
A Seamless Web Integration of Adaptive HTTP Streaming
Benjamin Rainer, Stefan Lederer, Christopher Müller, and Christian Timmerer

Alpen-Adria-Universität Klagenfurt
Universitätsstraße 65-67

9020 Klagenfurt am Wörthersee, Austria
+43 (0) 463 2700 3600

{firstname.lastname}@itec.aau.at

ABSTRACT

Nowadays video is an important part of the Web and

Web sites like YouTube, Hulu, etc. count millions of users

consuming their content every day. However, these Web

sites mainly use media players based on proprietary browser

plug-ins (i.e., Adobe Flash) and do not leverage adaptive

streaming systems. This paper presents a seamless

integration of the recent MPEG standard on Dynamic

Adaptive Streaming over HTTP (DASH) in the Web using

the HTML5 video element. Therefore, we present DASH-

JS, a JavaScript-based MPEG-DASH client which adopts

the Media Source API of Google’s Chrome browser to

present a flexible and potentially browser independent

DASH client. Furthermore, we present the integration of

WebM based media segments in DASH giving a detailed

description of the used container format structure and a

corresponding Media Presentation Description (MPD). Our

preliminary evaluation demonstrates the bandwidth adaption

capabilities to show the effectiveness of the system.

Index Terms—MPEG-DASH, Dynamic Adaptive

Streaming over HTTP, HTML5, WebM, JavaScript, World

Wide Web

1 INTRODUCTION

The delivery of video content within the Web has

become omnipresent nowadays, which is mostly based on

the hypertext transfer protocol (HTTP) and consequently on

the transmission control protocol (TCP). Online video

portals like YouTube or Hulu count millions of users

watching their content every day. Most of these platforms

adopt proprietary solutions based on progressive download

via HTTP. Recently, adaptive HTTP streaming has been

introduced, including deployments based on Microsoft

Smooth Streaming [1], Apple HTTP Live Streaming [2] and

Adobe Dynamic HTTP Streaming [3]. In this context,

ISO/IEC developed the MPEG-DASH standard allowing for

dynamic adaptive streaming over HTTP (DASH) [4].

All these systems can leverage the same advantages over

traditional video streaming, i.e., using the real time transport

protocol (RTP) which is based on the user datagram

protocol (UDP). First and foremost, adaptive HTTP

streaming is able to adapt the video stream to the varying

bandwidth conditions, which is especially important when it

comes to mobile scenarios using smartphones or tablets in

3G/4G cellular networks. Using this adaptation it is possible

to deliver continuous video without stalls or long buffering

periods to the user. Furthermore, it is possible to leverage

existing content delivery networks (CDN) and proxy cache

infrastructures, which are optimized for HTTP delivery and

which costs are significantly lower than dedicated streaming

infrastructures.

All the industry solutions, as well as DASH, follow the

same approach of chunk-based HTTP streaming. The basic

idea is that the media content will be encoded in different

versions, which differ in bitrates, resolutions, etc. and will

then be chopped into segments that could be accessed

individually by the client via HTTP GET requests. In

MPEG-DASH a version of the media content with a specific

characteristic (e.g., bitrate, resolution) is referred to as

representation. A representation may consist of several

segments of a given length, which correspond to the

chopped media content. Thus, the client has the possibility

to switch between those representations at segment

boundaries to adjust the media bitrate to the current

throughput capabilities of the client’s Internet connection.

These segments are transferred over the top (OTT) of the

current Internet infrastructure following a client driven pull

model. Furthermore, all adaptive HTTP streaming systems

maintain some kind of manifest file, like the media

presentation description (MPD) of DASH, which is

downloaded by the client in the beginning of the streaming

session to get the information about the media bitrate,

resolution, etc., of each representation as well as the URLs

of the segments [5][6].

The upcoming HTML5 standard [7] offers new ways to

integrate video and audio in Web sites, leveraging built-in

capabilities of the Web browsers. For example, YouTube [8]

is already experimenting with the video element at a large

scale, leveraging their WebM container format [9] in

combination with the VP8 video and Vorbis audio codecs.

With the Media Source API [1] it is now also possible to use

adaptive HTTP streaming in combination with the video

element. Therefore, we present an approach of

implementing MPEG-DASH with JavaScript with the use of

the HTML 5 video element.

