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Abstract. The Virtual Interface (VI) Archi-

tecture standard was developed to satisfy the need

for a high-throughput, low-latency communication

system required for cluster computing. This pa-

per presents the results of a performance study of

one VI Architecture hardware implementation, the

Giganet cLAN (Cluster LAN). The focus of the

study is to assess and compare the performance of

di�erent VI Architecture data transfer modes and

speci�c features that are available to higher-level

communication software like MPI, in order to aid

the implementor to decide which VI Architecture

options to employ for various communication sce-

narios. Examples of such options include the use

of send/receive vs. RDMA data transfers, polling

vs. blocking to check completion of communication

operations, multiple VIs, completion queues, and

scatter capabilities of VI Architecture.

1 Introduction

The performance of parallel applications run-

ning on clusters depends on the implementa-

tion of the nodes and the LAN or SAN (system

area network) that acts as the communication

system. Conventional communication systems

like Fast Ethernet and legacy TCP/IP protocol

stacks are widely used, especially for systems

with limited budgets. But due to high software

processing overhead (e.g. [13]), their communi-

cation performance is not suÆcient for all ap-

plication types. Applications with high com-

munication frequency and small messages may

su�er from the high latency of such solutions.

For a modern SAN with several Gbit/s hard-

ware throughput, it is crucial to eliminate or

minimize this software overhead along the crit-

ical path of send/receive communication op-

erations. Appropriate techniques to reduce

software overhead have been pioneered by fast

communication systems like Active Messages

[5], Fast Messages [12], and U-Net [6].

These techniques and systems form the basis

on which the VI Architecture has been devel-

oped [2][4]. VI Architecture, described briey

in Section 2, is not intended for application

programmers; instead, it provides a set of com-

munication concepts and operations suitable

to implement eÆcient higher-level communica-

tion libraries, for instance MPI.

There are a number of variants and spe-

ci�c features of the VI Architecture opera-

tions that the programmer of communication

libraries has to judiciously choose from in order

to achieve high communication performance in

various scenarios. These choices include:

� use of send/receive vs. RDMA (remote di-

rect memory access) data transfer modes;

� use of polling vs. blocking mechanisms to

test the completion status of communica-

tion operations;

� the number of virtual interfaces (VIs) to

use for a given connection;

� use of completion queues (CQs) to sim-

plify testing completion of communication

operations;

� use of advanced features of the VI Archi-

tecture like scatter facilities.



Often, the performance implications of design

choices like these are not obvious. Therefore,

we have performed a series of experiments in

order to gain some insight into the performance

behavior of these features.

The results of these experiments as well as

our conclusions are presented in this article.

The paper is organized as follows. Section 2

briey reviews the important features of the

VI Architecture standard. Section 3 intro-

duces the cluster platforms for the experiments

and the communication benchmarks used and

presents the performance results. Section 4 ad-

dresses related research. Our conclusions are

given in Section 5.

2 The VI Architecture

The VI Architecture standard [2][4] de�nes a

set of concepts and primitives that allow an ap-

plication to perform protected communication

operations directly from the user level without

involving the operating system (OS). VI Ar-

chitecture provides point-to-point connections,

the endpoints of which are implemented as

virtual interfaces (VIs). A VI consists of a

send queue, a receive queue, and a noti�cation

mechanism called doorbell.

The VI Architecture model comprises a VI

consumer part and a VI provider part (Fig-

ure 1). The VI consumer consists of an appli-

cation and a communication library like MPI

that uses VI services via a lower level library

(VI user agent in the �gure). The VI provider

consists of the NIC hardware and a kernel level

driver component (VI kernel agent). This com-

ponent is responsible for handling protection-

related functions like opening and closing con-

nections, for registering the application's mem-

ory regions (e.g., message bu�ers) with the

NIC for communication purposes, and for ad-

dress mapping of these message bu�ers. Com-

munication requests like send, receive, and

RDMA bypass the OS interface and interact

directly with the NIC via a VI. Initiating a

communication operation requires the VI con-

sumer to prepare a descriptor of the work to be
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Figure 1: VI Architecture model

done, post it on the respective queue of a VI,

and inform the NIC about the new communi-

cation request using the doorbell mechanism.

The NIC will execute the communication re-

quest according to the information provided

in the descriptor. After communication, the

NIC will record completion status information

in the status �eld of the descriptor.

