to explain certain design decisions.
You can display or hide texts, either for each item (a
delta chart, chart edge, or arc between charts)
individually, or for all charts (or arcs). This lets you
document the evaluation process in close detail,
while keeping the corresponding graph easy to
survey.
Again for readability’s sake, you can collapse sub-
graphs into, and expand them from, single meta
charts represented by triangular symbols.

8 You can survey and rapidly navigate a large, complex
evaluation graph using a sum-up view. You can still per-
form simple editing functions on this representation.

0 You can print the sum-up view, selected objects or
pages, or the whole graph, sized up or down as desired.
A simple page-preview facility is available as well.

Figure 5 shows how Graphedit appears to the user. The

tool runs on Unix-based workstations and personal com-
puters. Contact us for more detailed information.

WE HAVE USED THIS METHOD to evaluate mainly computer
systems and communication systems design, including
multiprocessor systems, a parallel file system, and an ATM
network. Now we are disseminating the method within
Siemens.

You can use the method for evaluating all kinds of tech-
nical systems, and we believe you could adapt it to the
analysis of social systems and organizations as well. To
confirm this, we evaluated the “performance” of our own
organization, Siemens Corporate R&D. In addition to
achieving the central goals of structuring and improving
the evaluation process, the method turned out to facili-
tate communication among the people involved. Because
of its requirement for explicitly formulating evaluation
goals and aspects, the method supports focusing on the

Computer

essentials and avoiding misunderstandings. Altogether, it
helps reduce the time that complex evaluations take. I

References __
1. R. Jain, The Art of Computer Systems Performance Analysis,

John Wiley & Sons, New York, 1991.
2. H. Hellwagner, “Workload Classification,”Proc. Workshop on

Workload Modeling, Universitat der Bundeswehr, Neubiberg,
Germany, 1994 (in German).

3. “TPC Benchmark Descriptions,” Transaction Processing
Performance Council, San Jose, Calif., 1996; http://www.
tpc. org/.

4. “SPEC Newsletter,” Standard Performance Evaluation Corp.,
Manassas, Va., 1996; http://www.specbench.org/spec/.

5. R.P. Weicker, “An Overview of Common Benchmarks,” Com-
puter, Dec. 1990, pp. 65-75.

6. M. Calzarossa and G. Serazzi, “Workload Characterization:
A Survey,” Proc. IEEE, Aug. 1993, pp. 1,136-1,150.

7. P. Heidelberger and S.S. Lavenberg, “Computer Performance
Evaluation Methodology,”lEEE Trans. Computers, Dec. 1984,
pp. 1,195-1,220.

Gunter aockle is a research manager at Siemens Corpo-
rate Research and Development. His technical experience
includes modeling, simulation, assessment, and design of
various systems, including communications protocols,
processor and system architectures, and compilers. He de-
veloped methods and tools for automaticparallelization and
is currently working in thefield of systems engineering. He
is the author of Exploitation of Fine-Grain Parallelism
(Springer Verlag, Berlin and New York, 1995). Bockle
received a Diplom in mathematics and a doctorate of science,
bothfrom Stuttgart University.

Hermann HelZwagner is an associate professor of
parallel computer architecture at the Technical University of
Munich. He waspreviouslywith Siemens CorporateResearch
and Development, where he participated in the research this
article reports. His current research interests are in parallel
processing, particularly distributed shared-memory systems,
and the performance evaluation of computer systems.
Hellwagner received an MS and a PhD in computer science,
bothfrom the University of Linz, Austria. He is a member
of the IEEE Computer Society. His home page is http://
wwwbode. informatik. tu-muenchen.de/- hellwagd.

Roland LepoZd is a department head and product man-
ager at the division for Automation Systems for Machine
Tools, Robots, and Special Machines Division of Siemens in
Erlangen, Germany. He has done research in system mod-
eling and evaluation techniques at Siemens Corporate Re-
search and Development in Munich. His research interests
are fault-tolerant architecture design and reliability andper-
formance modeling. Lepold received a Diplom in computer
sciencefrom the University ofKarbruhe and a PhD in com-
puter sciencefrom the Polytechnic Research Institute of the
University in Mulhouse, France.

Gerd Sandweg is head of the development department ai
INCA, Industrial ComputerApplication. Formerly, he headed
the Systems Technology Department at Siemens Corporate,
Research and Development. His interests are computer archi.
tecture, integrated circuit design and testing, and system:;
architecture. He is the coauthor of Selbsttest digitaler Schal-
tungen (Oldenbourg Verlag, Berlin, 1990) on the self-test of
digital circuits. Sandweg received a PhD in electrical engi-
neeringfrom the Technical University of Munich.

Burghardt Schallenberger heads the Microcomputer
Components Business Unit of the Siemens Semiconductor
Group in Munich. At Siemens CorporateResearch and Devel-
opment, he worked on chip, computer, and system architec-
tures. He also lectures in computer architecture at the
University of Heidelberg. Schallenberger received a Diplom
in physics and a PhD in natural sciences, both from
Rheinisch-Westfiilische Technische Hochschule (RWTH),
Aachen, Germany.

Raimar Thudt is a research engineer at Siemens Research
and Development, working on performance evaluations of
computersystems and networks. His current research topics
are in communication systems analysis and design, focusin,?
onATMnetworks, and in high-performancesimulation tech-
niques and tools, focusing on parallel and distributed simu-
lation. Thudt received an MS in computer sciencefrom the
Technical University of Munich.

Stefan WaZZstab is a research engineer at Siemens Corpcl-
rate Research and Development. He has worked on severcd
VLSI chip architecture and design-automationprojects. H I S
current research interests focus on hardware architectures
for information security, VHDL-based architecture and logic-
level synthesis, and FPGA-based ASIC emulation. Wallstab
received a Dipl. -1ng.from the Technical University of Munich.
He is a member of Verein Deutscher Ingenieure, theAssocic1-
tion of German Engineers.

Address questions about this article to Bockle at Corpora1:e
Research and Development, Siemens AG, 081730 Munich,
Germany; e-mail Guenter.Boeckle@zfe.siemens.de. For
information about Siemens, visit http://www.siemens.de.

June 1996

http://www
http://www.specbench.org/spec
http://tu-muenchen.de
mailto:Guenter.Boeckle@zfe.siemens.de
http://www.siemens.de

