SISCI — Implementing a Standard Software
Infrastructure on an SCI Cluster*

Michael Eberl, Hermann Hellwagner, Martin Schulz
Institut fur Informatik, Technische Universitat Minchen
{eberl,hellwagn,schulzm } @informatik.tu-muenchen.de

http://wwwbode.informatik.tu-muenchen.de/Par/arch /smile/sisci/

Bjarne G. Herland
Parallab, University of Bergen
Bjarne.Herland@ii.uib.no

http://www.parallab.uib.no/projects/sisci/

Abstract
To enable the efficient utilization of clusters of workstations it is crucial to develop
a stable and rich software infrastructure. The ESPRIT Project SISCI will provide two
widely used message—passing interfaces, MPI and PVM, as well as a POSIX compli-
ant, distributed thread package (Pthreads) on multiple SCI-based clusters. This paper
features motivation and background on this projects as well as details of the two core
components: the common messaging layer and the Pthreads package.

1 Introduction

As PC clusters with high—speed interconnection networks are emerging as a cost—effective
alternative to large scale parallel systems, the question of their programmability has in-
creasingly become important to resolve. The individual machines must be tied together and
represented to the user as a single machine. In contrast to the traditional massively parallel
machines, this proves more difficult to accomplish in a cluster environment, as the machines
are not as tightly coupled and the operating systems are not geared towards clustering. The
SISCT Project [26] (Standard Software Infrastructure for SCI-based Parallel Systems), funded
by the European Commission as an ESPRIT HPCN project, attacks this problem focusing
on one promising interconnection approach, the Scalable Coherent Interface (SCI) [22].

This interconnection solution is one of various new local-area or system—area networks
that have made cluster-based computing attractive. However, it clearly differs from most
other networks, like Myrinet [2] or Fast Ethernet, as it is not based on explicit communication
via messages. Data is transfered using implicit communication via remote memory accesses.
Every node can map remote memory segments from any other node within the cluster into
its own address space and operate on it like on local memory. The actual communication
is triggered by the SCI adapter card on reads from and writes to remote memory segments.
This technique not only allows high throughput rates, but also low latencies of under 3
microseconds (one-way) as communication can be performed without any protocol overhead
or system calls.

*This work is supported by the European Commission in the Fourth Framework Programme under ES-

PRIT HPCN Project EP23174 (SISCI).

Within the SISCI project, several well-known parallel programming models will be imple-
mented on this new architectural concept, exploiting the possibilities offered by SCI. They
will provide a familiar and transparent access to the cluster and will allow for easy ports of
already parallelized code to the new environment. In order to open the clusters to a broad
range of applications, message passing programming models in the form of the widely used
libraries MPT [24] and PVM [25], as well as a shared memory programming model represented
by a POSIX 1003.1¢ [23] compliant thread package will be provided.

These programming models are challenging to implement in a cluster environment. Es-
pecially for the POSIX thread package, much work must be done to abstract the physically
distributed cluster memory into one global address space maintaining total transparency.
This problem is further increased by the fact that the package is supposed to be implemented
as a pure library approach without any special compiler support or the need to change the
original application source code.

Offering these two programming paradigms, message passing and shared memory, effi-
ciently on one single system opens this system to a whole new group of users and applications.
The programmer will decide which model to use according to the needs of the application;
it will no longer depend on the architecture of the underlying system. This forms a stable
basis for any future software development and will promote SCI-based parallel systems as
an attractive platform for low—cost parallel computing.

The remainder of this paper is organized as follows. An overview of the Scalable Coherent
Interface (SCI) as the enabling technology for this project is given in Section 2. Section 3
motivates the need for a standardized software infrastructure and gives further background
information on the project. Sections 4 and b describe in more detail two of the key components
of the SISCI project, the common messaging layer for MPI and PVM and the Pthreads
package. Section 6 offers a brief overview of related work, followed by some concluding
remarks in Section 7.

2 The Scalable Coherent Interface (SCI)

SCI is a recent interconnect standard [22] that specifies hardware and protocols to tightly
connect up to 64k nodes (e.g. workstations or PCs, multiprocessors, bus bridges, network
interfaces, I/O adapters) into a high—speed network [9, 10]. SCI defines computer—bus-like
services, but, in contrast to busses, offers fully distributed solutions for their realization. The
most notable of these services are a single physical 64-bit address space across SCI nodes
and related transactions for reading, writing, and locking memory locations in this hardware—
based distributed shared memory (DSM). Transactions for efficient messaging as well as for
fast event notification or synchronization are also specified.

