
SISCI | Implementing a Standard SoftwareInfrastructure on an SCI Cluster�Michael Eberl, Hermann Hellwagner, Martin SchulzInstitut f�ur Informatik, Technische Universit�at M�unchenfeberl,hellwagn,schulzmg@informatik.tu-muenchen.dehttp://wwwbode.informatik.tu-muenchen.de/Par/arch/smile/sisci/Bjarne G. HerlandParallab, University of BergenBjarne.Herland@ii.uib.nohttp://www.parallab.uib.no/projects/sisci/AbstractTo enable the e�cient utilization of clusters of workstations it is crucial to developa stable and rich software infrastructure. The ESPRIT Project SISCI will provide twowidely used message{passing interfaces, MPI and PVM, as well as a POSIX compli-ant, distributed thread package (Pthreads) on multiple SCI{based clusters. This paperfeatures motivation and background on this projects as well as details of the two corecomponents: the common messaging layer and the Pthreads package.1 IntroductionAs PC clusters with high{speed interconnection networks are emerging as a cost{e�ectivealternative to large scale parallel systems, the question of their programmability has in-creasingly become important to resolve. The individual machines must be tied together andrepresented to the user as a single machine. In contrast to the traditional massively parallelmachines, this proves more di�cult to accomplish in a cluster environment, as the machinesare not as tightly coupled and the operating systems are not geared towards clustering. TheSISCI Project [26] (Standard Software Infrastructure for SCI-based Parallel Systems), fundedby the European Commission as an ESPRIT HPCN project, attacks this problem focusingon one promising interconnection approach, the Scalable Coherent Interface (SCI) [22].This interconnection solution is one of various new local{area or system{area networksthat have made cluster-based computing attractive. However, it clearly di�ers from mostother networks, like Myrinet [2] or Fast Ethernet, as it is not based on explicit communicationvia messages. Data is transfered using implicit communication via remote memory accesses.Every node can map remote memory segments from any other node within the cluster intoits own address space and operate on it like on local memory. The actual communicationis triggered by the SCI adapter card on reads from and writes to remote memory segments.This technique not only allows high throughput rates, but also low latencies of under 3microseconds (one-way) as communication can be performed without any protocol overheador system calls.�This work is supported by the European Commission in the Fourth Framework Programme under ES-PRIT HPCN Project EP23174 (SISCI). 1

Within the SISCI project, several well-known parallel programmingmodels will be imple-mented on this new architectural concept, exploiting the possibilities o�ered by SCI. Theywill provide a familiar and transparent access to the cluster and will allow for easy ports ofalready parallelized code to the new environment. In order to open the clusters to a broadrange of applications, message passing programming models in the form of the widely usedlibraries MPI [24] and PVM [25], as well as a shared memory programmingmodel representedby a POSIX 1003.1c [23] compliant thread package will be provided.These programming models are challenging to implement in a cluster environment. Es-pecially for the POSIX thread package, much work must be done to abstract the physicallydistributed cluster memory into one global address space maintaining total transparency.This problem is further increased by the fact that the package is supposed to be implementedas a pure library approach without any special compiler support or the need to change theoriginal application source code.O�ering these two programming paradigms, message passing and shared memory, e�-ciently on one single system opens this system to a whole new group of users and applications.The programmer will decide which model to use according to the needs of the application;it will no longer depend on the architecture of the underlying system. This forms a stablebasis for any future software development and will promote SCI{based parallel systems asan attractive platform for low{cost parallel computing.The remainder of this paper is organized as follows. An overview of the Scalable CoherentInterface (SCI) as the enabling technology for this project is given in Section 2. Section 3motivates the need for a standardized software infrastructure and gives further backgroundinformationon the project. Sections 4 and 5 describe in more detail two of the key componentsof the SISCI project, the common messaging layer for MPI and PVM and the Pthreadspackage. Section 6 o�ers a brief overview of related work, followed by some concludingremarks in Section 7.2 The Scalable Coherent Interface (SCI)SCI is a recent interconnect standard [22] that speci�es hardware and protocols to tightlyconnect up to 64k nodes (e.g. workstations or PCs, multiprocessors, bus bridges, networkinterfaces, I/O adapters) into a high{speed network [9, 10]. SCI de�nes computer{bus{likeservices, but, in contrast to busses, o�ers fully distributed solutions for their realization. Themost notable of these services are a single physical 64{bit address space across SCI nodesand related transactions for reading, writing, and locking memory locations in this hardware{based distributed shared memory (DSM). Transactions for e�cient messaging as well as forfast event noti�cation or synchronization are also speci�ed.Optional distributed cache coherence protocols for the SCI DSM have been developed sothat SCI systems with NUMA as well as CC{NUMA characteristics can be built. Exam-ples for the former are local{area compute clusters for parallel processing built from stan-dard workstation or PC nodes, as used in SISCI. The latter systems are represented by theHP/Convex Exemplar, Data General NUMALiine, and Sequent NUMA{Q multiprocessors.SCI avoids the physical limitations of computer busses by employing unidirectional point{to{point links only. Thus, in contrast to bus{based symmetric multiprocessors, the size andnumber of processors of SCI systems are not limited by bus length and bus speed. Thelinks can be made fast and their performance can scale with improvements in the underlyingtechnology. SCI initially speci�es link bandwidths of 1 Gbit/s using serial links and 1 Gbyte/susing parallel links over small distances.At the logical layer, SCI de�nes packet{based, split{transaction protocols. SCI speci�esup to 64 outstanding transactions per node, allowing for each node to pipeline multiplepackets into the network. The interconnect bandwidth can thus be utilized e�ciently, andthe latencies of e.g. DSM accesses can be hidden e�ectively for the node.2

