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ABSTRACT 
 

This paper presents the usage of CCN, which is a candidate for 
the next-generation Internet, in combination with the new 
Dynamic Adaptive Streaming over HTTP (DASH) standard, 
which was recently ratified by ISO/IEC MPEG. In contrast to the 
Internet Protocol, which is mainly based on the host-to-host 
connection paradigm originated in the 1970s, Content Centric 
Networking (CCN) focuses on the content itself, instead of its 
location. Considering the dominance of multimedia traffic in 
todays' Internet, the streaming performance of DASH over CCN 
as well as the problems introduced by this combination is worth to 
be investigated in detail. Therefore, we evaluate the protocol 
overhead introduced by the usage of CCN compared to the HTTP 
versions 1.0 and 1.1. Furthermore, the performance of DASH over 
CCN under different network conditions is compared to the 
performance of HTTP 1.0/1.1. Our results showed that although 
CCN comes together with higher protocol overhead than HTTP 
1.0/1.1 as well as a prototype implementation, it can definitely 
compete with HTTP 1.0 in media streaming. Based on the 
evaluation results, problems as well as improvement possibilities 
are identified, which are the basis for future work in this area.  

Index Terms – MPEG-DASH, CCN, Dynamic Adaptive 
Streaming over HTTP, Content Centric Networking, Evaluation 

 

1. INTRODUCTION 
 

A variety of new Internet architectures have been proposed in the 
last decade [1] and some of them seem to overcome the current 
limitations of todays' Internet. One of these new Internet 
architectures is the Content Centric Network approach [2], which 
moves the focus of traditional end-to-end connections to the 
content, rather than on addressing its location, i.e., devices in a 
network. CCN could eventually replace IP in the future, but it is 
also possible to deploy it on top of IP. In comparison to IP, where 
clients set up connections between each other to exchange 
content, CCN is directly requesting the content without any 
connection setup. This means that a client, which wants to 
consume content, simply sends an interest for this content into the 
network and the network responds with the corresponding 
content, wherever it may be located. Additionally, CCN is meant 
to provide security und trust as an integral part of the network. 

From a content perspective, multimedia is omnipresent in the 
Internet, e.g., producing 58% of the total Internet traffic in North 
Americas' fixed access networks [3]. Especially the adaptive 
delivery of multimedia content over HTTP is gaining more and 
more momentum, which resulted in the standardization of 
MPEG’s Dynamic Adaptive Streaming over HTTP (DASH) [4]. 

As CCN is a promising candidate for the Future Internet (FI) 
architecture, it is worthwhile to investigate its suitability in 
combination with multimedia streaming standards like DASH. 
Considering that CCN and DASH have several elements in 
common like, e.g., the client-initiated pull approach as well as the 
content being dealt with in pieces, this can be a potentially good 
combination.  

The purpose of this paper is to present the delivery of 
DASH-based multimedia content over CCN and to give a 
comprehensive evaluation thereof with respect the different 
existing HTTP features. As DASH is designed for the delivery 
over HTTP, we describe different options how to deliver DASH-
based content over CCN. The actual evaluation thereof comprises 
two parts. First, we evaluate the overhead in terms of headers and 
protocol-related communication introduced by replacing HTTP 
with CCN as transport protocol for DASH-based content. Second, 
we compare the delivery performance of DASH-based content 
over CCN in comparison to HTTP. Previous evaluations [5] have 
shown a significant impact of different HTTP features on the 
effective media throughput. Therefore, we also investigate HTTP 
1.0 as well as mature 1.1 features such as HTTP request 
pipelining and persistent TCP connections. However, one has to 
consider that HTTP in its different versions is already well proven 
in practice and the implementations as well as the underlying 
protocol stack are highly optimized nowadays. The experimental 
results of the DASH over CCN overhead and performance offer 
deep insights, which are the basis to identify promising 
improvements of the protocol as well as the resulting streaming 
performance, as presented in this paper.  

The remainder of the paper is organized as follows. Section 2 
describes related work and Section 3 provides a brief overview of 
CCN. Section 4 demonstrates how MPEG-DASH can be 
integrated into CCN. The evaluation concerning the overhead is 
provided in Section 5 and Section 6 comprises the actual 
performance evaluation. Finally, Section 7 concludes the paper. 
 

2. RELATED WORK 
 
Concepts around Named Data Networking exist already since 
1970 [1]. Nevertheless, CCN received a lot more attention in the 
past few years, encouraged by the implementations like [6]. 
However, the number of publications related to CCN and adaptive 
multimedia streaming is still limited. 

In [7], authors provide an implementation and evaluation of 
Voice over IP (VoIP) for CCN, demonstrating that CCN is very 
well suited for real-time multimedia data, that it comes together 
with an improved availability as well as reliability, and that the 
computational overhead introduced by encryption or signing of 
the data can be neglected. However, protocol overhead and 
streaming performance was not covered by them. The authors in 
[8] demonstrate the usage of Apples' HTTP Live Streaming (HLS) 
using CCNx [6], but without investigating the streaming 
performance or the adaption of the stream to, e.g., bandwidth 
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conditions, like it is done in our paper. They propose a CCN video 
streaming application which acts as a proxy between the HLS 
client (i.e., VLC) and the CCNx implementation. In our paper, we 
describe another possibility which is detailed in Section 4. Live 
streaming over CCN on a mobile client is described in [10] and 
also compared against HLS. However, this comparison is focusing 
on the use case when multiple clients are accessing the same 
content, where CCN clearly demonstrates its advantages over 
HTTP (without considering existing HTTP proxy and caching 
infrastructures). 