Optional distributed cache coherence protocols for the SCI DSM have been developed so
that SCI systems with NUMA as well as CC-NUMA characteristics can be built. Exam-
ples for the former are local-area compute clusters for parallel processing built from stan-
dard workstation or PC nodes, as used in SISCI. The latter systems are represented by the
HP/Convex Exemplar, Data General NUMALiine, and Sequent NUMA—-Q multiprocessors.

SCT avoids the physical limitations of computer busses by employing unidirectional point—
to—point links only. Thus, in contrast to bus—based symmetric multiprocessors, the size and
number of processors of SCI systems are not limited by bus length and bus speed. The
links can be made fast and their performance can scale with improvements in the underlying
technology. SCT initially specifies link bandwidths of 1 Gbit/s using serial links and 1 Gbyte/s
using parallel links over small distances.

At the logical layer, SCI defines packet—based, split—transaction protocols. SCI specifies
up to 64 outstanding transactions per node, allowing for each node to pipeline multiple
packets into the network. The interconnect bandwidth can thus be utilized efficiently, and
the latencies of e.g. DSM accesses can be hidden effectively for the node.

The basic building blocks of SCI networks are small rings (ringlets). Large systems are
built of rings of rings, rings interconnected via SCI switches, or multistage interconnection
networks that can be constructed from ringlets. Further, a standardized interface of a node
to the SCI network is proposed, with an incoming and an outgoing SCI link per node. The
protocols defined for this basic model provide for fair bandwidth allocation and network
administration; they are deadlock—free and robust. Maintenance of data integrity and error
detection is primarily done in hardware, for instance by hardware checksum computation
and by timeout logic that supervises outstanding transactions and performs retries in case
of errors.

The major benefit of SCI networks and protocols is that communication can be performed
at user level via the hardware DSM, by load and store operations into memory regions
mapped from remote memories. This translates into latencies in the low microseconds range
in a cluster environment; see e.g. [18, 13] and [20, 21]. For high-volume communications, the
SCI messaging transactions can be employed which use DMA and SCI hardware protocols
for data transfers. Throughput close to the bandwidth provided by the network interface can
be achieved in this manner, e.g. [18, 13].

The SCI protocols do not guarantee in—order delivery of transactions. If this is an issue
for software atop of SCI hardware, implementation—specific facilities must be provided and
used to ensure correct implementation of message passing or shared—-memory communication.

The SISCI project uses current SCI hardware from Dolphin Interconnect Solutions: the
SBus/SCI adapter card [4] and PCI/SCT adapter board [5]. These boards plug into the /0O
bus (SBus or PCI) of off-the-shelf workstations or PCs and allow them to be connected
into SCI compute clusters. The adapters and associated driver software offer two interfaces
and communication facilities over the SCI DSM: shared—memory operations and DM A-based
messaging.

Each node can create shared memory segments in its I/O address space and export them
into the SCI network. Other nodes import these DSM segments into their I/O space. A
process may further map DSM segments into its virtual address space and, from that point
on, use standard load and store instructions to access shared, potentially remote memory.
The SCI adapter cards translate I/O bus transactions into SCI transactions (and vice versa)
and, using on—board address translation tables, local I/O addresses into SCI addresses (and
vice versa). Further, they participate in SCI protocol processing. None of the cards currently
supports (remote) lock transactions.

The functionality, the two-stage address translation scheme (virtual address — I/O ad-
dress — SCI address), and the performance of the SBus/SCT interface boards are described
e.g. in [13]. Throughputs of up to 25 Mbytes/s have been achieved with this card. Fur-
ther information on the PCI/SCT interface cards is given in [20, 21]. The PCI/SCT card
introduces memory barrier operations and the concept of streams. A memory barrier on a
node ensures that all DSM operations issued by that node have finished. A stream allows
to combine multiple consecutive SCI accesses to consecutive addresses to be combined into
larger packets (up to 64 bytes). PCI/SCI interfaces employing multiple streams have been
measured to achieve throughput of up to 70 Mbytes/s.