The basic building blocks of SCI networks are small rings (ringlets). Large systems arebuilt of rings of rings, rings interconnected via SCI switches, or multistage interconnectionnetworks that can be constructed from ringlets. Further, a standardized interface of a nodeto the SCI network is proposed, with an incoming and an outgoing SCI link per node. Theprotocols de�ned for this basic model provide for fair bandwidth allocation and networkadministration; they are deadlock{free and robust. Maintenance of data integrity and errordetection is primarily done in hardware, for instance by hardware checksum computationand by timeout logic that supervises outstanding transactions and performs retries in caseof errors.The major bene�t of SCI networks and protocols is that communication can be performedat user level via the hardware DSM, by load and store operations into memory regionsmapped from remote memories. This translates into latencies in the low microseconds rangein a cluster environment; see e.g. [18, 13] and [20, 21]. For high{volume communications, theSCI messaging transactions can be employed which use DMA and SCI hardware protocolsfor data transfers. Throughput close to the bandwidth provided by the network interface canbe achieved in this manner, e.g. [18, 13].The SCI protocols do not guarantee in{order delivery of transactions. If this is an issuefor software atop of SCI hardware, implementation{speci�c facilities must be provided andused to ensure correct implementation of message passing or shared{memory communication.The SISCI project uses current SCI hardware from Dolphin Interconnect Solutions: theSBus/SCI adapter card [4] and PCI/SCI adapter board [5]. These boards plug into the I/Obus (SBus or PCI) of o�{the{shelf workstations or PCs and allow them to be connectedinto SCI compute clusters. The adapters and associated driver software o�er two interfacesand communication facilities over the SCI DSM: shared{memory operations and DMA{basedmessaging.Each node can create shared memory segments in its I/O address space and export theminto the SCI network. Other nodes import these DSM segments into their I/O space. Aprocess may further map DSM segments into its virtual address space and, from that pointon, use standard load and store instructions to access shared, potentially remote memory.The SCI adapter cards translate I/O bus transactions into SCI transactions (and vice versa)and, using on{board address translation tables, local I/O addresses into SCI addresses (andvice versa). Further, they participate in SCI protocol processing. None of the cards currentlysupports (remote) lock transactions.The functionality, the two{stage address translation scheme (virtual address | I/O ad-dress | SCI address), and the performance of the SBus/SCI interface boards are describede.g. in [13]. Throughputs of up to 25 Mbytes/s have been achieved with this card. Fur-ther information on the PCI/SCI interface cards is given in [20, 21]. The PCI/SCI cardintroduces memory barrier operations and the concept of streams. A memory barrier on anode ensures that all DSM operations issued by that node have �nished. A stream allowsto combine multiple consecutive SCI accesses to consecutive addresses to be combined intolarger packets (up to 64 bytes). PCI/SCI interfaces employing multiple streams have beenmeasured to achieve throughput of up to 70 Mbytes/s.3 SISCI BackgroundAs discussed above, SCI is a promising interconnect technology for building high{performance,cost{e�ective parallel computing platforms out of \commodity o�{the{shelf" workstation orPC nodes. While hardware (SCI adapter cards and switches) and basic device driver softwarefor SCI compute clusters have been on the market for about three years, standard parallelprogramming APIs like MPI, PVM, or a thread library, have not been available. These APIswould support a wide range of parallel applications and enable application porting to SCIclusters with relative ease. 3

