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Abstract—In the medical domain it has become common
to store recordings of endoscopic surgeries or procedures. The
storage of these endoscopic videos provides not only evidence of
the work of the surgeons but also facilitates research, the training
of new surgeons and supports explanations to the patients.
However, an endoscopic video archive, where tens or hundreds
of new videos are added each day, needs content-based analysis
in order to provide content-based search. A fundamental first
step in content analysis is the segmentation of the video. We
propose a new method for segmentation of endoscopic videos,
based on spatial and temporal differences of motion in these
videos. Through an evaluation with 20 videos we show that our
approach provides reasonable performance.

I. INTRODUCTION

A specific form of minimally-invasive surgery is called
endoscopy, where an endoscope is inserted into human bod-
ies and organs and transmits images for the surgeon. As a
side-product the video-stream can also be recorded for post-
operative usage. The reasons why operations and procedures
should be recorded for long-term storage are diversified. First,
some countries (e.g., the Netherlands) require this by law.
Further, in medical research and training the videos can be
used as illustrative material. Before the actual surgery, similar
videos – or parts of them – can be used to explain patients
the operative treatment. Still images, showing major stages of
the video, can be extracted post-operative and added to the
patients dossier. Moreover, the videos can be used for quality
assurance and improvement. Currently, only a small fraction of
this fragmentary enumeration is used in practice, due to lack
of appropriate software.

Content-based analysis is one of the techniques that can
enable the above-mentioned use cases. Typically, the first
step of any content analysis (e.g., concept detection) is the
temporal segmentation of the video into shots [1]. However,
the recordings of endoscopic procedures usually contain only
one shot per video file and the visual differences between
consecutive frames are small. Therefore, common methods
for shot boundary detection [2], mostly focusing on already
edited video material, do not help. Another domain of video,
where shot boundary detection does not work reliably, is
video surveillance. Whereas the camera used for surveillance
is usually mounted fixed, the camera in endoscopic videos is
moved freely by the surgeon. Beside the movement of the
camera for inspection of the operation area and view point
changes, a certain level of motion is always existent, even
if the camera points to the same area for a while. These
circumstances put a limit on the applicability of approaches
that were published in the area of video surveillance. As a
consequence, special segmentation methods are required.

In this paper we propose a video segmentation approach
for endoscopic videos that finds relevant changes in motion.
It uses temporal and spatial differences of motion patterns
produced either by the camera movement or by the movement
of different endoscopic instruments. The motion patterns are
calculated with traces of feature points using Kanade-Lucas-
Tomasi (KLT) tracking. In succession we group the traces
spatially and calculate a singular motion value. Comparing
the values of these groups let us segment the video as
follows. When the groups provide similar but high values
the underlying video frames show camera movement. If the
values are similar but low there is no relevant movement at
all. If an instrument is moved the values of the groups reveal
different values. These approach allows for segmentation of
endoscopic content of different kinds of endoscopy and is not
limited to a specific one, as e.g., the methods proposed in
[3], [4], [5], [6], [7], [8], [9]. Through an evaluation with 20
videos taken from different domains of endoscopy we show
that the proposed approach achieves good coverage-overflow
respectively precision-recall and F-measure results.

II. RELATED WORK

A broad overview on video segmentation methods that have
been proposed over the last years is given by Del Fabro et al.
[1]. They classify segmentation methods into seven classes,
which are (1) visual-based, (2) audio-based, (3) text-based, (4)
audio-visual-based, (5) visual-textual-based, (6) audio-textual-
based and (7) hybrid approaches. Approaches (1) - (3) are
basic approaches. The remaining approaches are combinations
of them.

Typical endoscopy video files are provided without any
audio data or meta-data except some basic classification data
concerning the type of operation, data of the patient and
the surgeon. These classification data are too simple and do
not allow for any segmentation. Therefore, we are limited to
visual-based methods. Most of the approaches described in
[1] are using color information to segment the videos. Many
segmentation methods perform clustering based on RGB- or
HSV-color-histograms and on the identification of significant
changes in the color distribution. These methods are not
applicable for our purpose because most of the time, colors
in an endoscopic video are very similar. A significant change
happens, however, if an instrument is inserted. Unfortunately,
the majority of the instruments have metallic surfaces and
are mirroring the surrounding and show thus similar color as
the background. On this account the difference between the
color histogram of a frame where an instrument is visible
and the color histogram of a frame where no instrument is
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visible is less significant than the difference between two color
histograms, when the camera is moved.