3 SISCI Background

As discussed above, SCI is a promising interconnect technology for building high—performance,
cost—effective parallel computing platforms out of “commodity off-the—shelf” workstation or
PC nodes. While hardware (SCT adapter cards and switches) and basic device driver software
for SCI compute clusters have been on the market for about three years, standard parallel
programming APIs like MPI, PVM, or a thread library, have not been available. These APIs
would support a wide range of parallel applications and enable application porting to SCI
clusters with relative ease.

The ESPRIT HPCN project SISCI aims at establishing this missing link. The project
develops appropriate software support for parallel programming on SCI-based clusters, by
implementing and evaluating the following formal and de facto standard software environ-
ments:

o the Message Passing Interface communication library (MPI);
o the Parallel Virtual Machine parallel programming system (PVM);

e a POSIX compliant, distributed thread package (Pthreads) that will transparently op-
erate across machine boundaries and provide a system—wide virtual address space.

The project pursues an approach to provide this software on multiple hardware platforms
from possibly multiple vendors, and on multiple operating systems. Therefore, in the interest
of portability and reusability of the programming environments as well, the project will also
define and implement a standardized low—level SCI programming layer. This layer is to hide
specific details of SCI hardware and device driver. It offers functionality such as setting
up, exporting, and mapping DSM segments, initiating efficient bulk data transfers via the
DMA facility, and initializing and monitoring the SCI network. In case a parallel application
requires highest efficiency, this low—level API can also be used directly; still, portability
among the different platforms of the project is being retained.

On top of these standard parallel programming APIs, a number of demanding parallel
applications will be ported or developed, respectively, and evaluated. The applications are
from diverse fields such as computational fluid dynamics (CFD), structural analysis, synthetic
aperture radar (SAR) imaging, and large—scale data acquisition.

Figure 1 depicts the layered structure of the SISCI cluster and software products. It must
be noted that MPI and PVM will be based on a common message passing layer that will
malke efficient use of the SCI DSM and communication facilities. The figure also shows a new
kernel-level component, the SCI Virtual Memory Manager, that extends the virtual memory
manager of the underlying operating system to established the global virtual address space
for the SISCI Pthreads. These two basic components will be dealt with in the rest of this

paper.

Target applications and Test suites
ApplicationL _____ |
Libraries
MPI PVM
Pthreads
Low-level message passing
Userlevel L | |
Kernel/
Executive Overatin Low-level SCI-Virtua
P g SCI programming|Memory Manager
system layer
Hardware with SCI interconnect

Figure 1: The architecture of the SISCI project.

Two different cluster architectures are being used in SISCI: (1) SPARC-based worksta-
tions with Dolphin SBus/SCI adapters and the Solaris operating system; (2) PentiumII-
based high—end PCs with Dolphin PCI/SCT interface cards and Windows NT. Systems inte-
gration and cluster administration issues are also being addressed in the project.

4 Common Messaging Layer for MPI and PVM

The SISCI project develops the two widely used message passing interfaces, MPI and PVM
for SCI clusters. MPI will be implemented on top of Unix and PVM on top of Windows NT.
Despite the different operating systems, both message passing interfaces are to be built on
top of SCI distributed shared memory. This enables the use of a common message passing
layer based on shared memory segments and allows the efficient implementation of MPI and
PVM on top of it.

Message passing interfaces on top of SCI DSM are designed to offer SCI’s good com-
munication performance, especially the low message latency, to application software. Short
messages' are sent and received by direct accesses to shared memory segment. Additional
copy operations and the overhead for setting up network DMA hardware are avoided wher-
ever possible. However, for long messages this overhead becomes negligible and the SCI DMA
hardware is used to relieve the CPU and to achieve high bandwidth.

Designing a common message passing layer (CML) for MPT and PVM requires a detailed
understanding of MPI and PVM functions. Close analysis of their semantics gives slight
differences in most routines while only a small set of routines are identical. Despite these
differences; a basic CML can be designed to form a base for the implementation of both MPI
and PVM.

4.1 Terminology

In order to explain the slight semantic differences between MPI and PVM it is necessary to
introduce some terminology at this point.

A message has arrived (at the receiver) if it is available in the messaging layer at the
receiver. The term to match a message is used when an arrived message 1s paired with a
receive call. A message that has been matched can not be matched again. The term to post a
recetwe describes the action where the messaging layer is informed that a message of a given
type is expected to arrive. A posted receive will immediately be matched if the message had
arrived already.