The ESPRIT HPCN project SISCI aims at establishing this missing link. The projectdevelops appropriate software support for parallel programming on SCI{based clusters, byimplementing and evaluating the following formal and de facto standard software environ-ments:� the Message Passing Interface communication library (MPI);� the Parallel Virtual Machine parallel programming system (PVM);� a POSIX compliant, distributed thread package (Pthreads) that will transparently op-erate across machine boundaries and provide a system{wide virtual address space.The project pursues an approach to provide this software on multiple hardware platformsfrom possibly multiple vendors, and on multiple operating systems. Therefore, in the interestof portability and reusability of the programming environments as well, the project will alsode�ne and implement a standardized low{level SCI programming layer. This layer is to hidespeci�c details of SCI hardware and device driver. It o�ers functionality such as settingup, exporting, and mapping DSM segments, initiating e�cient bulk data transfers via theDMA facility, and initializing and monitoring the SCI network. In case a parallel applicationrequires highest e�ciency, this low{level API can also be used directly; still, portabilityamong the di�erent platforms of the project is being retained.On top of these standard parallel programming APIs, a number of demanding parallelapplications will be ported or developed, respectively, and evaluated. The applications arefrom diverse �elds such as computational uid dynamics (CFD), structural analysis, syntheticaperture radar (SAR) imaging, and large{scale data acquisition.Figure 1 depicts the layered structure of the SISCI cluster and software products. It mustbe noted that MPI and PVM will be based on a common message passing layer that willmake e�cient use of the SCI DSM and communication facilities. The �gure also shows a newkernel{level component, the SCI Virtual Memory Manager, that extends the virtual memorymanager of the underlying operating system to established the global virtual address spacefor the SISCI Pthreads. These two basic components will be dealt with in the rest of thispaper.
Operating

system
SCI programming

Low-level

layer

SCI-Virtual
Memory Manager

Kernel/
Executive

Application
Libraries

Hardware with SCI interconnect

MPI PVM

Target applications and Test suites

Low-level message passing

Pthreads

User-LevelFigure 1: The architecture of the SISCI project.Two di�erent cluster architectures are being used in SISCI: (1) SPARC{based worksta-tions with Dolphin SBus/SCI adapters and the Solaris operating system; (2) PentiumII{based high{end PCs with Dolphin PCI/SCI interface cards and Windows NT. Systems inte-gration and cluster administration issues are also being addressed in the project.4

4 Common Messaging Layer for MPI and PVMThe SISCI project develops the two widely used message passing interfaces, MPI and PVMfor SCI clusters. MPI will be implemented on top of Unix and PVM on top of Windows NT.Despite the di�erent operating systems, both message passing interfaces are to be built ontop of SCI distributed shared memory. This enables the use of a common message passinglayer based on shared memory segments and allows the e�cient implementation of MPI andPVM on top of it.Message passing interfaces on top of SCI DSM are designed to o�er SCI's good com-munication performance, especially the low message latency, to application software. Shortmessages1 are sent and received by direct accesses to shared memory segment. Additionalcopy operations and the overhead for setting up network DMA hardware are avoided wher-ever possible. However, for long messages this overhead becomes negligible and the SCI DMAhardware is used to relieve the CPU and to achieve high bandwidth.Designing a common message passing layer (CML) for MPI and PVM requires a detailedunderstanding of MPI and PVM functions. Close analysis of their semantics gives slightdi�erences in most routines while only a small set of routines are identical. Despite thesedi�erences, a basic CML can be designed to form a base for the implementation of both MPIand PVM.4.1 TerminologyIn order to explain the slight semantic di�erences between MPI and PVM it is necessary tointroduce some terminology at this point.A message has arrived (at the receiver) if it is available in the messaging layer at thereceiver. The term to match a message is used when an arrived message is paired with areceive call. A message that has been matched can not be matched again. The term to post areceive describes the action where the messaging layer is informed that a message of a giventype is expected to arrive. A posted receive will immediately be matched if the message hadarrived already.The term unexpected message is used to describe a message that has arrived, but nomatching receive has been posted. A message consists of two parts: a header which identi�esthe message, and the body which is the contents of the message. A message is identi�ed byan address, which is the triplet (sender, tag, communicator2).4.2 Functionality of the CMLThe main semantic di�erences between MPI and PVM are in receiving messages. One goodexample is the non{blocking receive, present in both MPI and PVM. In MPI, the non{blocking receive is called once, followed by a wait{for{completion call. When the latterreturns, the message is available in the user bu�er. In PVM, the non{blocking receive simplyreturns if the message is not available, like a non{blocking probe. The user has to call theroutine repeatedly until the message is available, at which point it is matched and copiedto the system receive bu�er. Thus, in MPI, a receive call will always match exactly onemessage, in contrast to PVM, where multiple receive calls may fail until one succeeds andthe message is received.Furthermore most PVM \receive" calls (other than pvm precv()) do not receive any datainto user bu�ers, but only the PVM \unpack" functions can do so. Hence, in PVM receivinga message is alway split into two functions: the receive calls and the unpack call.1The threshold delimiting \short" and \long" messages can be adjusted at con�guration time and is setto 1024 bytes by default.2For PVM the communicator is merely a constant value.5