In group (1) two motion-based approaches are also avail-
able. The first one, introduced by Ngo et al. [10], is using
spatio-temporal slices to produce a visual representation of the
video. In the segmentation step of this approach the problem
with the limited change in the color histogram prohibits the
usage of this method as well. The second approach, described
by del Fabro et al. [11] uses the motion vectors extracted from
H.264/AVC videos. Similar and coherent motions are grouped
together. A sliding window is used to detect and extract the
most frequent patterns of motion. This approach can only be
used for partial segmentation (finding repetitive patterns) and
is therefore not applicable for our goal.

Cao et al. introduced a segmentation approach for
colonoscopy in [9]. They divided the colon into six sections.
Because they use the turnings of the colon to separate the
sections it is only applicable to colonoscopy inspections. In
this approach they used specific keywords spoken from the
physician to trigger the begin of a new segment. In [8] they
enhance their approach replacing the speech input by a visual
model. When the endoscope is moved around a curve in the
colon the images get blurry. Additionally, the physician has to
do a new adjustment of the camera after passing the curves.
These sequence of sharp images, followed by a set of blurry
frames and continued with images with increasing sharpness
trigger a scene transition every time this pattern appears.

During a colonoscopic inspection the medic also under-
takes some therapeutic actions or removes some tissue for
pathological investigations. Cao et al. extended their work in
[7] to detect scenes where these additional tasks are done.
They take advantage of the circumstance that the wire of the
instrument, used for these removals, is very bright caused by
reflections of the light source. To detect the bright wire they
segment the frames spatially. The bright regions are compared
to templates showing possible shapes of the wire. If a sequence
of frames matches to these templates it is classified as an
operation shot. A further improvement is proposed by Cao et
al. in [5]. They improved their results by the use of techniques
for image enhancement and by the detection of the insertion
direction of the operation instrument.

Padoy et al. present an approach to segment a laparoscopic
cholecystectomy into phases, based on temporal synchroniza-
tion with respect to training data in [3]. A signal is sent each
time an instrument is used. The usage of the instruments
is analyzed with AdaBoost and weighted regarding to the
significance in the current phase. The final segmentation is
calculated with an adaptive dynamic time warping algorithm.
In a subsequent paper Blum et al. improved the system by
automatic instrument recognition [12]. In addition to dynamic
time warping they use canonical correlation analysis, which
shows better results than using the also tested Hidden Markov
Model. Their approach can be used for standardized surgeries,
where training data is available and no anomaly or variation
during the interventional procedure happens.

We have not found scientific work concerning the parti-
tioning of endoscopic videos into shot-like segments. These
segments will be usable for video retrieval, video browsing
or video summary approaches amongst others for endoscopic

Fig. 1. The segmentation approach is divided into three main steps.

videos as shots are used for these tasks for common videos.

III. SEGMENTATION APPROACH

Our algorithm is separated into three steps as illustrated
in Figure 1. In the first step (motion detection) we detect
matching point features between consecutive frames and store
these values in vectors. The point features in the first frame
of each consecutive frame pair are selected so that they are
more or less evenly spread in order to reflect all kind of
motions. In a second step (area motion estimation) we divide
the frames into smaller rectangular areas and subsume the
distance of the coordinates of the matching point features to
a single, aggregated motion value per area. In a third step
(transition estimation), the aggregated motion value of each
area is compared to the value of the corresponding area of
the consecutive frame (except for the last frame). As a result,
we can differentiate 3 main cases: (1) If no relevant motion
happens then the aggregate motion values are similar to each
other and near to zero. (2) In case of a camera movement,
the motion values are similar to each other, but greater than a
certain threshold. (3) If an object (e.g. an instrument) appears
then the motion values of different areas are different. Areas
where the object appears show high movement values, whereas
areas where the moving object is not visible provide a motion
vector with a length of about zero pixels.