The term unezpected message is used to describe a message that has arrived, but no
matching receive has been posted. A message consists of two parts: a header which identifies
the message, and the body which 1s the contents of the message. A message is identified by
an address, which is the triplet (sender, tag, communicator?).

4.2 Functionality of the CML

The main semantic differences between MPI and PVM are in receiving messages. One good
example is the non-blocking receive, present in both MPI and PVM. In MPI, the non—
blocking receive 1s called once, followed by a wait—for—completion call. When the latter
returns, the message is available in the user buffer. In PVM, the non-blocking receive simply
returns if the message is not available, like a non—blocking probe. The user has to call the
routine repeatedly until the message is available, at which point it is matched and copied
to the system receive buffer. Thus, in MPI, a receive call will always match exactly one
message, in contrast to PVM, where multiple receive calls may fail until one succeeds and
the message is received.

Furthermore most PVM “receive” calls (other than pvm_precv()) do not receive any data
into user buffers, but only the PVM “unpack” functions can do so. Hence, in PVM receiving
a message 1s alway split into two functions: the receive calls and the unpack call.

IThe threshold delimiting “short” and “long” messages can be adjusted at configuration time and is set
to 1024 bytes by default.
2For PVM the communicator is merely a constant value.

The conclusion is that in both MPI and PVM receive calls may or may not match a mes-
sage, depending on whether the call was non—blocking and whether the message has already
arrived. But the problem at what time messages are matched and data is received is solved
differently in the two interfaces. The solution for the CML is to provide the fundamental
functionality for MPI and PVM: A function called common match() that matches a message
and a second call common_copy () that will get the message out of the system buffer into user
memory. These functions can be called from MPI and PVM as required.

Other functionality of the CML includes:

e A blocking receive function, useful for both MPI and PVM, that matches and receives
a message into a user buffer.

A non-blocking send function that can be used “as is” by MPI; together with a wait—
for—completion function, it forms a blocking send function for PVM.

A search function that seeks for arrived messages.

e A cleanup function that keeps the DSM read buffer from getting filled up and allows
further messages to be received.

e Queues to store posted receives as well as unreceived messages and outstanding DM A
transactions.

e A separate thread that maintains the outstanding DM A queue to support transfers of
long messages.

4.3 Implementation of the CML

Basic Structure and the Receive Ring Buffer

Figure 2 shows the basic structure of the DSM message—passing routines. This structure
consists of a part for sending messages (left, on node A) and a part for receiving messages
(right, on node B).

Node A | Node B
Send Ring Buffer 1) Receive Ring Buffer
u
]
,,,,,,,,,,,, -]
u
Shared Memory Area, located on remote host
Shared Memory Area, located on local host
Local Receive Counter ‘ I Local memory
1) "Message Arrived" flag, indicates unreceived
H Send Counter R Receive Counter ‘ H message in receive buffer
T Points to f SHM write
H ‘ Send Acknowledge Counter |[<--- Receive Acknowledge Counter H !

Figure 2: SCI DSM send and receive buffers.

The gray marking aside of an area means that it 1s local physical memory shared with
another node via SCI, the white side-bars on the opposite side of the drawing mark the
respective counterparts of these areas: mapped memory areas that physically reside on a
remote node. This means that the gray and white marked areas always have the same
contents as their counterpart on the opposite side of the drawing. All memory accesses to a

gray area are treated as regular memory accesses, while read and write operations to white
areas are transformed into remote accesses to their counterpart. Variables marked black
reside in regular local memory which is not shared.

The send and receive buffers are organized as ring buffers. Every ring buffer offers a
number of message slots consisting of space for the message header and the contents of a
short message. Every slot has a Message Arrived flag which is set by the sender and cleared
when the message has been matched by the receiver?.

Relying solely on this flag for detecting free message slots and newly arrived messages
would not guarantee correct message ordering and could also lead to race conditions. There-
fore two counters control the ring buffers: the Send/Receive Counter and the Send/Receive
Acknowledge Counter. As depicted in figure 2, the Send Counter and the Receive Counter
(as well as the acknowledge counters) are only different names for the same value.

The sender writes messages to the slot pointed to by Send Counter and then increases this
counter. The Send Acknowledge Counter marks the last free slot that may be used by the
sender. The receiver, when matching a message, checks all slots starting from Local Receive
Counter until Receive Counter for newly arrived messages (Message Arrived flag set).

