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Abstract: This paper describes an unconventional way to apply a performance analysis
tool for parallel programs (Vampir) to understand and tune the performance of
the real-time voice and data communication software running on top of Fre-
quentis’ V4 switch. The execution schedule of the strictly time-triggered V4
switching software is computed off-line; analyzing the schedule to identify e.g.
performance bottlenecks used to be a complex and time-consuming process.
We present our approach to transform the V4 software schedule’s information
into Vampir trace files and use this tool’s facilities to provide a visualization of
the schedule. A case study illustrates the benefits of this approach.

1. INTRODUCTION

Frequentis has for many years provided switching technology for critical
voice communication applications. The latest switch generation, called the
V4 switch, is a parallel, fault-tolerant, real-time voice and data communica-
tion system that can, by virtue of modular hardware and appropriate applica-
tion software, be customized to applications like air traffic control, command
and control centers, and wireless network switching systems.

The multi-tasking real-time operating system as well as protocol proc-
essing and application software of the V4 switch strictly adhere to a time-
triggered execution model. Both processing and communication activities of
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the software components (threads) are statically scheduled. However, if a
given V4 switch configuration is being overloaded with software modules,
the scheduler may compute a sub-optimal schedule only or may even fail to
generate a valid schedule. For such cases, the software engineers may pro-
vide hints to the scheduler, e.g. priorities of and dependencies among
threads. To identify the causes of scheduling problems or to analyze and tune
the performance of their software, the engineers until recently had to inspect
the scheduler’s text output; for the case of hundreds of threads in large-scale
applications, this clearly is a highly time-consuming and error-prone task.

This paper describes a simple, yet effective way to visualize a V4
switch’s static software schedule: the V4 schedule is transformed into the
trace file format of one of a well-known graphical performance analysis
tools for parallel programs (Vampir), and the tool’s various display and trace
replay facilities are used to inspect the V4 switch’s software behavior. A
case study given in this paper will illustrate the benefits of this approach.

2. FREQUENTIS V4 SWITCH TECHNOLOGY

Switch Architecture. The Frequentis V4 switch is a parallel, fault-
tolerant, real-time, digital switch for voice and data communication systems.
A detailed description of the V4 switch is given in [3], an overview in [4].
Many of the V4 concepts stem from the MARS project at TU Vienna [5].

The core of the V4 architecture is the V4 ring which interconnects up to
twelve nodes using triple-redundant internal communication lines. Each
node consists of a carrier board and up to four CPU or I/O modules. CPU
modules provide processing power to the V4 switch. I/O modules carry in-
terface and driver circuitry and provide connectors for adapters to peripheral
devices (e.g. microphones) and external communication lines (e.g. ATM).

Software Concepts. The software basis on the V4 switch comprises the
operating system, system services like signal processing tasks (e.g. filters,
codecs), device drivers, user channel switching, voice and data communica-
tion protocol modules, and application software tasks.

V4 software consists of processes which comprise a number of threads
and exchange messages with each other. A thread is periodically executed; a
single invocation is called a thread instance. Thread instances have a simple
structure: they usually receive some input messages, perform some compu-
tation (without blocking), and produce some output messages.

Scheduling Requirements. Threads are the principal active entities in
V4 software systems and thus consume processing power. Similarly, mes-
sages arriving from communication lines or peripheral devices or being pro-
duced by threads, consume V4 ring bandwidth. Packing these computational
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and communication activities into a valid real-time execution plan under
manifold requirements and resource constraints [4], represents a complex
task that the V4 off-line scheduler has to solve.

3. V4 SCHEDULE VISUALIZATION

The basic idea behind the V4 schedule visualization was to transform the
V4 scheduler output into the trace format of a well-established graphical per-
formance analysis tool for parallel programs and utilize the tools’ various
graphs and statistics to understand the V4 schedule.