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012 - ISSN 2076-1465 1519

The remainder of this paper is organized as follows.

Section 2 discusses related work. The integration of WebM

into MPEG-DASH, our DASH-JS implementation, and a

preliminary evaluation thereof is presented in Section 3.

Section 4 concludes the paper and including future work.

2 RELATED WORK

Apples’ HTTP Live Streaming (HLS) [2] is fully

integrated in the Safari Web browser using the HTML5

video element and, thus, it is possible to define the m3u8

manifest file as source of the video element. That is, the

parsing of the m3u8 file and download of the segments is

handled within the Web browser. Unfortunately, this

functionality works on Apple systems only as Safari

versions for Windows or Linux do not support HLS.

Other existing adaptive HTTP streaming systems do not

make use of the HTML5 video element but deploy browser

independent platforms like Microsoft Silverlight (Smooth

Streaming [1]) and Adobe Flash (Adobe HTTP Dynamic

Streaming [3]). The advantage is that the video player

application is downloaded on-demand by the browser,

which makes it easy to publish updates. The disadvantage is

that these platforms are proprietary and poorly supported on

mobile platform like smartphones or tablets.

As DASH is a rather new standard there are currently

only a few implementations publicly available, e.g., our

DASH plug-in for the VLC player [10]. Although VLC is

available as a Firefox Web browser plug-in, this approach

does not make use of HTML5 and is limited to Firefox only.

Another publicly available DASH implementation is part of

the GPAC project [11] within the Osmo4 player which

supports basic browser integration.

In [12] several approaches are proposed on how to

integrate MPEG-DASH into the HTML 5 video element.

This includes configuration possibilities via attributes of the

element to make use of the different media representations

in the DASH MPD, e.g., selecting the appropriate audio

language, or subtitles. However, the presented approaches

are only proposals and are not supported by todays’ Web

browsers. Accessing the HTML 5 video element directly is

currently only possible with the Media Source Application

Programming Interface (API) available in the Google

Chrome browser [13]. This API provides access to the

decoder unit of this element and events issued by this

interface (i.e., webkitsourceopen, webkitsourceended, and

progress) via JavaScript. In particular, the progress event is

used to push byte chunks (or in our case segments) into the

decoder. Hence, this API enables the integration of various

streaming formats such as MPEG-DASH.

3 MPEG-DASH FOR WEB

In this section we present our Web integration of MPEG-

DASH using JavaScript and the Media Source API.

Therefore, we present how to use MPEG-DASH with

WebM [9], a subset of Matroska [14], that mandates the

usage of the VP8 video and Vorbis audio codecs but is

accessible via the Chromes’ Media Source API and provides

built-in browser support (i.e., decoding and rendering is

handled natively by the browser). To the best of our

knowledge, that is currently the only option that allows for a

seamless Web integration of adaptive HTTP streaming.

3.1 Integrating WebM with MPEG-DASH

WebM is a container format (cf. Figure 1) based on the

Extensible Binary Meta Language (EBML), which is a

binary extension of XML and enables hierarchical file

structures[14].

A major change to the Matroska format is that the

DocType attribute in the header has to be set to ―webm‖.

Furthermore, Seek Head has to be present to reflect whether

a Cue element is present within the Segment. The definition

of the Cueing Data is very strict within WebM. This

element has to be placed before any clusters and has to

include only references to key frames or I-frame to lower

the overall size of the Segment header. This allows seek

operations before any clusters have been downloaded. A

cluster comprises a time code and one or more block groups.

The time code increases monotonically and is associated

with the start time of the block. Furthermore, the clusters

included in the Clusters element should start with a key

frame. Finally, video and audio blocks referring to the same

time stamps are stored in the same clusters [9].

These guidelines and restrictions allow it to push clusters

into the decoder regardless which representation is currently

selected. However, the order of the clusters must be

preserved, which is determined by the time codes. Due to

the fact that clusters carry no dependency information with

them it is possible to simply switch the representation of a

video stream to lower or higher bitrates.

Figure 1. WebM container format.

1520

Figure 2 depicts an example of an MPD using WebM

segments signaled by the @mimeType attribute value

video/webm of the Representation element. Each segment

consists of a cluster with an I-frame at the beginning, which

is required by the WebM specification as already

mentioned. Additionally, each cluster comprises media data,

which has a length of two seconds in our implementation.