When the first message at Local Receive Counter is matched, this pointer is increased to
the next unmatched message. The Recewe Acknowledge Counter is increased as soon as the
message has been received and the slot can safely be reused.

The Unexpected Message Queue

Receive Acknowledge Counter

Unexpected

Message

Queue
[

[

| —

Receive
Counter

[f The Cleanup Function moves messages from the RRB to the UMQ]

Figure 3: Receive Ring Buffer and Unexpected Message Queue.

In order to avoid deadlocks in case the Receive Ring Buffer (RRB) is filled up with
unexpected messages while a blocking receive is waiting, the receiver can call a cleanup
function that moves messages from the RRB to the Unezpected Message Queue (UMQ).
Redundant copying of messages is prevented by cleaning the RRB as late as possible (see
figure 3).

When matching a message, the UMQ has to be checked first to see whether the message
already has been moved from the RRB. Next, the RRB is checked in case the message arrived
after the last cleanup.

The Posted Receive Queue
MPI Irecv() is a mechanism to post a receive request enabling the underlying message
engine to copy the message into the user buffer as soon as it arrives. To facilitate this, the

SNote that a matched message still stays in the Receive Ring Buffer (RRB) and is removed from there
later.

Posted Receive Queue (PRQ) is added to the CML. For every message found in the RRB, the
match function first checks the PRQ. If no match is found in the PRQ, the match function
tries to match the message that was intended to be received by the calling function. In this
manner correct ordering of messages is ensured even when allowing posted receive requests.

Long Message Transfer

Long messages are transfered using a combination of both available message passing
mechanisms: the message header is sent via DSM, while the bulk data is transfered through
a DMA mechanism. The CML guarantees that the correct message order is always preserved,
thus long messages and their headers will not be mixed up. The DMA mechanism is handled
by separate tasks (threads) processing the queues of outstanding requests. The common send
and receive functions enqueue the requests and receive a handle that can be used to check
whether the transfers have been completed.

4.4 Summary

The common message passing layer for MPI and PVM provides the means for efficiently
implementing MPI and PVM on top of SCI shared memory and SCI DMA transfers. Both
mechanisms are used, depending on which one is more efficient. Transfers of short messages
avoid unnecessary memory copy operations: every message is copied once into the network
and once out of the network. Only in case of unexpected messages jamming the Receive Ring
Buffer, additional memory operations have to be done in order to prevent temporal blocking
of the sender.

For long message transfers we relieve the CPU from copying large amounts of data into
the network. By using SCI DMA transfers, threads/tasks are not blocked and the bulk
bandwidth of the SCI hardware can be exploited.

5 SISCI-Pthreads

Besides the previously mentioned message passing approach, the SISCI project will also
feature a shared memory programming model. A POSIX compliant thread package [23]
will be implemented on the SISCI cluster on top of Windows NT. It will provide complete
transparency to the user, allowing the execution of Pthread applications without recompiling
or even rewriting the application. As a pure library approach, it will be sufficient to simply
link the library to the code and execute it on the target platform.

5.1 Motivation and Objectives

Unlike message passing, shared memory with multithreading has the advantage that its
programming model does not differ far from the conventional sequential one. It is therefore
simpler to learn, and applications are easier to write or to port. This is mainly achieved by the
fact that the programmer only has to deal with one address space that spans all participating
machines. Conceptually, there is no distinction between local and global data; all data can
be directly accessed by any processor. Hence, there is also no need for data redistributions
allowing easier and more implicit implementations of load and work distribution. However,
this ease of programmability comes at a price; the complexity of the implementation of such
a system is rather large as each processor needs fine grain access to all the data. Due to
this, shared memory programming models can normally be found on tightly coupled systems
like symmetric multiprocessors (SMPs), whereas loosely coupled machines, like clusters, are
programmed using message passing.

The SISCI Pthreads project has the goal of forming a bridge between these two worlds
incorporating the best of both: an easy—to—use programming model in the form of globally

shared memory on top of a cost efficient cluster environment consisting of “commodity off-
the—shelf” components. The main challenge is to create a fully transparent memory that is
shared across all participating machines. Each thread running within a Pthread application
must be provided with the same view on the memory; the data distribution must be hidden
completely.