The conclusion is that in both MPI and PVM receive calls may or may not match a mes-sage, depending on whether the call was non{blocking and whether the message has alreadyarrived. But the problem at what time messages are matched and data is received is solveddi�erently in the two interfaces. The solution for the CML is to provide the fundamentalfunctionality for MPI and PVM: A function called common match() that matches a messageand a second call common copy() that will get the message out of the system bu�er into usermemory. These functions can be called from MPI and PVM as required.Other functionality of the CML includes:� A blocking receive function, useful for both MPI and PVM, that matches and receivesa message into a user bu�er.� A non{blocking send function that can be used \as is" by MPI; together with a wait{for{completion function, it forms a blocking send function for PVM.� A search function that seeks for arrived messages.� A cleanup function that keeps the DSM read bu�er from getting �lled up and allowsfurther messages to be received.� Queues to store posted receives as well as unreceived messages and outstanding DMAtransactions.� A separate thread that maintains the outstanding DMA queue to support transfers oflong messages.4.3 Implementation of the CMLBasic Structure and the Receive Ring Bu�erFigure 2 shows the basic structure of the DSM message{passing routines. This structureconsists of a part for sending messages (left, on node A) and a part for receiving messages(right, on node B).
Send Ring Buffer Receive Ring Buffer1)

Node A Node B

Send Acknowledge Counter Receive Acknowledge Counter

Receive Counter

Local Receive Counter

Send Counter

Shared Memory Area, located on remote host

Shared Memory Area, located on local host

Local memory

1) "Message Arrived" flag, indicates unreceived
message in receive buffer

SHM writePoints toFigure 2: SCI DSM send and receive bu�ers.The gray marking aside of an area means that it is local physical memory shared withanother node via SCI, the white side{bars on the opposite side of the drawing mark therespective counterparts of these areas: mapped memory areas that physically reside on aremote node. This means that the gray and white marked areas always have the samecontents as their counterpart on the opposite side of the drawing. All memory accesses to a6

gray area are treated as regular memory accesses, while read and write operations to whiteareas are transformed into remote accesses to their counterpart. Variables marked blackreside in regular local memory which is not shared.The send and receive bu�ers are organized as ring bu�ers. Every ring bu�er o�ers anumber of message slots consisting of space for the message header and the contents of ashort message. Every slot has a Message Arrived ag which is set by the sender and clearedwhen the message has been matched by the receiver3.Relying solely on this ag for detecting free message slots and newly arrived messageswould not guarantee correct message ordering and could also lead to race conditions. There-fore two counters control the ring bu�ers: the Send/Receive Counter and the Send/ReceiveAcknowledge Counter. As depicted in �gure 2, the Send Counter and the Receive Counter(as well as the acknowledge counters) are only di�erent names for the same value.The sender writes messages to the slot pointed to by Send Counter and then increases thiscounter. The Send Acknowledge Counter marks the last free slot that may be used by thesender. The receiver, when matching a message, checks all slots starting from Local ReceiveCounter until Receive Counter for newly arrived messages (Message Arrived ag set).When the �rst message at Local Receive Counter is matched, this pointer is increased tothe next unmatched message. The Receive Acknowledge Counter is increased as soon as themessage has been received and the slot can safely be reused.The Unexpected Message Queue
Unexpected
Message
Queue