The VI Architecture standard o�ers a num-

ber of options to execute communication op-

erations. First, an asynchronous send/receive

model is provided. Initiating a communication

and testing its completion status are separate

actions, as described above. The second model

is called remote direct memory access (RDMA)

which denotes one-sided communication and is

asynchronous as well. For example, a RDMA

write operation transfers the message directly

into the receiver's message bu�er without noti-

fying the receiver about the message transfer.

The memory region (virtual address and mem-

ory handle) to be written to must have been

disclosed to the writer prior to this operation.

A VI consumer (application) has two options

to check the completion status of communica-

tion operations, namely via non-blocking and

blocking calls. These calls are typically used

by an application to poll on the completion of

a communication (on user level), or to wait and

be interrupted after its completion (which in-

volves the OS), respectively. Clearly, the latter

is more expensive, but allows the CPU to per-

form useful activity in lieu of busy waiting.

An application may own multiple VIs and



many communication operations may be out-

standing on each VI. In such a case, the appli-

cation may need to spend considerable time on

checking its VIs for completed communication

activities. To avoid this, VI Architecture speci-

�es the concept of completion queues. CQs col-

lect completion noti�cations for multiple VIs.

They enable the VI consumer to check com-

pletion status in a single location and then di-

rectly access the completed descriptor in a VI.

Another feature that appears to be attrac-

tive to be used by communication software on

top of VI Architecture is its scatter capabil-

ity. A scatter operation can be e�ected in

send/receive mode by specifying, for instance:

(1) a single data segment in the send descriptor

describing the length, memory handle, and vir-

tual address of a single large send bu�er; and

(2) multiple data segments in the receive de-

scriptor holding the lengths, memory handles,

and virtual addresses of multiple smaller re-

ceive bu�ers. The NIC at the receiving end of

the connection then autonomously scatters the

data to the receive bu�ers, given that they pro-

vide suÆcient aggregate space. This behavior

may be more convenient for the programmer

than to explicitly have a receiver process store

the data into multiple destination locations.

3 Performance Evaluation

3.1 Platforms and Benchmarks

The performance experiments were run on two

cluster platforms. One series of tests used

two Intel PentiumR 200 MHz-based machines

equipped with the Intel 430HX chipset. The

second series ran on two machines equipped

with a Intel PentiumR III 450 MHz processor

and the Intel 440BX chipset. Both con�gu-

rations have a Giganet cLAN (Cluster LAN)

network, more precisely the GNN1000 cluster

adapter which implements VI Architecture in

hardware [7]. The cluster nodes run the Win-

dows NT 4.0 (SP 3) operating system.

Latency and bandwidth �gures for the dif-

ferent platforms and communication options

were obtained using well-known microbench-

marks. In addition, in order to test more

realistic communication patterns, we adopted

one of the memory system and communication

benchmarks proposed by Stricker et al. [15][9].

Speci�cally, we report the results for copy and

communication operations with strided stores

of the data into the target bu�er which models

matrix transposition, for instance.

3.2 Latency

Latency was measured using ping-pong tests

(based on viptest) with four-byte packets.

We evaluated the send/receive model with

polling and blocking synchronization and the

RDMA write model without immediate data.

Synchronization in this context denotes how a

VI consumer detects, or is noti�ed of, the com-

pletion of a communication operation (send or

receive). The ping-pong test in the RDMA

write model is realized by having the receiving

party check a write ag in its local memory

that is set by the sending party upon comple-

tion of the RDMA write. Subsequently, the

parties change their roles. Receive descrip-

tor processing is not involved, therefore. Ta-

ble 1 summarizes the round-trip latency re-

sults. Only the cases with identical synchro-

nization styles at both the sending and receiv-

ing sides are shown.

The polling mechanism is signi�cantly faster

than the blocking mechanism on both plat-

forms. This is due to the software overhead

for system calls, context switching, and in-

terrupt processing associated with the block-

ing synchronization style. The numbers in-

dicate that this software overhead is about

20 �s for the PentiumR and less than 10 �s for

the PentiumR III machine. The RDMA tests

outperform their send/receive counterparts be-

cause descriptor processing does not occur on

the receiver side. The RDMA write with block-

ing synchronization on the PentiumR III is sur-

prisingly fast. An analysis (under Linux) of

the system calls performed by the VI library

revealed that not all of the wait calls (ioctls)

do become e�ective, on average yielding a low

overhead value per wait operation.