Vampir [6] was selected as the tool best suited for the V4 schedule visu-
alization, primarily due to its versatility, robustness, and good documenta-
tion. (For the eight candidate tools – Jumpshot, Medea, NTV, Pablo, Para-
graph, Trace Invader, Vampir, VT [1][2] – and a description of the evalua-
tion process, see [4].)

The V4 off-line scheduler was then extended to generate Vampir trace
files [6] and supplementary information. The threads running on the V4
switch represent the active entities in the Vampir trace. The threads can be in
states busy and idle and exchange messages among each other. Threads are
numbered contiguously in the trace file. The resulting timeline (or space-
time) diagram, which is the most useful diagram for V4 schedule visualiza-
tion, is easily understood and can display up to several hundred threads.
Vampir’s select, zoom, and scroll features allow to easily focus in on the
threads and the time interval of interest; see Figure 2 for a small example.

4. CASE STUDY: CALL SETUP SOFTWARE

It is essential that critical voice communication software exhibits good
and stable performance. Yet, in a mobile communication system currently
under development, it was observed that the call setup procedure performed
several times worse than expected. The reasons for this adverse behavior
were not fully known to the software engineers. One of the first uses of the
V4 schedule visualization was therefore to explore the behavior and tune the
performance of the call setup procedure in this application.

Call setup is part of the V4 call control software. Call control receives
call setup messages from the V4 protocol control software of a communica-
tion link, as shown in Figure 1. Call control then performs a location lookup
to locate the called partner in the mobile network, asks the so-called router
software (not shown) to find a communication interface leading to the part-
ner, and accesses the protocol control software of that interface to actually
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process the call setup. Programmers have identified the threads and commu-
nication links depicted in Figure 1 as potentially time critical for the whole
procedure. The call control threads (those within the dotted box) run on the
same CPU module, whereas the other threads may reside on different CPUs.

Thread 41

Thread 42 Thread 39 Thread 47

(main)

(send)(recv)

Thread 320

Thread 335
Call

Control
Location
Lookup

Protocol Control

Figure 1   Performance-critical threads in V4 voice call control software

Figure 2 illustrates the scheduled behavior of these threads in a timeline
diagram. Notice that the threads execute periodically every 8 ms. The call
control threads can communicate via shared memory; hence, no message
exchange among them is visible in the diagram. Furthermore, threads 41 and
42 which appear to run “simultaneously” on the same CPU, in fact obey
mutual exclusion constraints imposed on them by the scheduler. Finally, no-
tice that the lines depicting the messages in the diagram denote the time in-
tervals when the messages are effectively being transferred on the V4 ring,
not when they are being produced or consumed by thread instances; the lat-
ter occurs at the end or beginning, respectively, of thread instances only.

A study of the timeline in Figure 2 reveals four sources of inefficiencies
in the given call setup procedure:
1. Thread 42 which receives call setup requests from protocol control

(thread 320), thread 41 which handles the requests, and thread 39 which
finally sends messages back to protocol control, are scheduled just in the
wrong order. As a consequence, a request consumed by thread 42 (e.g. at
time 5 ms) is processed by the subsequent instance of the main thread 41
(e.g. at time 13 ms) and replied to not earlier than one instance of the
sending thread 39 later (e.g. not earlier than at time 19 ms).

2. The messages received by thread 320 from thread 39 (e.g. at time 8.5
ms), apparently arrive too late to be consumed by the current thread in-
stance; their receipt is postponed by 8 ms (e.g. to time 16 ms).

3. The messages sent by thread 320 to thread 42 are scheduled very late
(e.g., the message sent at time 11 ms must have been produced by the
previous thread instance starting at time 0).
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4. Inspecting the message details (which pop up by clicking on a message
instance) discloses that one of the messages is slightly too large to fit into
a given data channel, requiring a second one which is apparently sched-
uled subsequent to the first one.

Figure 2   Visualization of V4 voice call control software activities

The study of this visualization enabled the programmers to locate the per-
formance bottlenecks and identify opportunities for software optimizations
and devising hints to the scheduler, e.g., by specifying time intervals for the
critical threads’ invocations (to enforce their execution in the correct order).
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