We subsume these observations by calculating the standard
deviation for every consecutive frame pairs. Based on this, the
boundaries of the video segments are calculated.

Our approach is designed to analyze videos captured in
minimally-invasive surgery in the first instance. These endo-
scopic videos usually do not use the whole rectangular video
frame (except for videos where the surgeon performed a zoom-
in operation during the procedure). Instead, the content is
shown in a circular area in the center of the frame. The
surrounding of this circular area is dark, sometimes with
perceivable noise. If the whole image is used in the analyzing
stage, the border of the circle induces many misinterpretations.
Good trackable features are usually located at the border
because of its contrast. The border is more or less without
movement and provides no useful information about motion
within the video. To overcome this problem we generate a
mask using the algorithm proposed by Muenzer et al. [13] and
exclude the area around the border from the tracking stage.

A. Motion Detection

The aim of this step is to produce a set of matching point
features between subsequent frames. Therefore, we select a
number of point features p within a video frame, locate the
related point features p′ in the following frame and store these
matched point feature pairs (p, p′).

For the selection of the point features we have to consider
two principal issues. First, the point features must be well
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distributed over the whole frame and second, the feature
tracker must be able to find the point features in the second
frame reliably. The second requirement is met if the point
features are located at corners or within so-called salt-and-
pepper textures [14]. These patterns can be found by calculat-
ing the eigenvalues (λ1, λ2) of the structure tensor of a window
around a pixel, with the size dependent on the magnitude
of movement observed in the video, and a threshold t using
min(λ1, λ2) > t. The higher is t the less but the more reliable
point features are found. In order to avoid an unbalanced
sampling of point features, in case of dense clusters, our
method requires a minimal distance between point features.

For the tracking of the point features we use the well-
known Kanade-Lucas-Tomasi (KLT) Feature Tracker. KLT is
widely used in its original form but also in slight variations
[15], [16]. It is faster than other techniques (e.g. Hessian-affine,
Harris-affine, MSER) with the penalty of returning a higher
amount of false positive matches. For our purpose this trade-off
is negligible because it is absorbed by the amount of selected
point features.

If a point feature is not found in the subsequent frame
by KLT, it is dropped. For time performance issues it would
be nice to reuse point features over a longer sequence of
images and to recreate them only if they got lost. However,
this is not possible for the following reasons. As endoscopic
images are strongly enlarged, the movement distance of objects
between two consecutive frames is enlarged as well. On this
account small movements of instruments results in enlarged
shifts between two neighboring frames. It is a weak point of
KLT that it is not as reliable and accurate to track features
over great distances [17]. This weakness can be observed if
we reuse point features and fast movements of instruments
occur over great distances. In this case mismatches happen
and are reinforced from frame to frame as long as the strong
movement is executed. In this case we have observed that
feature points got crowded in some areas whereas in other
areas only a few of them remain. This behavior prevents the
detection of movement within areas, where only a few feature
points remain. For these reasons we have to drop all point
features and to select new ones after each matching phase.

B. Area Motion Estimation

Based on the matching point features found with KLT the
motion between two successive frames is examined. We use
the motion in different areas of the frame in order to decide if
the video should be segmented at the current frame. The frame
is split horizontally I times and vertically J times into smaller
areas A, as shown in Figure 2. In order to distinguish motion
in the center of the frame and at the border of the frame we
divide each frame into nine areas with I = J = 3. Every point
feature p found in the previous step is assigned to an area Ai,j

according to its coordinates. The motion value Mi,j of each
area is calculated as

Mi,j =

∑N
n=1

√
dxn

2 + dyn
2

N
(1)

where dx = px−p′x and dy = py−p′y are the displacements in
x- and y-direction of the point feature pairs. To get comparable
results for each area Ai,j we divide the sum of the displace-
ments by N , which is the number of point features located

Fig. 2. Separation of a frame with circular (above) and zoomed-in content
(below) into I horizontal and J vertical areas (I = J = 3).

in the current area. As shown in Equation 1, we use both
absolute and signed values for computing the motion because
we want to detect any kind of motion. If we would use signed
values only, we could not distinguish between movement and
no movement in some situations. For example, if there is a
diagonal movement in the positive x- and negative y-direction,
the sum of the signed values would result in zero. On the
opposite, if we would use absolute values only, we would lose
information about movement changes concerning the direction.