The Cleanup Function moves messages from the RRB to the UMQ

Ring
Buffer

Receive

Receive

Receive Acknowledge Counter

Local

Counter

Receive
Counter

Cleanup FunctionFigure 3: Receive Ring Bu�er and Unexpected Message Queue.In order to avoid deadlocks in case the Receive Ring Bu�er (RRB) is �lled up withunexpected messages while a blocking receive is waiting, the receiver can call a cleanupfunction that moves messages from the RRB to the Unexpected Message Queue (UMQ).Redundant copying of messages is prevented by cleaning the RRB as late as possible (see�gure 3).When matching a message, the UMQ has to be checked �rst to see whether the messagealready has been moved from the RRB. Next, the RRB is checked in case the message arrivedafter the last cleanup.The Posted Receive QueueMPI Irecv() is a mechanism to post a receive request enabling the underlying messageengine to copy the message into the user bu�er as soon as it arrives. To facilitate this, the3Note that a matched message still stays in the Receive Ring Bu�er (RRB) and is removed from therelater. 7

Posted Receive Queue (PRQ) is added to the CML. For every message found in the RRB, thematch function �rst checks the PRQ. If no match is found in the PRQ, the match functiontries to match the message that was intended to be received by the calling function. In thismanner correct ordering of messages is ensured even when allowing posted receive requests.Long Message TransferLong messages are transfered using a combination of both available message passingmechanisms: the message header is sent via DSM, while the bulk data is transfered througha DMAmechanism. The CML guarantees that the correct message order is always preserved,thus long messages and their headers will not be mixed up. The DMA mechanism is handledby separate tasks (threads) processing the queues of outstanding requests. The common sendand receive functions enqueue the requests and receive a handle that can be used to checkwhether the transfers have been completed.4.4 SummaryThe common message passing layer for MPI and PVM provides the means for e�cientlyimplementing MPI and PVM on top of SCI shared memory and SCI DMA transfers. Bothmechanisms are used, depending on which one is more e�cient. Transfers of short messagesavoid unnecessary memory copy operations: every message is copied once into the networkand once out of the network. Only in case of unexpected messages jamming the Receive RingBu�er, additional memory operations have to be done in order to prevent temporal blockingof the sender.For long message transfers we relieve the CPU from copying large amounts of data intothe network. By using SCI DMA transfers, threads/tasks are not blocked and the bulkbandwidth of the SCI hardware can be exploited.5 SISCI{PthreadsBesides the previously mentioned message passing approach, the SISCI project will alsofeature a shared memory programming model. A POSIX compliant thread package [23]will be implemented on the SISCI cluster on top of Windows NT. It will provide completetransparency to the user, allowing the execution of Pthread applications without recompilingor even rewriting the application. As a pure library approach, it will be su�cient to simplylink the library to the code and execute it on the target platform.5.1 Motivation and ObjectivesUnlike message passing, shared memory with multithreading has the advantage that itsprogramming model does not di�er far from the conventional sequential one. It is thereforesimpler to learn, and applications are easier to write or to port. This is mainly achieved by thefact that the programmer only has to deal with one address space that spans all participatingmachines. Conceptually, there is no distinction between local and global data; all data canbe directly accessed by any processor. Hence, there is also no need for data redistributionsallowing easier and more implicit implementations of load and work distribution. However,this ease of programmability comes at a price; the complexity of the implementation of sucha system is rather large as each processor needs �ne grain access to all the data. Due tothis, shared memory programming models can normally be found on tightly coupled systemslike symmetric multiprocessors (SMPs), whereas loosely coupled machines, like clusters, areprogrammed using message passing.The SISCI Pthreads project has the goal of forming a bridge between these two worldsincorporating the best of both: an easy{to{use programming model in the form of globally8