However, the segment length can also be longer or shorter

as it is not restricted by DASH. These segments are located

in a continuous WebM file and described by byte ranges

within the MPD using the @mediaRange attribute of the

SegmentURL element (cf. Figure 2, line 18). The client

requests the segments using partial HTTP GET requests.

As these segments are not self-initializing an

initialization segment is needed (cf. Figure 2, line 15). It

contains the WebM header information signaling the

DocType as well as the seek information and cueing data for

all subsequent clusters. The initialization segment is the first

segment that has to be downloaded and pushed into the

decoder. Additionally, this segment contains the timescale

and track information as well as relevant initialization

parameters for the video and audio decoders. After the

initialization the following segments can be subsequently

downloaded and handed over to the decoders.

The WebM compliant media files were generated using

FFMPEG [15], which generates a Cluster for each group of

pictures (GoP). By adjusting the framerate and GoP

parameters of the encoder it is possible to generate media

segments of a fixed time length. Note that FFMPEG does

not support all container elements, such as Cueing Data (cf.

Figure 1) and, thus, this element is currently missing when

generating WebM media files. For generating MPEG-

DASH compliant MPDs based of WebM media files we

developed a Python script that extracts the necessary

segment information such as the associated byte ranges of

the segments in the media file.

3.2 DASH in JavaScript (DASH-JS)

Figure 3 depicts the architecture of our JavaScript

implementation of MPEG–DASH using Chromes’ Media

Source API (specification version 0.3). DASH-JS comprises

the following components:

The Event Handlers act as an interface for the Media

Source API and process events issued by the Media Source

API. When the Media Source API issues the

webkitsourceopen event the Event Handlers will trigger

the download of the MPD and afterwards the MPD will be

handed over to the MPD Parser. The progress event is used

to call the Buffer which is responsible for retrieving and

buffering the segments of a media representation. Further

details on the buffer are provided below.

The MPD Parser is used to parse the requested MPD.

This will generate an object which holds all relevant

information about the MPD such as the defined

representations with their segments, the bitrate of each

representation, the resolution of the video frames, and

whether the segments are aligned throughout all

representations. This information is used by the adaptation

logic for determining which representations are available.

Requesting the MPD is done with the Segment Requester,

which uses the xmlHttpRequest to generate HTTP

requests. Furthermore, the Segment Requester provides an

asynchronous and a synchronous method for requesting and

receiving HTTP requests and responses. The Bandwidth

Estimator is used by the Segment Requester to measure and

estimate the current effective throughput. The throughput at

the n
th

 segment bn is estimated using Equation (1).

 (1)

Where bn-1 is the throughput calculated at the n-1
th

segment, bm denotes the throughput measured when the n-1
th

segment is being downloaded, and w1 and w2 are the

weighting factors. Instead of using all measured bandwidth

values we used the calculated throughput with the n-1
th

segment. The weights allow adjusting the influence of the

recently measured segment on the previous estimated

throughput. As initialization (i.e., b0) we used the bandwidth

measured when downloading the MPD. This estimation is

done with every segment that is requested and retrieved.

bn =
w1bn-1 +w2bm
w1 +w2

Figure 2. MPD with WebM content.

Figure 3. DASH-JS architecture.

1521

The class Base Buffer provides the base class for buffer

implementations. It offers the possibility to register event

handlers for specific events (e.g., criticalFillLevel).

Furthermore, two implementations of buffer types are

provided. First, a buffer that operates on bytes, which can be

used to store segments and query byte ranges of the stored

segments and, second, a buffer that operates on the length of

a segment.

Due to the fact that the Media Source API does not allow

accessing the buffer of the HTML5 video element we

implemented a so-called Overlay Buffer. This buffer inherits

the Base Buffer and mimics the actual buffer of the video

element. With each progress event issued by the Media

Source API the method bufferFillStateListener()

will be called. This method keeps track of the progress of

the media being played back by subtracting the amount of

time that has passed between the last call of this method and

the current timestamp from the buffer. Additionally, it will

trigger the download of further segments, which are then

handed over to the video element and the buffer level is

increased by the length of each segment. This buffer does

not store byte chunks. It just keeps track of how many

segments have been pushed into the video element in

seconds and the current playback time of the video.