Table 1: GNN 1000 round-trip latency for

send/receive and RDMA write

Communication and Pentium Pentium

synchronization model III

Send/receive, polling 15.3 �s 17.5�s

Send/receive, blocking 84.7 �s 49.1�s

RDMA write, polling 14.8 �s 16.5�s

RDMA write, blocking 56.0 �s 24.9�s

3.3 Throughput

We measured one-way throughput by hav-

ing the sending process send out data at the

maximum possible rate and having the re-

ceiver �nally respond by a single con�rma-

tion message to complete the test. Again, re-

sults were obtained for both send/receive and

RDMA write communication models. Fig-

ure 2 summarizes the results obtained for

polling and blocking modes together with the

traditional send/receive-style communication.

The polling synchronization method is much

faster than the blocking method on both ma-

chines. For small messages, the through-

put on both machines is comparable because

the performance is limited by the NIC hard-

ware. For large messages, the PentiumR III

machine is approximately 200 MBit/s faster

due to a better PCI chipset implementation;

the advantage of the polling synchronization

method becomes slightly smaller. Using the

socket interface (TCP send/receive), the per-

formance does not exceed approx. 110MBit/s

for both machines. The performance provided

by the RDMA write model (Figure 3) is com-

parable to the traditional send/receive-style

communication. Both methods can achieve

approximately 830 MBit/s throughput on a

PentiumR III system.

3.4 Strided Copy Performance

Strided copy tests are based on the memory

system performance benchmarks proposed by

Stricker et al. [15]; these benchmarks have
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Figure 2: One-way throughput using the

send/receive communication model
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Figure 3: One-way throughput using the

RDMA write communication model

also been adapted to test distributed shared

memory systems and, thus, their underlying

interconnects, e.g., Scalable Coherent Inter-

face (SCI) and Cray T3D [9]. In the strided

copy benchmark, contiguously stored blocks

of double-precision oating-point (FP) num-

bers are spread over the target bu�er, which

may be located on a di�erent node. The dis-

tance between two bu�er entries depends on

the organization of the bu�er and is called

the stride. Stride 1 simulates copying mem-

ory regions contiguously. Performance values

for strides greater than 1 are inuenced by the

memory and cache organization and the prop-

erties of the communication system.

The strided copy algorithm was imple-



mented in three di�erent ways. First, the per-

formance of the memory system was evaluated

using a local version of the algorithm. A second

form combines this test with a message pass-

ing step: the memory region is transferred over

the network as a contiguous block and then

stored away locally on the receiving node with

the required stride. A third version combines

both communication and strided copy into one

communication request using the capability of

the VI Architecture to distribute received data

over a list of memory blocks: for each double-

precision FP number to be received (as one el-

ement in a block that has been sent contigu-

ously), a separate target address is speci�ed in

the receive descriptor; the NIC performs the

strided store as part of the receive operation.

Figure 4 compares the throughput achieved

for di�erent strides on the PentiumR III clus-

ter. All tests handle blocks of approx. 8 kByte.

(Bu�er usage depends on the stride size.) Only

the local strided copy version is inuenced by

the stride value. This version achieves a peak

throughput in excess of 3GBit/s, indicating

that the local memory system is not a bottle-

neck. The second form of strided store achieves

a peak throughput of 585MBit/s. In contrast,

bandwidth for communication integrating the

strided store (version three) is nearly constant

at the low rate of 22 MBit/s and is deter-

mined by the latency of the communication

system; in this case, data segment processing

by the NIC appears to be the bottleneck be-

cause each store of a double-precision FP value

is encoded into one data segment of a receive

descriptor. Clearly, an eight-byte value asso-

ciated with a single data segment is too �ne-

grained to be processed eÆciently by the NIC.

It is therefore interesting to see if and how per-

formance can improve when scattering applies

to coarser-grained blocks of data. Figure 5 de-

picts the results of such an experiment, where

the size of the individual blocks to be scattered

by the NIC increases from 8 to 1024 bytes and

32 data segments are used in the receive de-

scriptor; i.e., the overall amount of data trans-

ferred increases from 256 bytes to 32 kBytes.

Increasing the data block size for scattering
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Figure 4: Block transfer with strided stores (on

the PentiumR III system)
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Figure 5: Automatic scattering with varying

block sizes (on the PentiumR III system)

rapidly increases throughput, up to a value of

about 560MBit/s under a polling synchroniza-

tion scheme; the results for the blocking mode

are slightly worse. Varying the stride size did

not signi�cantly impact performance. A com-

parison with Figure 2 shows that data scatter-

ing at the receiving end costs about one third of

the maximum throughput even for large scatter

blocks. Moreover, the scatter support provided

by the VI NIC (third algorithm) is inferior to

explicit scattering under program control (sec-

ond algorithm); cf. Figure 4. Therefore, from a

performance point of view, the use of the scat-

tering facilities of the Giganet VI Architecture

implementation cannot be recommended.