shared memory on top of a cost e�cient cluster environment consisting of \commodity o�{the{shelf" components. The main challenge is to create a fully transparent memory that isshared across all participating machines. Each thread running within a Pthread applicationmust be provided with the same view on the memory; the data distribution must be hiddencompletely.5.2 Architectural ConceptSCI o�ers hardware support for a shared{memory concept allowing transparent remote mem-ory accesses within a cluster. However, it is not powerful enough to provide the capabilitiesneeded to implement a globally shared memory. Instead, it provides mechanisms similar tointer{process shared memory as known from workstations. To achieve the necessary intra{process shared memory, additional software mechanisms known from traditional softwareDSM approaches have to be applied. By combining them with the remote memory opera-tions o�ered by SCI, a new concept, called the SCI Virtual Memory, can be created featuringintra{process shared memory. In contrast to traditional software DSM systems, however,data does not have to be migrated or replicated within the system, eliminating the problemof false sharing and the cost of a multiple writer consistency protocol. Remote accesses canbe satis�ed directly via the SCI network allowing for an e�cient implementation of a globallyshared memory in a cluster environment.
Node A Node B

Threads Threads

Virtual address space on A Virtual address space on B

Physical memory on BPhysical memory on A

SCI physical address space

PCI address space on A PCI address space on B

Team on A Team on B

Abstraction of a global distributed process

Figure 4: SCI Virtual Memory.The architectural concept of the SCI Virtual Memory can be seen in �gure 4. Like insoftware DSM approaches, the memory is distributed at the granularity of pages. A threadcan access data in pages in the same node using standard memory accesses. In order to accessdata in remote pages, the page has to be mapped via SCI into the local address space �rst,before the access can be carried out. Once accomplished, memory accesses to remote pagescan be done like local ones. The SCI hardware transparently forwards the memory requestto the remote node without any further user interaction.The basis for this mapping is formed by the SCI physical memory. It comprises thephysical memory on all nodes and forms a global physical address space. From this address9

space, pages can be mapped into the local PCI address space. This is done using the addresstranslation tables of the SCI card. From there, the page is mapped into the thread's virtualaddress space using the memory management unit of the local processor.These mappings can normally not be done statically at the beginning of the application'sexecution. The address translation tables in the SCI adapters as well as the PCI addressspace are limited resources and are normally not large enough to store all information neededfor the whole runtime simultaneously. To solve this problem, a dynamic scheme has to beapplied, that creates mappings on demand, similar to swapping pages into main memory bythe virtual memory manager.5.3 Implementation IssuesThis architectural concept introduces some problems for a concrete implementation. First,in order to be able to perform dynamic mapping at any time, the physical location andstate of any page in the system has to be known to any node. This can only be achievedby maintaining a global page directory. This task is further complicated by the fact thatpages can be swapped to disk. To prevent this for pages that are mapped from remotenodes, these pages have to be temporarily locked. As this can potentially cause an unfairmemory consumption by the Pthread application, the working set of pages has to be activelymonitored and controlled. In the case that too many pages are locked by the Pthreadapplication, some pages must be released to free memory for other applications.Besides these pure implementation issues, some performance issues also have to be takeninto account in order to achieve good performance. A central issue is the initial page dis-tribution. It can be done statically, e.g. in a round robin fashion, or dynamically based onruntime information. Other performance related issues include the implementation of fastmappings and low management overhead for keeping the global page information consistent.On top of the implementation of SCI Virtual Memory, a global abstraction of a process canbe created representing the Pthread application. All threads created during the application'sruntime are distributed onto the participating nodes. In order to be able to host the threadson one node, they are grouped together into teams and executed in a team process context.This fact, however, is hidden from the threads; they are not aware of this and execute in thesame way as they would execute on a standard SMP system.5.4 SummaryIn summary, the SISCI Pthreads o�er an SMP{like programming model on SCI{based clus-ters of PCs. They introduce a second programming paradigm for loosely coupled systems,allowing the port and the execution of new applications that haven't been run on clustersbefore. In particular, programs utilizing �ne grain parallelism will gain some advantagesfrom this new execution environment.6 Related WorkSoftware environments for clusters of workstations is an area of intense research, but alsoshows a wide diversity with respect to programmingmodels and interconnection technologies.The SMiLE project [11] at the Technische Universit�at M�unchen is focusing on SCI [22]as the underlying technology. Other projects dealing with SCI can be found at severalinstitutions worldwide including the University of Paderborn [21], the University of Oslo[18] , the University of California at Santa Barbara [12], and the University of Florida [6].The main focus of the majority of projects is primarily message passing and its e�cientimplementation on top of SCI shared memory. Only a few projects, like Split-C [13] at10

