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Evaluating how well a system 

will perform is difficult 

because it is seldom done 

systematically. An approach 

developed at Siemens makes 

decisions explicit and the 

process reproducible. 
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ystem development involves deciding which configuration and 
characteristics will determine a successful design. Suppose you S must evaluate cache designs for a new computer system. The pro- 

ject manager might say something like “Determine the best cache for our 
new computer.” You know that you have to evaluate cach.e systems, but 
what does ‘‘best’’ really mean? High performance? Low hi:at? Low cost? 
Minimum space? Even if you learn that performance is irhe goal, what 
technical properties must your evaluation consider? Is it just cache size 
or cache organization? The replacement and refill strategy? The consis- 
tency strategy? Which architectures must you consider? What kind of 
workload will this computer system have to handle? A cache that offers 
high performance for computer-aided engineering tasks might perform 
poorly for text processing. 

Even if you perform the evaluation satisfactorily, six months later a cus- 
tomer could ask what a different cache parametrization might yield. Will 
your documentation reveal why you chose a particular range of architec- 
tures and workloads? Why you chose a set of criteria for evaluation? Will you 
be able to repeat the evaluation and produce the same reisults? Can you 
extend the evaluation to different sets of parameters to back up your results? 

Problems with evaluation 
Evaluating computers and other systems is difficult for a couple of rea- 

sons. First, the goal of evaluation is typically ill-defined: Customers, some- 
times even designers, either don’t know or can’t specify exactlywhat result 
they expect. Often, they don’t specify the architectural variants to con- 
sider, and often the metrics and workload they expect yo11 to use are ill- 
defined. Second, they rarely clarify which kind of model and evaluation 
method best suit the evaluation problem. 

These problems have consequences. For one thing, the decision-maker 
may not trust the evaluation. For another, poor planning means the eval- 
uation cannot be reproduced if any of the parameters are changed slightly. 
Finally, the evaluation documentation is usually inadequate, and so some 
time after the evaluation you might ask yourself, “How did I come to that 
conclusion?” 

Structuring the evaluation process 
Our experiences with evaluation projects motivated us tcI develop a sys- 

tematic approach to evaluating computer systems. We wanted to develop 
a methodology that structures the evaluation process, not ,a general eval- 
uation-problem solver. Our methodology aims to 

Make the entire evaluation process explicit, systematic, and repro- 

Decompose the evaluation problem into subproblems. 
Determine the main aspects for each evaluation subproblem: the sys- 
tem to evaluate at that level, the evaluation criteria (metrics), the 
workload (typical application), and the evaluation method (such as 
simulation). 

ducible. 
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Determine how the subproblems relate to each other 
and how to combine their results to solve the total 
evaluation problem. 
Document for each evaluation subproblem what is to 
be evaluated and why and its characteristics and con- 
straints. 

D EVALUATION P 
A computer-system evaluation seeks to answer partic- 

ular questions about the system, such as its performance 
or availability. The customer, designer, or manager must 
make architectural decisions or assertions about the sys- 
tem. These assertions are usually framed in indistinct, non- 
technical terms. 

Therefore, the very first step is to analyze the questions, 
understand the problem, and state the goals and con- 
straints as precisely as possible. 

Four evaluation aspects 
An evaluation problem has four basic aspects: 

the system or subsystem (architecture) under con- 

the metrics (criteria) to evaluate the system; and 
the requests (workloads) the system has to cope with. 
the solution, reached by applying an evaluation 

sideration; 

method. 

ARCHITECTURE. To specify the system’s or subsystem’s 
architecture, identify its components (hardware, software, 
firmware, network) and delineate its boundaries. The sys- 

tem might be a hardware system (like a 
CPU or a cache), a software system (like a 
database-management system or file sys- 
tem), or a network (comprising hardware, 
software, and networking components). 
However, we’ve applied the concept to 
other technical systems as well, for tele- 
communications, manufacturing, traffic 
control, and power plants. 