The entire video is now represented by K vectors of
size L = I × J , where K is the number of frames of the
video minus one. Each value in a vector represents the main
movement within an area from a frame to a subsequent one.

C. Transition Estimation

If the values of a vector are approximately zero, then there
is no movement shown in the frames belonging to this vector.
If all values of the vector are similar but significantly greater
than zero then the movement is caused by a movement of the
camera. If the values of a vector differ ocularly, there is a
movement belonging to an active object in the scene. Depend-
ing on these observations we concentrate on the detection of
these transitions between different movement behaviors.

Each value in the movement vectors reflects the instanta-
neous motion inside the area. Looking at the motion curve
we do not see a smooth curve but a curve with positive
and negative peaks. These peaks must be straightened out
to prevent misinterpretation. Therefore, a temporal window
is shifted along the motion values of the same areas. Inside
this window of size O the mean value r is calculated. The
bigger O, the more robust is response r. High frequent motion
changes between motion and no motion should not influence
the decision if there is a segment boundary or not.

The calculation of these r values gives us a horizontal
view to the movement changes inside an area. These views
are represented by the nine diagrams at the head of Figure 3.
Each diagram shows us the average movement within the
corresponding area Ai,j . High motion is represented by large
values in all areas (compare second 73 to 75 in Figure 3) and
low motion by small values (second 60 to 64). Different values
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are shown if an instrument is moved in the operation area
(second 54 to 60). In the first half an instrument is inserted for
a procedure (constant high values in some areas until second
58). In the second half the instrument is removed (decreasing
values in area 1 and 2 and no movement at all in the other
areas). Now we have to switch our view to a vertical one and
compare what happens at a current time point of the video in
each area. Therefore we calculate the standard deviation σV

with respect to the responses r of each frame, where each
response r represents the motion in one of the A areas of a
frame and r̄ is the mean value of these responses.

σV =
√

(σV )2 =

√√√√ 1

L− 1

L∑
i=1

(rl − r̄)2 (2)

The resulting σV values correlate with movement changes
in the video. If we also take into account the mean value we
can distinguish between (1) no movement ((σV < ε)∧(r̄ < ε)),
(2) camera movement ((σV < ε) ∧ (r̄ > ε)) and (3) object
movement within a frame ((σV > ε)). This is a very nice
and simple result, nevertheless, for the segmentation we need
further considerations. One is the determination of ε. ε is
related to the quality and the content of the video. Another
consideration is that the aggregation of the values into a single
one is not as smooth as needed. Therefore we reuse Equation
2 to overcome these problems in the following way:

Within a window of size P we calculate the standard devi-
ation σH based on the σV values, whose magnitude changes
from low to high or the way around every time there is a
change of movement within the video. To get the segmentation
borders we iterate along the resulting σH values and mark a
frame as a border if there is a peak value. This leads to a
segmentation defining segment borders at strong changes of the
motion pattern. We assume that many of the resulting segments
are semantically meaningful units - an exact investigation of
this issue is topic of further research. The sensitivity to the
motion changes is influenced by some thresholds and window
sizes, which must be chosen carefully.

D. Thresholds and Window Sizes

First, let us consider O, the size of the window used for
smoothing and filtering noise. Noise can have multiple reasons.
One reason is caused by mismatches caused by KLT, as already
mentioned. Another reason is assignable to bumpy camera
movements or to singular jerks. In our example videos a certain
level of noise is caused by the beat of the heart. The bigger O
is chosen the less is the influence of noise. On the other side, if
O is too large, it may lead to undetected segment boundaries.

Window size P is used in calculating σH , where σH is used
to detect movement changes between different areas caused by
a moving object. If the σV values are high then the correlating
video scene is showing a movement of an object. If the σV

values are low the video is just showing a camera movement
or a scene with no movement at all. σH points to local changes
at σV values, hence the size of P is small.

At last we need a threshold α to decide if a σH value
should be counted as high (indicating a moving object) or as
low (indicating camera movement, or lack of movement).