UCSB, evaluate SCI as the base for globally shared memory programming environments.These projects have to be seen in the same context as the SISCI Pthreads.Also work on software infrastructure environments or high performance virtual machinesis done at several places. Of special interest and closely related to the described workpackagesof the SISCI project are the Illinois High Performance Virtual Machines [3] and the Millipedeproject [14] as both are using Windows NT as the underlying operating system. The �rstone implements several programming libraries, including the Illinois Fast Messages [19] andMPI [24] while the latter constructs a cluster{wide shared object space and is intended asa low{level programming model or basis for a runtime system of a parallel programminglanguage.Work related to the development of the Common Message Layer for MPI [24] and PVM[25] can be found at Mathematics and Computer Science Division at the Argonne NationalLaboratory. Together with the implementation of the MPICH library [8], a standard im-plementation of the MPI speci�cation, the di�erences between MPI and PVM have beeninvestigated [7].The Pthreads project utilizes mechanisms and basic concepts from pure software DSMapproaches. A well{known representative of this group is the TreadMarks [1] implementation.Here, shared pages are replicated across the cluster and synchronized with the help of a com-plex multiple{writers protocol. To minimize the cost of maintaining the memory consistency,a relaxed consistency model is applied, Lazy Release Consistency [15]. However, unlike in theSISCI Pthread approach, where the sharing of the memory is transparently embedded intoa global abstraction of a process, TreadMarks require the programmer to explicitly specifythe shared segment. The same is also valid for the DSM-Thread [17] approach, which likethe SISCI approach, is based on a POSIX compliant [23] API. This thread package, basedon the FSU-Pthreads [16], allows the distribution of threads across a cluster interconnectedby conventional interconnection networks, but does not provide complete transparency. Ittherefore forces the user to modify and partly rewrite the application's source code.7 Conclusions and Future WorkAs clusters of PCs are getting more commonplace, software developers are demanding stan-dardized APIs to e�ciently create portable code for this new architecture. The SISCI projectattacks this problem by providing a complete software infrastructure on SCI based clusters.The project features a large variety of activities reaching from work on low{level APIs upto a large variety of applications from di�erent areas. Two of the integral components ofthe project have been shown in detail: the Common Message Layer and the SISCI Pthreadpackage.The �rst one will be used to implement both MPI and PVM on a common base sharing asmuch functionality as possible. As shown here, this goal can be achieved without sacri�cingperformance based on a detailed knowledge of MPI and PVM function semantics. The nextsteps in this development will be further extensive testing of the existing CML implementationand the realization of MPI and PVM on top of it.The second, the SISCI Pthreads, introduce a pure shared memory programming modelinto the world of cluster computing, as it is traditionally from tightly coupled systems likeSMPs. It provides the user with a new view of the system using globally shared memoryin cooperation with threads in contrast to message passing, the traditional programmingmodel for loosely coupled distributed memory machines. By merging SCI remote memoryoperations and software mechanisms from traditional DSM systems, the necessary globallyshared memory can be achieved while still providing complete transparency. This conceptsopens up several challenging implementation issues that still have to be researched further.Next steps in the project also include the implementation of a �rst base version of the SCIVirtual Memory as well as the selection of a comprehensive benchmark suite.11