To evaluate a system, define its compo- 
nents, structure, and parameters that affect 
the evaluation. Parameters can be variable 

or fixed; either way, you must determine and document 
their values. For example, when evaluatingvarious cache 
designs, cache size and organization could be variable 
parameters, whereas the replacement and consistency 
strategies could be fixed. 

CRITERIA. Evaluation criteria are system properties that 
help the customer make a decision. The criteria must appro- 
priately and comprehensively capture the performance, 
quality, or availability of system services. Define the crite- 
ria so they correspond with the architecture and workload. 
Consider the available evaluation methods, because each 
method can answer only particular questions. 

For example, an important criterion in evaluating the 
performance of different cache designs is the cache-miss 
rate. The miss rate depends on the reference pattern that 
a specific workload submits to the cache, which differs 
significantly among applications. 

Important criteria for computer systems are perfor- 

mance, dependability, and functionality. Refine and quan- 
tify these criteria into metrics so you can use them for com- 
parisons. For example, typical performance metrics are 
throughput, bandwidth, utilization, response time, and 
miss rate.l 

Besides these technical criteria, economic and strategic 
criteria are also important-in fact, they often determine 
a product’s success. Economic criteria include cost, time to 
market, sales, and profit. Strategic criteria include stan- 
dards conformance, compatibility, and new market expe- 
rience. A thorough, well-structured evaluation process 
can also assess a system’s nontechnical criteria. 

WORKLOAD. Workload denotes representative tasks or 
service requests, which stimulate the components rele- 
vant to the study and characterize the system’s applica- 
tions concisely. Obtaining the cache-miss rate, for 
example, requires an appropriate description of an appli- 
cation’s reference pattern (the number of different 
addresses referenced, the length of the reference string, 
and the distribution of references across the address range, 
among other things). 

There are four major classes of load models:2 

Paper-and-pencil benchmarks,  which denote com- 
prehensive, high-level, implementation-independent 
specifications of tasks a system should perform. The 
TPC benchmark specifications3 for transaction pro- 
cessing are an example. 
benchmark program^,^,^ which consist of standard- 
ized source code like the SPEC benchmark suites. 
Traces, which denote collections of system requests, 
such as sequences of memoryreferences. 
Distributions and parameters, which characterize 
workloads and are used mainly in conjunction with 
analytical models. 

Our experience shows that people often approach this 
workload modeling unsystematically, which can yield in- 
adequate workload models. Systematic load modeling is 
an important research area that demands more ~ t u d y . ~ , ~ , ~  

METHOD. The evaluation method you choose can em- 
ploy analytical modeling, simulation, system measure- 
ment, or a combination ofthese techniques.l To determine 
which technique to use for a first, coarse specification, try 
partitioning the problem recursively into subproblems 
until the subproblems are small or detailed enough to 
solve with a single technique. In general, solving a sub- 
problem means determining criteria values by solving or 
running the architecture/workload model with specific 
architecture/ workload parameters. 

Delta charts 
Our structured approach is similar to the systematic ap- 

proach to performance evaluation that Jain prop0sed.l 
However, we base our evaluation method on a graphical 
visualization scheme called the delta chart, shown in 
Figure 1. The delta chart is the building block for struc- 
turing and visualizing the entire evaluation process. 

A delta chart depicts the three aspects of system evalua- 
tion as the three edges of a triangle. On the architecture 
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edge, dots mark specific system components and para- 
meters (or parameter values, depending on the level of 
evaluation detail). On the criteria edge, dots denote the 
criteria or metrics to be determined (again, their level of 
detail corresponds to the other problem aspects). On the 
workload edge, dots list service requests, request para- 
meters, or specific system requirements. These range from 
application or benchmark programs to parameters of syn- 
thetic workloads. The evaluation method is written inside 
the triangle. To simplify the notation, the type of model- 
Petri-net, for example-can replace the modeling and 
evaluation technique. 

You must specify each edge of the delta chart precisely 
and comprehensively, in correspondence with the other 
edges. Visualizing an evaluation problem like this supports 
understanding and partitioning of the problem, illustrates 
alternatives, documents the work done, and facilitates 
communication. We recommend that both the customer 
and the evaluating engineer approve the initial delta chart 
that defines the problem. This ensures that you’re solving 
the right problem and improves the likelihood that the 
decision-maker will accept the results. 