Area 1

Area 4

Area 7

Area 6

Area 5

Area 3

Area 2

Area 8

Area 9

Result

Fig. 3. This motion histogram shows the motion values of a part of an
endoscopic video. The numbers at the top and the affiliate lines show the
seconds of the video. The histograms for Area 1 to Area 9 show the average
motion within these areas as green lines (values range is [0, 107]). The
last diagram shows the resulting σH values that are used to calculate the
segmentation.

The values we have used for our tests have been found
empirically by using combinations of different values for O,
P and α and applying them to three videos of our data set.
The best window size O to calculate the average movement
in each area has been found to be in the range [40, 80], the
window size P to calculate σH is chosen to be in the range
[6, 10] and the threshold α to separate high and low σH values
is chosen to be in the range [0.25, 0.45]. Every combination
provides a different number of true and false positive respective
negative segmentations. To maximize the positive findings and
minimize the negative ones we introduce a post-processing step
to combine the different segmentations.

E. Post-Processing Step

The post processing step is based on the outcome of
several runs with combinations of the previously stated in-
tervals. To reduce runtime we used sets of discrete val-
ues, namely O ∈ {40, 60, 80}, O ∈ {6, 8, 10} and α ∈
{0.25, 0.30, 0, 35, 0.40, 0.45} and combined them to O×P×α
different combinations. These combinations are used as pa-
rameters to get various segmentation candidates per video
file. The candidates consist of sets of frame numbers. Each
frame number shows a border of two segments. Comparing
the borders at the result sets we see that the borders are spread
over a small area of neighboring frame numbers.

Therefore, we have to find the best fitting border sugges-
tion. For this we count, how often a certain frame is proposed
as a border. The array B contains this counter for each frame.
Then we compute the best suggestion by the use of a weighting
function to distribute borders close to i with higher weight as
follows:

B′[i] =

w∑
j=0

w

j + 1
∗ (B[i− j] +B[i+ j]) (3)

where w is a small window (actually 10) and B′ contains the
likelihood of a frame being a border. Peak values, which are
found iterating through B′, denote segmentation bounds.
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IV. EVALUATION

The approach presented in this paper has been evaluated
with the help of 20 distinct videos of laparoscopic and en-
doscopic thyroid surgeries, recorded in HD resolution. The
overall length of the videos is 68 minutes, with an average
length of about three minutes and a half, each. For the
evaluation we manually segmented and annotated these 20
videos according to motion activity (described in the sub-
section below) with the accuracy of single frames.

A. Creating the Ground Truth

The scenes shown in the videos are a mixture of different
activities during surgery. In some kind of the observations the
camera is moved around to get an overview of the area where
the surgery takes place and to inspect areas after important
stages of the invasion. A camera movement is also done,
if another point of view to the operation area is needed.
An additional form of observation is done if the camera is
held fixed and the surgeons observe a region of interest in
detail (represented by keyframes of segment #1 in Figure 4
and segment #1, #3 and #6 in Figure 5). In all these cases
instruments are either not visible, or if, they show no or only
marginal movement.

The next group we identified within these videos is based
on the presence of instruments. The usage of the instruments
could be classified into some common kinds of segmentations.
These are e.g. the insertion and removal of instruments into or
from the operations area and movements within the operation
area, with the purpose of positioning the instrument at a spe-
cific location. Beside these common types of movements we
noticed that each instrument (scissors, needleholders, graspers,
dissectors, retractors, mono- and bipolar instruments and so
forth) has its own more or less typical set of course of motion.
The scissor, for example, is not only used for cutting, but also
used to push layers of tissues aside.

The segmentation of the videos for the ground truth is
based on these observations. Every time, when a new course
of motion started or ended, we set a segmentation bound. Most
of the times there are a few frames, where nothing happens,
until a new motion sequence starts. We set also segmentation
boundaries at the begin and the end of an overview of the
operation area and on the border of still image like scenes.
Sometimes two instruments are used together for instance to
pull apart adhered tissues. This combined motion has also been
regarded as one segment.