5.2 Architectural Concept

SCT offers hardware support for a shared—-memory concept allowing transparent remote mem-
ory accesses within a cluster. However, it is not powerful enough to provide the capabilities
needed to implement a globally shared memory. Instead, it provides mechanisms similar to
inter—process shared memory as known from workstations. To achieve the necessary intra—
process shared memory, additional software mechanisms known from traditional software
DSM approaches have to be applied. By combining them with the remote memory opera-
tions offered by SCI, a new concept, called the SCI Virtual Memory, can be created featuring
intra—process shared memory. In contrast to traditional software DSM systems, however,
data does not have to be migrated or replicated within the system, eliminating the problem
of false sharing and the cost of a multiple writer consistency protocol. Remote accesses can
be satisfied directly via the SCI network allowing for an efficient implementation of a globally
shared memory in a cluster environment.

: Node A Node B }

! % % %Thread % % %Thread !

| Teamon A TeamonB
7 Virtual addressspaceon A~ Virtual addressspaceonB

ANEEAREN ENNENEEE

Physical memory on A Physical memory on B

PCI address space on A PCI address space on B

SCI physical address space

Figure 4: SCI Virtual Memory.

The architectural concept of the SCI Virtual Memory can be seen in figure 4. Like in
software DSM approaches, the memory 1s distributed at the granularity of pages. A thread
can access data in pages in the same node using standard memory accesses. In order to access
data in remote pages, the page has to be mapped via SCI into the local address space first,
before the access can be carried out. Once accomplished, memory accesses to remote pages
can be done like local ones. The SCI hardware transparently forwards the memory request
to the remote node without any further user interaction.

The basis for this mapping is formed by the SCI physical memory. It comprises the
physical memory on all nodes and forms a global physical address space. From this address

space, pages can be mapped into the local PCI address space. This is done using the address
translation tables of the SCI card. From there, the page is mapped into the thread’s virtual
address space using the memory management unit of the local processor.

These mappings can normally not be done statically at the beginning of the application’s
execution. The address translation tables in the SCI adapters as well as the PCI address
space are limited resources and are normally not large enough to store all information needed
for the whole runtime simultaneously. To solve this problem, a dynamic scheme has to be
applied, that creates mappings on demand, similar to swapping pages into main memory by
the virtual memory manager.

5.3 Implementation Issues

This architectural concept introduces some problems for a concrete implementation. First,
in order to be able to perform dynamic mapping at any time, the physical location and
state of any page in the system has to be known to any node. This can only be achieved
by maintaining a global page directory. This task is further complicated by the fact that
pages can be swapped to disk. To prevent this for pages that are mapped from remote
nodes, these pages have to be temporarily locked. As this can potentially cause an unfair
memory consumption by the Pthread application, the working set of pages has to be actively
monitored and controlled. In the case that too many pages are locked by the Pthread
application, some pages must be released to free memory for other applications.

Besides these pure implementation issues, some performance issues also have to be taken
into account in order to achieve good performance. A central issue is the initial page dis-
tribution. It can be done statically, e.g. in a round robin fashion, or dynamically based on
runtime information. Other performance related issues include the implementation of fast
mappings and low management overhead for keeping the global page information consistent.

On top of the implementation of SCI Virtual Memory, a global abstraction of a process can
be created representing the Pthread application. All threads created during the application’s
runtime are distributed onto the participating nodes. In order to be able to host the threads
on one node, they are grouped together into teams and executed in a team process context.
This fact, however, is hidden from the threads; they are not aware of this and execute in the
same way as they would execute on a standard SMP system.

5.4 Summary

In summary, the SISCI Pthreads offer an SMP-like programming model on SCI-based clus-
ters of PCs. They introduce a second programming paradigm for loosely coupled systems,
allowing the port and the execution of new applications that haven’t been run on clusters
before. In particular, programs utilizing fine grain parallelism will gain some advantages
from this new execution environment.

6 Related Work

Software environments for clusters of workstations is an area of intense research, but also
shows a wide diversity with respect to programming models and interconnection technologies.
The SMIiLE project [11] at the Technische Universitdt Miinchen is focusing on SCI [22]
as the underlying technology. Other projects dealing with SCI can be found at several
institutions worldwide including the University of Paderborn [21], the University of Oslo
[18] , the University of California at Santa Barbara [12], and the University of Florida [6].
The main focus of the majority of projects is primarily message passing and its efficient
implementation on top of SCI shared memory. Only a few projects, like Split-C [13] at

10

UCSB, evaluate SCI as the base for globally shared memory programming environments.
These projects have to be seen in the same context as the SISCI Pthreads.