Most likely, one delta chart will not suffice to formulate 
and solve the evaluation problem for a complex system 
like a multiprocessor. You must decompose the problem 
recursively into ever smaller and more tractable subprob- 
lems, represented by more detailed delta charts. 

EVALUATION PROCESS 
In our method, the evaluation process consists of two 

basic sets of activities: Create the evaluation graph, and 
then use it to perform the evaluation itself. To make this 
process easier, we created a Motif-based graphical editor. 
We hope the easy-to-use interface will encourage people 
to adopt systematic evaluation. 

Creating the evaluation graph 
Creating an evaluation graph has four steps: 

create an initial delta chart, 
refine that chart, 
determine system parameters, and 
combine, or generalize, delta charts to reduce evalu- 
ation time. 

These steps help document the evaluation so that we 
can repeat it using different conditions, as well as defend 
the results. 

INITIAL DELTA CHART. Begin the evaluation by speci- 
fymg the goals-the result you want to derive and the con- 
straints you must consider. Then formulate the evaluation 
problem in the initial delta chart according to the three 
main aspects: architecture, criteria, and workload. Figure 
2 shows an example in which the evaluation problem is 
the performance of a multiprocessor system that will run 
database and office applications. 

REFINING THE CHART. To perform the evaluation, we 
must refine each edge of the chart in Figure 2. The archi- 
tecture specification, “multiprocessor,” is rather general. 
Analyzing all features of a multiprocessor that can influ- 

ence performance is a 
costly, unmanageable task. 
We start the chart refine- 
ment by specifying which 
architectural properties we 
actually need to measure or 
model. 

In this example, we can 
separate the multiproces- 
sor architecture into three 
parts: processors, caches, 
and buses. The other parts 
of the architecture, such as 
I/O, memory, and software, 
are fixed. The processor 
type is also fixed, but the 
number of processors is an 
architectural property that 
the evaluation should con- 
sider. Thus, refining the first 

Criteria 
Evaluation 

Architecture 

Figure 1. Delta chart 
template. A delta chart 
is a graphical visualiza- 
tion scheme for 
structuring and visualiz- 
ing the entire 
evaluation process. 

triangle yields the chart in Figure 3. Next we refine “cache 
architecture.” The example represents cache architecture 
by two main properties, “cache size” and “associativity.” 
This produces a new delta chart, shown in Figure 4a. We 
refine cache size further, as Figure 4b shows, by listing 
cache sizes of 1,2, and 4 megabytes. We refine associa- 

-. - -. 

Office applications 

Nt ulti pr ocesor 

Figure 2. Initial delta chart for the multiprocessor 
example. 

Figure 3. Refined multiprocessor delta chart. 
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tivity by listing the number of sets (two, four, or eight) 
(Figure 4c). 

We can refine more than the architecture. The “per- 
formance” attribute on the criteria edge of our triangle is 
quite general. Here we show “system performance” and 

“bus throughput,” although our example 
will consider only system performance. 
The example represents the workload for 
office and database applications by bench- 
marks for each of these kinds of process- 
ing. Figure 4d depicts all of this. 

These examples demonstrate concreti- 
zation, a particular kind of refinement. 
Concretization can separate an archi- 
tecture (or criterion, or load) into one or 
more submodules. Alternatively, it can 
realize an evaluation aspect more spe- 

cifically. We continue the concretization refinement until 
we get delta charts that we can solve by applying a single 
evaluation method. 

DETER~MINING PARAMETERS. To determine system per- 
formance, the criterion for our evaluation goal, we use a 
Petri-net cache model. However, for Petri nets, the load 
cannot consist of benchmarks themselves. Instead we must 
represent the load by parameters that characterize the 
benchmarks. Such parameters are average memory request 
length, average interrequest time (the average time between 
two memory accesses), and cache-miss rate. This further 
concretization leads to the delta chart in Figure 4e, anno- 
tated with the method to be applied, “Petri-net model.” 