In Figure 4 and Figure 5 we can see visualizations of
the ground truth and the automatically found segmentations
for two of the 20 video files. The selected segments show
typical sequences during an operation, characterized by a
frequent change of instruments and their usage. Each segment
is represented by a keyframe, which is the center frame of a
segment. The keyframes of the ground truth and the annotated
segmentations show well that our approach is reliable with
respect to the ground truth.

B. Results

To measure the performance of our algorithm we have
used Recall-Precision, F-Measure (harmonic mean of precision

TABLE I. COVERAGE AND OVERFLOW OF THE 20 VIDEOS

Video Number Coverage Overflow Precision Recall F-measure
001 0.89 0.16 0.78 0.91 0.84
002 0.76 0.47 0.85 0.86 0.85
003 0.79 0.55 0.85 0.82 0.84
004 0.81 0.63 0.95 0.89 0.92
005 0.70 0.52 0.73 0.85 0.79
006 0.77 0.58 0.77 0.85 0.81
007 0.79 0.65 0.83 0.85 0.83
008 0.77 0.54 0.86 0.88 0.87
009 0.77 0.51 0.92 0.90 0.91
010 0.81 0.52 0.94 0.91 0.93
011 0.80 0.58 0.94 0.86 0.90
012 0.75 0.67 0.84 0.86 0.85
013 0.74 0.52 0.86 0.91 0.88
014 0.83 0.52 0.91 0.93 0.92
015 0.80 0.62 0.86 0.86 0.86
016 0.78 0.78 0.83 0.76 0.79
017 0.82 1.03 0.82 0.71 0.76
018 0.83 0.53 0.89 0.89 0.89
019 0.80 0.58 0.84 0.86 0.85
020 0.82 0.44 0.87 0.93 0.90

Average 0.79 0.57 0.86 0.86 0.86

and recall) and Coverage-Overflow as proposed by Vendrig et
al [18]. Coverage is the value to what extent each identified
segment meets the equivalent segment of the ground truth.
Overflow at the other hand shows how many frames are
assigned to a segment, although they do not belong to this
segment. The optimal value for coverage is 100% and for
overflow 0%.

Table I shows the results for each endoscopic video in
detail. The average coverage value of 79% shows good perfor-
mance but leaves room for further tunings and improvements.
The moderate results concerning the overflow are justifiable.
If the border that is found by the algorithm is only one
frame aside the frame number noted in the ground truth, the
result gets penalized. This strictness is not meaningful for
our approach. The frame where a separation of two segments
can be stated cannot be fixed to a single frame typically.
Mostly there is an overlapping area between two segments
where a border can be stated. The size of this area can be
up to 25 frames long, sometimes even more. For this reason
we evaluate our results with Precision, Recall and F-Measure
as well. The corresponding values show that our approach
achieves reasonable segmentation performance with Recall and
Precision higher than 90%, for several videos. The area where
a border is measured as true positive is within 25 frames.
The results confirm that our novel motion-based segmentation
approach is applicable as a basis for further content-based
analyses.

V. CONCLUSION AND FURTHER WORK

We have proposed a novel approach to group frames
of endoscopic videos into segments based on changes of
the motion pattern, such as (1) no movement, (2) motion
caused by camera movement and (3) movements of endoscopic
instruments. These segments could be used for further content-
based analysis. We have shown that our approach is robust and
accurate.

Future work will cover the problems we have identified
during the evaluation of our approach and to overcome them
by the use of additional low level features. We also intend
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227



#1 #2 #3 #4 #5 #6

Fig. 4. The center frame of a segment is used to represent ground truth segments in the first line and annotated segments in the second line. The first represents
a segment where no movement happens, the following five keyframes show segments where instruments are used for different purposes. Although the last two
images are similar the instrument is used for different purposes in these segments.

#1 #2 #3 #4 #5 #6

No

corresponding

keyframe

Fig. 5. This sequence of frames shows a scene where tissues are cauterized. Segment number five is not identified as a segment in the ground truth but it is
identified by our algorithm. The reason is that the second instrument was removed at the same time as the cauter and was therefore not considered in the ground
truth.

to work – in cooperation with medical experts – on the
grouping of the small segments to semantically meaningful
scenes. Furthermore, we plan to improve the reliability of the
segmentation process and to investigate, how to use it for
similarity search in endoscopic videos.
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