In summary, the software infrastructure created by the SISCI project will feature the twomostly used parallel programming models, message passing and shared memory in coopera-tion with multithreading, on a single architecture. By having both programming paradigmson one system, each user has the chance to choose the right programming interface for theirapplication needs and personal preference. This will not only ease the programmability andporting code onto SCI based clusters, but also form a stable platform for any further softwaredevelopment on this architecture.References[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, andW. Zwaenepoel. TreadMarks: Shared Memory Computing on Networks of Worksta-tions. IEEE Computer, February 1995.[2] N. Boden, D. Cohen, R. Felderman, J. Seizovic A. Kulawik, C. Seitz, and Wen-KingSu. Myrinet: A Gigabit{per{Second Local Area Network. IEEE Micro, 15(1):29{36,February 1995.[3] A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane, L. Giannini, and J. Prusakova.High Performance Virtual Machines (HPVM): Clusters with Supercomputing APIs andPerformance. In Proceedings of SIAM Conference on Parallel Processing for Scienti�cComputing, March 1997.[4] Dolphin Interconnect Solutions, AS. Dolphin SBus{2 Cluster Adapter Card, September1996.[5] Dolphin Interconnect Solutions, AS. PCI{SCI Cluster Adapter Speci�cation, May 1996.Version 1.2.[6] A. George, W. Phillips, R. Todd, and W. Rosen. Multithreading and Lightweight Com-munication Protocol Enhancements for SCI{based SCALE Systems. In Proceedings ofthe 7th International SCI Workshop, March 1997.[7] W. Gropp and E. Lusk. Why are PVM and MPI so Di�erent? Technical ReportPREPRINT ANL/MCS-P667-0697, Mathematics and Computer Science Division, Ar-gonne National Laboratory, June 1997.[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High{Performance, Portable Imple-mentation of the MPI Message Passing Interface Standard. Technical report, ArgonneNational Laboratory, Mississippi State University, 1996.[9] D. Gustavson. The scalable coherent interface and related standards projects. IEEEMicro, 12:10{22, February 1992.[10] D. B. Gustavson and Q. Li. Local-Area MultiProcessor: the Scalable Coherent Interface.In S. F. Lundstrom, editor, De�ning the Global Information Infrastructure: Infrastruc-ture, Systems, and Services, pages 131{160. SPIE Press, 1994.[11] H. Hellwagner, W. Karl, and M. Leberecht. Enabling a PC Cluster for High PerformanceComputation. SPEEDUP-Journal, 11(1), 1997.[12] M. Ibel, K. Schauser, C. Scheiman, and M. Weis. Implementing Active Messages andSplit-C for SCI Clusters and Some Architectural Implications. In Sixth InternationalWorkshop on SCI-based Low-cost/High-performance Computing, September 1996.[13] M. Ibel, K. Schauser, C. Scheiman, and M. Weis. High-Performance Cluster ComputingUsing SCI. In Hot Interconnects V, August 1997.12

[14] A. Itzkovitz, A. Schuster, and L. Shalev. Supporting Multiple Parallel ProgrammingParadigms on Top of the Millipede Virtual Parallel Machine. In Proceedings of theWorkshop on High{Level Programming Models and Supportive Environments. IEEE,April 1997.[15] P. Keleher. Lazy Release Consistency for Distributed Shared Memory. PhD thesis, RiceUniversity, January, 1995.[16] F. M�uller. A Library Implementation of POSIX Threads under UNIX. In Proceedingsof USENIX, pages 29{42, January 1993.[17] F. M�uller. Distributed Shared{Memory Threads: DSM{Threads, Description of Workin Progress. In Proceedings of the Workshop on Run{Time Systems for Parallel Pro-gramming, pages 31{40, April 1997.[18] K. Omang and B. Parady. Performance of Low-Cost UltraSparc Multiprocessors con-nected by SCI. In Proceedings of Communication Networks and Distributed SystemsModeling and Simulation, pages 109{115, January 1997.[19] S. Pakin, V. Karamcheti, and A. Chien. Fast Messages (FM): E�cient, Portable Commu-nication forWorkstation Clusters and Massively-Parallel Processors. IEEE Concurrency,1997. To appear.[20] S. J. Ryan, S. Gjessing, and M. Liaaen. Cluster Communication using a PCI to SCI In-terface. In IASTED 8th International Conference on Parallel and Distributed Computingand Systems, Chicago, Illinois, October 1996.[21] J. Simon and O. Heinz. SCI Multiprocessor PC Cluster in a Windows NT Environment.InWorkshops im Rahmen der 14. ITG/GI-Fachtagung Architektur von Rechensystemen,pages 189{199, Rostock, Deutschland, September 1997.[22] IEEE Computer Society. IEEE Std 1596{1992: IEEE Standard for Scalable CoherentInterface. The Institute of Electrical and Electronics Engineers, Inc., 345 East 47thStreet, New York, NY 10017, USA, August 1993.[23] Technical Committee on Operating Systems and Application Environments of the IEEE.Portable Operating Systems Interface (POSIX) | Part 1: System Application Interface(API), chapter including 1003.1c: Amendment 2: Threads Extension [C Language].IEEE, 1995 edition, 1996. ANSI/IEEE Std. 1003.1.[24] WWW:. MPI { The Message Passing Interface Standard. http://www.mcs.anl.gov/mpi/index.html, December 1996.[25] WWW:. PVM { Parallel Virtual Machine. http://www.epm.ornl.gov/pvm/, December 1996.[26] WWW:. SISCI. http://www.parallab.uib.no/projects/sisci/, August 1997.
13