To derive the parameters for Petri-net analysis for 
these applications, the single process and the single 
processor on which each application runs determine 
request length and interrequest time. Therefore, we can 
find the parameters by measuring them on a single- 
processor system running the actual benchmarks. This 
measurement, an evaluation problem itself, appears as 
the delta chart in Figure 4g. 

The kind of refinement we applied to create Figure 4g 
differs from the previous ones. So far, the left edge has 
become the left edge of the succeeding triangle after a 
refinement. This time, the right edge, with the cache-load 
parameters, switched to the left side. The new right edge 
shows measures of new criteria. This kind of refinement is 
calledparameter determination. The delta chart in Figure 
4g needs no further refinement. We can solve it as a 
straightforward evaluation by applying the method “mea- 
surement.” However, the measurement task might not be 
so simple. We need experts to perform these measure- 
ments, a tool to get the desired data, and benchmarks that 
characterize the applications. 

A third load parameter, the cache miss rate, remains 
from the delta chart in Figure 4e. An expert can derive this 
parameter by modeling the cache and evaluating its per- 
formance. This example uses the Petri-net modeling 
method. Again, we observe a change in the triangle’s edge 
from 4e to 4f The load in 4e becomes the measure of the 
criterion determined by the next step. This chart employs 
the analytical cache-modeling method. We must then 
adapt the load representation to the kind of model. Figure 
4f specifies the load with the following parameters: num- 

ber of addresses, reference string length, and static and 
dynamic sequence length. 

Nowwe face the same problem as before: The load con- 
sists of parameters we cannot yet measure. However, for 
the applications in the example, these parameters depend 
mostly on the kinds of processors used, not the number. 
Thus, we can determine these parameters by measuring 
them on a single-processor system running the bench- 
marks that represent the applications. 

GENERALIZING CHARTS. That last step gives us a delta 
chart, Figure 4h, that needs no further refinement. We can 
perform the measurement as a straightforward evalua- 
tion problem, as above. Delta charts 4g and 4h differ only 
in one edge, the criteria. They both represent measure- 
ments on the same processor using the same kind ofload. 
Therefore, we can combine both delta charts into a new 
one, reducing the work we need to do. For the resulting 
delta chart 4i, we need only one set of measurements for 
both sets of criteria on the left edge. 

Joining two delta charts that differ only in one edge by 
combining the items on the differing edges is calledgener- 
alization. This combination reduces the cost of our evalua- 
tion by avoiding multiple applications of evaluation 
methods. 

EVALUATION PROCESS RULES. As the preceding ex- 
ample illustrates, there are the following rules for devel- 
oping an evaluation process. 

The basic evaluation graph starts with an initial delta 
chart that uses architecture, evaluation criteria, and 
workload as its edges. 
We then refine each delta chart in the graph by cre- 
ating new triangles until we get charts that we can 
process as simple evaluation problems. Each delta 
chart represents an evaluation subproblem. An eval- 
uation method written into the triangle characterizes 
these subproblems. 

Our approach uses three kinds of refinement to produce 
an evaluation graph: 

Concretization copies a delta chart to one or more new 
ones by changing one edge. The technique replaces a 
part by its major subparts or subfunctions. For exam- 
ple, we can concretize “cache” by “cache size” and 
“cache associativity.” Bifurcating the evaluation 
graph denotes cases where we evaluate these parts 
separately. 
Parameter determination, as in our example, spawns 
successors for a delta chart by copying its right edge 
(load parameters) to their left edges (the criteria). 
Generalization combines two delta charts that differ 
only in one edge into a new chart. The union of the 
items attributed to the differing edges becomes the 
new delta chart’s corresponding edge. 

Of course, the evaluation graph is not fixed indefinitely. 
We can change it whenever a particular solution turns out 
to be infeasible. Documenting each decision by noting the 
reasons for choosing each refinement or generalization 
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supports an important goal of our evaluation methodol- 
ogy: The graph makes the whole evaluation process 
repeatable and plausible. 