The buffer and the estimated bandwidth can be used to

decide which representation of the media stream should be

selected by making the decision based upon the bandwidth

and/or the fill state of the buffer. To allow the

implementation of different adaptation logics the class Base

Adaptation Logic is provided. Every adaptation logic must

inherit this class in order to be used. The adaptation logic is

called after each downloaded segment. The base class

implements only a single method called

switchRepresentation(), which should be overridden.

This method shall contain the adaptation decision logic. For

our DASH-JS client we have implemented a simple

adaptation logic (Rate Based Adaptation Logic), which

switches the representation of the media stream based on the

estimated bandwidth presented in Equation (1).

The base classes for buffers and adaptation logics offer

an easy way to extend the implemented methods and

encourage to experiment with new approaches for selecting

the appropriate representation of the media stream.

Furthermore, our implementation does not need any third-

party software or browser plug-ins. The DASH-JS client is

purely written in JavaScript and makes use of the Media

Source provided by Google Chrome. Due to this new or

alternative adaption logics can be integrated very fast. It is

also thinkable to change the adaption logic on-demand

during the streaming session by requesting a more

appropriate one, e.g., an adaption logic especially optimized

for mobile scenarios, by loading a new JavaScript file. This

implementation is publicly available on our DASH research

Web site [16] providing all sources of DASH-JS licensed

under the GNU Lesser General Public License.

3.3 Preliminary Evaluation

For the evaluation of DASH-JS we have used a

simulation environment depicted in Figure 4. It comprises

an Ubuntu host running an Apache Web Server, a Network

Emulation as well as a Traffic Shaper node acting as

gateways and a client running DASH-JS in the Google

Chrome browser. The network emulation is realized using

NetEm [17] to simulate a 50 ms round trip time (RTT). For

the bandwidth shaping the Linux traffic control system (tc)

is used in combination with a hierarchical token bucket (htb)

packet scheduler. The segment length of the WebM content

for this evaluation is two seconds, which also works well in

high delay networks like evaluated in [18].

In Figure 5 one can see the bandwidth adaption ability of

our DASH-JS client. The points on the line for the estimated

throughput depict the measurement points of the DASH-JS

client. For the representation bitrate the dots show the time

point where a HTTP GET request is issued for the next

segment, which is also the time point where the adaption

decision is done. The weights for the throughput estimation

presented in Equation (1) were w1=0.7 and w2=1.3. That is,

taking 1.3 times the throughput of the last downloaded

segment leads to a fast reaction of the estimated overall

throughput on the recently measured throughput. We

simulated various scenarios using our traffic shaping node.

In particular, between seconds 0 and 70 the available

bandwidth is increased stepwise. The client adapts quickly

to the new bandwidth situation because this new condition

Figure 5. Media bitrate adaption of DASH-JS.

Figure 4. Evaluation Network.

Traffic
Shaping

Network
Emulation

Apache
Web Server DASH-JS Client

100 Mbits Ethernet

1522

affects the effective media throughput of the segments. As

we used the effective media throughput measurement of the

last two segments for the bitrate adaption the client chooses

the appropriate representation to the new bandwidth

situation at least after two seconds. In the period between 70

and 100 we simulated a significant bandwidth drop,

resulting in a long download time of the segment, which

was requested just before the bandwidth change. Thus, the

buffer of the HTML5 video element is leveraged during this

delayed segment download. However, no stalls occur due to

the high buffer level accumulated in the previous periods. A

smaller bandwidth drop is simulated at approximately

second 125 where the client adapts very well to the new

situation. Interestingly, the estimated media throughput at

approximately second 158 allows it to choose a higher

bitrate representation for one segment. In the end of the

simulation another bandwidth increase happens and in this

case the chosen representation is selected properly in

comparison to the available bandwidth.

4 CONCLUSIONS AND FUTURE WORK

In this paper we presented an implementation of MPEG-

DASH using JavaScript, which exploits the HTML5 video

element and the Media Source API provided by Google

Chrome. Thus it is possible to provide DASH support for

browsers without any further plugin necessary. Furthermore,

we have illustrated how WebM can be integrated into

MPEG-DASH by giving a detailed description of the

segment format as well as the corresponding MPD.

As JavaScript is available on a wide range of devices, it

enables the integration of DASH-JS, e.g., within mobile

devices such as smartphone and tablets using, e.g., Google

Chrome, which – at the time of writing of this paper – is

also available on the newest Android version. Furthermore,

implementing MPEG-DASH with JavaScript provides

platform and browser independency, however, currently

only Google Chrome provides the Media Source API.