Table 2: Throughput results using multiple VIs

and RR vs. CQ descriptor completion identi�-

cation (on the PentiumRmachines)

N Round Robin Completion Queue

1 602 MBit/s 590 MBit/s

10 596 MBit/s 590 MBit/s

50 567 MBit/s 590 MBit/s

100 566 MBit/s 589 MBit/s

3.5 Completion Queues

Completion queues record completed descrip-

tors in a single location and allow to directly

branch to VI work queues associated with com-

pleted communication requests. This simpli-

�es communication software and should lower

the overhead of checking the completion sta-

tus of communication operations when multi-

ple VIs are in use. To analyze the eÆcacy of

this concept, we compared the use of CQs to a

hand-crafted round robin (RR) descriptor pro-

cessing strategy. The test program creates N

connections (on N VIs) between two commu-

nicating processes and distributes communica-

tion requests randomly among them. Table 2

presents the results obtained using 2048-byte

packets on PentiumRmachines.

The CQ processing overhead is independent

of the number of VIs. This overhead is approx-

imately 2% compared to the RR strategy with

one VI. The advantage of CQs becomes more

obvious when more than 10 VIs are active. The

overhead caused by the RR strategy increases

with the number of connections. CQs should

be considered when implementing communica-

tion software with multiple active connections.

When only a small number of connections is

maintained, CQs might be used because their

performance impact is small.

4 Related Work

A number of investigations of VI Architecture

implementations and, more speci�cally, of the

Giganet cLAN implementation have been re-

ported in the literature. Prototype implemen-

tations (e.g., over Myrinet) and their perfor-

mance results are described in [4], [1], and [11],

for instance. Higher-level communication lay-

ers (e.g., TCP, RPC, and MPI) over Giganet's

cLAN and their performance behavior are in-

troduced in [14] and [3], among others. Perfor-

mance results for various communication lay-

ers and applications are also available on the

Giganet Web site [8]. In contrast to these anal-

yses, our work goes into more details of various

VI Architecture features and their performance

implications. Our work also extends the per-

formance results of [9] by providing data for the

strided copy benchmarks (direct-deposit data

transfers to remote memory in the terminology

of [9]) for the Giganet cLAN interconnect.

5 Conclusions

In this paper, we investigated the performance

implications of using various communication

models and speci�c features of VI Architec-

ture, more precisely its implementation in-

corporated in the Giganet cLAN (GNN1000

adapter cards). The results can aid an imple-

mentor of higher-level communication software

in deciding which features to use or avoid.

The send/receive and RDMA write com-

munication methods provide the same per-

formance in terms of throughput, given that

the same synchronization method for test-

ing completion of communication operations

is used (polling vs. blocking, i.e., interrupt-

based noti�cation). In terms of latency, how-

ever, our results indicate that the choice of

the synchronization method is very important:

polling-based completion checking avoids the

overheads of interrupt processing and context

switching of the blocking synchronization (less

than 10 �s and about 20 �s, respectively, on

our two platforms), yielding round-trip latency

�gures several times lower than with blocking.

It must be noted, though, that the choice of

polling vs. interrupt-based noti�cation involves

several other aspects and trade-o�s (e.g., [10]).

The use of multiple VIs and a comple-



tion queue (CQ) appears to be advantageous.

Our results indicate that multiple VIs provide

slightly higher performance than a single VI;

the use of a CQ generates an overhead of only

about 2% for the case of a single VI and pays o�

when more than 10 VIs are active. Given that

a CQ can simplify communication software, its

use can be recommended.

The scatter capability of the send/receive

model that we investigated using a more re-

alistic and complex strided copy benchmark

turned out to yield disappointing throughput,

more than an order of magnitude worse than

the simple method to transfer a contiguous

block and scatter it locally on the receiving

node. Increasing the size of the data blocks

to be scattered, rapidly increases the perfor-

mance of automatic scattering, yet does not

reach the maximum throughput that can be

achieved when scattering is performed explic-

itly under program control. The superiority of

the simple, explicit method is consistent with

the results reported in [9].
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