Performing the evaluation 
Once we have created the graph, the actual evaluation 

begins. The evaluation process corresponds to a bottom- 
up walk through the evaluation graph, from the leaves to 
the root. The graph‘s leaves contain evaluation methods 
we apply by building and evaluating models, whether ana- 
lytically or by simulation. First, we process all leaves by 
applying their methods. Next, we process the leaves’ pre- 
decessor nodes. When a leaf is a generalization of several 
predecessors, we simply divide the results into subsets. In 
the example (Figure 4i), we divided the measurement 
results into two subsets: “number of addresses, reference 
string length, static sequence length, dynamic sequence 
length” and “average memory request length, average 
interrequest time.” This solves the evaluation task repre- 
sented by such a delta chart. 

To determine a predecessor’s parameters, we can insert 
values derived by evaluating a leaf into the correspond- 
ing edge of the preceding delta chart. Then we can solve 
the problem the preceding delta chart represents by 
applying the corresponding evaluation method (see 
Figure 40. 

When a delta chart is a concretization of a predecessor, 
we must combine the results of all this predecessor’s suc- 
cessors. This can meanjust noting the results, such as when 
we concretize one application into several workload repre- 
sentations. This combination can also mean a complicated 
analytical composition, for example, combining perform- 
ability measures of different parts. Some cases, particu- 
larly in their uppermost triangles, produce a set of 
alternative results, such as 
performance curves for arch- 
itectural alternatives. 

Supporting 
evaluation 
graph ica Ily 

To promote dissemina- 
tion and acceptance of 
systematic evaluation in 
industry, we have developed 
a graphical editor for evalu- 
ation graphs. The Motif- 
based tool, called Graphedit, 
lets users conveniently con- 
struct, annotate, modify, dis- 
play, print, and store eval- 
uation graphs. 

In addition to the usual 
graphical editor functions, 
Graphedit has the follow- 
ing notable features: 

You can annotate indi- 
vidual delta charts and 
arcs, as well as entire 
subgraphs, with key- 
words, short texts, and 

Figure 4. Multiprocessor evaluation graph. (a) Delta chart refining cache archi- 
tecture; decomposed by (b) cache size and (c) associativity; (d) workload mea- 
sured by application benchmarks; (e) parametrized for Petri-net analysis; (f) 
determining the cache-miss rate; (g) determining the other load parameters for 
the Petri-net model; (h) determining cache workload parameters; (i) generaliz- 
ing 4g and 4h for measurement. 

June 1996 



Figure 5. Graphedit, a graphical editor for evaluation graphs. 

comprehensive texts. For instance, you can use this 
feature to explain certain design decisions. 
You can display or hide texts, either for each item (a 
delta chart, chart edge, or arc between charts) 
individually, or for all charts (or arcs). This lets you 
document the evaluation process in close detail, 
while keeping the corresponding graph easy to 
survey. 
Again for readability’s sake, you can collapse sub- 
graphs into, and expand them from, single meta 
charts represented by triangular symbols. 

8 You can survey and rapidly navigate a large, complex 
evaluation graph using a sum-up view. You can still per- 
form simple editing functions on this representation. 

0 You can print the sum-up view, selected objects or 
pages, or the whole graph, sized up or down as desired. 
A simple page-preview facility is available as well. 

Figure 5 shows how Graphedit appears to the user. The 

tool runs on Unix-based workstations and personal com- 
puters. Contact us for more detailed information. 

WE HAVE USED THIS METHOD to evaluate mainly computer 
systems and communication systems design, including 
multiprocessor systems, a parallel file system, and an ATM 
network. Now we are disseminating the method within 
Siemens. 

You can use the method for evaluating all kinds of tech- 
nical systems, and we believe you could adapt it to the 
analysis of social systems and organizations as well. To 
confirm this, we evaluated the “performance” of our own 
organization, Siemens Corporate R&D. In addition to 
achieving the central goals of structuring and improving 
the evaluation process, the method turned out to facili- 
tate communication among the people involved. Because 
of its requirement for explicitly formulating evaluation 
goals and aspects, the method supports focusing on the 
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essentials and avoiding misunderstandings. Altogether, it 
helps reduce the time that complex evaluations take. I 
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