Future work items include the implementation of more

intelligent adaptation logics and buffer strategies for

evaluating the performance of DASH-JS on real mobile

devices and in real environments. As we used JavaScript,

our solution is very flexible and these variations as well as

improvements can be integrated and deployed very easily,

which may also be an important factor for content providers

in practice. Furthermore, we will investigate the impact on

the CPU usage of DASH-JS implemented in Flash vs.

HTML 5. Finally, the specification of the Media Source API

has been recently updated with respect to segment formats

including the ISO base media file format (ISOBMFF)

compliant within MPEG-DASH [19]. Once implemented

within Chrome, we plan to evaluate DASH-JS using

ISOBMFF segments.

5 ACKNOWLEDGMENT

This work was supported in part by the EC in the context of the

ALICANTE (FP7-ICT-248652), SocialSensor (FP7-ICT-287975)

projects and partly performed in the Lakeside Labs research cluster

at AAU.

6 REFERENCES

[1] Microsoft Smooth Streaming, http://www.iis.net/download/

smoothstreaming (last access: Mar., 2012).

[2] R. Pantos, W. May, ―HTTP Live Streaming‖, IETF draft,

http://tools.ietf.org/html/draft-pantos-http-live-streaming-07

(last access: Mar, 2012).

[3] Adobe HTTP Dynamic Streaming,

http://www.adobe.com/products/httpdynamicstreaming/ (last

access: Mar., 2012).

[4] ISO/IEC DIS 23009-1.2, ―Information technology —

Dynamic adaptive streaming over HTTP (DASH) — Part 1:

Media presentation description and segment formats‖

[5] T. Stockhammer, ―Dynamic Adaptive Streaming over HTTP

– Standards and Design Principles‖, ACM Multimedia Systems,

San Jose, California, USA, Feb. 2011, pp. 133-143.

[6] I. Sodagar, ―The MPEG-DASH Standard for Multimedia

Streaming Over the Internet‖, IEEE Multimedia, vol. 18, no.

4, Oct.-Dec. 2011, pp. 62-67

[7] I. Hickson, HTML5 - W3C Working Draft 25 May 2011,

http://www.w3.org/TR/html5/ (last access: Mar. 2012)

[8] YouTube HTML5 Video Player,

http://www.youtube.com/html5 (last access: Mar. 2012).

[9] WebM Project, http://www.webmproject.org, (last access:

Mar. 2012).

[10] HTML 5 Media Source API, http://code.google.com/p/html5-

mediasource-api/, (last access: Mar. 2012).

[11] C. Müller, C. Timmerer, ―A VLC Media Player Plugin

enabling Dynamic Adaptive Streaming over HTTP‖, ACM

Multimedia, Scottsdale, Arizona, November 28, 2011.

[12] J. Le Feuvre, C. Concolato, J. C. Dufourd, R. Bouqueau, J.-C.

Moissinac, ―Experimenting with Multimedia Advances using

GPAC‖, ACM Multimedia, Scottsdale, USA, Nov. 2011.

[13] C. Concolato, J. Le Feuvre, R. Bouqueau, ―Usages of DASH

for Rich Media Services‖, ACM Multimedia Systems, San Jose,

California, USA, Feb. 2011, pp. 265–270.

[14] Matroska Media Container, http://www.matroska.org, (last

access: Mar. 2012).

[15] FFMPEG, http://ffmpeg.org/, (last access: Mar. 2012).

[16] DASH-JS at ITEC/Alpen-Adria-Universität Klagenfurt,

http://dash.itec.aau.at (last access: Mar. 2012)

[17] NetEm,http://www.linuxfoundation.org/en/Net:Netem (last

access: Mar. 2012)

[18] S. Lederer, C. Müller, C. Timmerer, ―Dynamic Adaptive

Streaming over HTTP Dataset‖, ACM Multimedia Systems

Conference 2012, Chapel Hill, North Carolina, February 22-

24, 2012.

[19] A. Colwell, A. Bateman, M. Watson (eds.), ―Media Source

Extensions v0.5‖, Draft Proposal, http://dvcs.w3.org/hg/html-

media/raw-file/tip/media-source/media-source.html (last

access: Jul. 2012).

1523