Also work on software infrastructure environments or high performance virtual machines
is done at several places. Of special interest and closely related to the described workpackages
of the SISCI project are the Illinois High Performance Virtual Machines [3] and the Millipede
project [14] as both are using Windows NT as the underlying operating system. The first
one implements several programming libraries,; including the Illinois Fast Messages [19] and
MPI [24] while the latter constructs a cluster—wide shared object space and is intended as
a low-level programming model or basis for a runtime system of a parallel programming
language.

Work related to the development of the Common Message Layer for MPI [24] and PVM
[25] can be found at Mathematics and Computer Science Division at the Argonne National
Laboratory. Together with the implementation of the MPICH library [8], a standard im-
plementation of the MPI specification, the differences between MPI and PVM have been
investigated [7].

The Pthreads project utilizes mechanisms and basic concepts from pure software DSM
approaches. A well-known representative of this group is the TreadMarks [1] implementation.
Here, shared pages are replicated across the cluster and synchronized with the help of a com-
plex multiple-writers protocol. To minimize the cost of maintaining the memory consistency,
a relaxed consistency model is applied, Lazy Release Consistency [15]. However, unlike in the
SISCT Pthread approach, where the sharing of the memory is transparently embedded into
a global abstraction of a process, TreadMarks require the programmer to explicitly specify
the shared segment. The same is also valid for the DSM-Thread [17] approach, which like
the SISCI approach, is based on a POSIX compliant [23] API. This thread package, based
on the FSU-Pthreads [16], allows the distribution of threads across a cluster interconnected
by conventional interconnection networks, but does not provide complete transparency. It
therefore forces the user to modify and partly rewrite the application’s source code.

7 Conclusions and Future Work

As clusters of PCs are getting more commonplace, software developers are demanding stan-
dardized APIs to efficiently create portable code for this new architecture. The SISCI project
attacks this problem by providing a complete software infrastructure on SCI based clusters.
The project features a large variety of activities reaching from work on low-level APIs up
to a large variety of applications from different areas. Two of the integral components of
the project have been shown in detail: the Common Message Layer and the SISCI Pthread
package.

The first one will be used to implement both MPI and PVM on a common base sharing as
much functionality as possible. As shown here, this goal can be achieved without sacrificing
performance based on a detailed knowledge of MPI and PVM function semantics. The next
steps in this development will be further extensive testing of the existing CML implementation
and the realization of MPI and PVM on top of it.

The second, the SISCI Pthreads, introduce a pure shared memory programming model
into the world of cluster computing, as it is traditionally from tightly coupled systems like
SMPs. It provides the user with a new view of the system using globally shared memory
in cooperation with threads in contrast to message passing, the traditional programming
model for loosely coupled distributed memory machines. By merging SCI remote memory
operations and software mechanisms from traditional DSM systems, the necessary globally
shared memory can be achieved while still providing complete transparency. This concepts
opens up several challenging implementation issues that still have to be researched further.
Next steps in the project also include the implementation of a first base version of the SCI
Virtual Memory as well as the selection of a comprehensive benchmark suite.

11

In summary, the software infrastructure created by the SISCI project will feature the two
mostly used parallel programming models, message passing and shared memory in coopera-
tion with multithreading, on a single architecture. By having both programming paradigms
on one system, each user has the chance to choose the right programming interface for their
application needs and personal preference. This will not only ease the programmability and
porting code onto SCI based clusters, but also form a stable platform for any further software
development on this architecture.

References

[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel. TreadMarks: Shared Memory Computing on Networks of Worksta-
tions. ITEEE Computer, February 1995.

[2] N. Boden, D. Cohen, R. Felderman, J. Seizovic A. Kulawik, C. Seitz, and Wen-King
Su. Myrinet: A Gigabit—per—Second Local Area Network. IEEE Micro, 15(1):29-36,
February 1995.

[3] A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane, L. Giannini, and J. Prusakova.
High Performance Virtual Machines (HPVM): Clusters with Supercomputing APIs and
Performance. In Proceedings of SIAM Conference on Parallel Processing for Scientific
Computing, March 1997.

[4] Dolphin Interconnect Solutions, AS. Dolphin SBus—2 Cluster Adapter Card, September
1996.

[5] Dolphin Interconnect Solutions, AS. PCI-SCI Cluster Adapter Specification, May 1996.
Version 1.2.

[6] A. George, W. Phillips, R. Todd, and W. Rosen. Multithreading and Lightweight Com-
munication Protocol Enhancements for SCI-based SCALE Systems. In Proceedings of
the 7th International SCI Workshop, March 1997.

[7] W. Gropp and E. Lusk. Why are PVM and MPI so Different? Technical Report
PREPRINT ANL/MCS-P667-0697, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, June 1997.

[8] W. Gropp, E. Lusk, N. Doss; and A. Skjellum. A High—Performance, Portable Imple-
mentation of the MPI Message Passing Interface Standard. Technical report, Argonne
National Laboratory, Mississippi State University, 1996.

[9] D. Gustavson. The scalable coherent interface and related standards projects. IEEE
Micro, 12:10-22, February 1992.

[10] D. B. Gustavson and Q. Li. Local-Area MultiProcessor: the Scalable Coherent Interface.
In S. F. Lundstrom, editor, Defining the Global Information Infrastructure: Infrastruc-
ture, Systems, and Services, pages 131-160. SPIE Press, 1994.

[11] H. Hellwagner, W. Karl, and M. Leberecht. Enabling a PC Cluster for High Performance
Computation. SPEEDUP-Journal, 11(1), 1997.

[12] M. Ibel, K. Schauser, C. Scheiman, and M. Weis. Implementing Active Messages and
Split-C for SCI Clusters and Some Architectural Implications. In Sizth International
Workshop on SCI-based Low-cost/High-performance Computing, September 1996.

[13] M. Ibel, K. Schauser, C. Scheiman, and M. Weis. High-Performance Cluster Computing
Using SCI. In Hot Interconnects V, August 1997.

12

[14]

[24]

[25]

[26]

A. Ttzkovitz, A. Schuster, and L. Shalev. Supporting Multiple Parallel Programming
Paradigms on Top of the Millipede Virtual Parallel Machine. In Proceedings of the
Workshop on High-Level Programming Models and Supportive Environments. IEEE,
April 1997.

P. Keleher. Lazy Release Consistency for Distributed Shared Memory. PhD thesis, Rice
University, January, 1995.

F. Muller. A Library Implementation of POSIX Threads under UNIX. In Proceedings
of USENIX, pages 29-42 January 1993.

F. Muller. Distributed Shared—Memory Threads: DSM-Threads, Description of Work
in Progress. In Proceedings of the Workshop on Run-Time Systems for Parallel Pro-
gramming, pages 31-40, April 1997.

K. Omang and B. Parady. Performance of Low-Cost UltraSparc Multiprocessors con-
nected by SCI. In Proceedings of Communication Networks and Distributed Systems
Modeling and Simulation, pages 109-115, January 1997.

S. Pakin, V. Karamcheti, and A. Chien. Fast Messages (FM): Efficient, Portable Commu-
nication for Workstation Clusters and Massively-Parallel Processors. IEEE Concurrency,
1997. To appear.

S. J. Ryan, S. Gjessing, and M. Liaaen. Cluster Communication using a PCI to SCI In-
terface. In TASTED 8th International Conference on Parallel and Distributed Computing
and Systems, Chicago, Illinois, October 1996.

J. Simon and O. Heinz. SCI Multiprocessor PC Cluster in a Windows NT Environment.
In Workshops im Rahmen der 14. ITG/GI-Fachtagung Architektur von Rechensystemen,
pages 189-199, Rostock, Deutschland, September 1997.

IEEE Computer Society. IEEE Std 1596-1992: IEEE Standard for Scalable Coherent
Interface. The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th
Street, New York, NY 10017, USA, August 1993.

Technical Committee on Operating Systems and Application Environments of the IEEE.
Portable Operating Systems Interface (POSIX) — Part 1: System Application Interface
(API), chapter including 1003.1c: Amendment 2: Threads Extension [C Language].
IEEE, 1995 edition, 1996. ANSI/TEEE Std. 1003.1.

WWW:. MPI — The Message Passing Interface Standard
. http://www.mcs.anl.gov/mpi/index.html, December 1996.

WWW:. PVM - Parallel Virtual Machine
. http://www.epm.ornl.gov/pvm/, December 1996.
WWW:. SISCI

. http://www.parallab.uib.no/projects/sisci/, August 1997.

13