 

3. PRINCIPLES OF CCN 
 

Direct communication between hosts as well as the sharing of 
hardware resources of hosts fits the use cases of the early years of 
the Internet, but todays' needs and communication schemes have 
changed, where everything is about the content and its ubiquitous 
access. TCP/IP was not designed for such tasks, but various 
approaches have been developed to circumvent the mapping of 
content to specific machines like, e.g., peer-to-peer (P2P) 
networks or content delivery networks (CDN) in combination 
with intelligent Domain Name Service (DNS) resolution. 

Jacobson et al. [2] present their next generation networking 
approach called Content Centric Networking (CCN), which 
focuses on the content the user requests, rather than the 
interconnection between hosts. In the CCN approach, there exist 
only two types of packets: interest and data. The former are used 
for requesting the content whereas the latter are used for their 
actual delivery. The maximum payload of a data packet is 4096 
bytes and also referred to as a CCN chunk. Data packets are 
handled efficiently on the network nodes, e.g., to satisfy 
consolidated interest packets originating from multiple clients 
and, thus, providing implicit support for multicast and caching of 
data packets on CCN nodes within the delivery network. 

The interest packet addresses the content by name and may 
contain further selection information. For example, in case a user 
wants to watch a movie from example.com, the interest packet 
contains a content name as a Uniform Resource Identifier (URI) 
such as ccnx://example.com/videos/movie.mpg, which is also the 
basis for routing in the network. The packet could then be sent 
over multiple interfaces, e.g., Ethernet, 3G, and WiFi 
simultaneously. The CCN nodes will forward the interest packet 
based on a longest prefix matching scheme which is also used in 
IP routing. 

 

4. INTEGRATION OF DASH AND CCN 
 

The basic concept of DASH [4] is to use segments of media 
content, which can be encoded at different resolutions, bitrates, 
etc. as so-called representations. These segments are served by 
conventional HTTP Web servers and can be addressed via HTTP 
GET requests from the client. As a consequence, the streaming 
system is pull-based and the entire streaming logic is located on 
the client, which makes it possible to adapt the media stream to its 

capabilities. In addition to this, the content can be distributed 
using conventional CDNs and their HTTP infrastructure, which 
also scales very well. In order to specify the relationship between 
the contents' media segments and the associated bitrate, 
resolution, and timeline, the Media Presentation Description 
(MPD) is used, which is a XML document.  

In contrast to CCN, the technology behind DASH is already 
well advanced and large-scale deployments of comparable 
proprietary media streaming solutions are available by major 
industry players (e.g., Adobe, Apple, Microsoft). DASH is 
intended to enable adaptive streaming, i.e., each content piece can 
be provided in different qualities, formats, languages, etc. to cope 
with the diversity of todays' networks and devices. As this is an 
important requirement for Future Internet proposals like CCN, the 
combination of those two technologies seems to be obvious. Since 
those two proposals are located at different protocol layers – 
DASH at the application and CCN at the network layer – they can 
be combined very efficiently to leverage the advantages of both 
and potentially eliminate existing disadvantages. 

In principle, there are two options to integrate DASH and 
CCN: a proxy service acting as a broker between HTTP and CCN 
as proposed in [8], and the DASH client implementing a native 
CCN interface. The former transforms an HTTP request to a 
corresponding interest packet as well as a data packet to an HTTP 
response, including reliable transport as offered by TCP. This may 
be a good compromise to implement CCN in a managed network 
[9] and to support legacy devices. As such a proxy is already 
described in [8] we are focusing on a more integrated approach, 
aiming at fully exploiting the potential of CCN. That is, a native 
CCN interface within the DASH client, which adopts a CCN 
naming scheme (CCN URIs) to denote segments in the Media 
Presentation Description (MPD). Figure 1 presents the proposed 
architecture of DASH over CCN where DASH-related 
components are marked in red, CCN-related components in green, 
and implementation-depended components in blue. As one can 
see, only the network access component on the client has to be 
modified and the segment URIs within MPD have to be updated 
according to the CCN naming scheme. 

Initially, the DASH client retrieves the MPD containing the 
CCN URIs of the content representations including the media 
segments. The naming scheme of the segments may reflect 
intrinsic features of CCN like versioning and segmentation 
support as presented in [7] and shown in Figure 2. Such 
segmentation support is already compulsory for multimedia 
streaming in CCN and, thus, can also be leveraged for DASH-
based streaming over CCN. The CCN versioning can be adopted 
to signal different representations of the DASH-based content, 
which enables an implicit adaptation of the requested content to 

 
Figure 1: DASH over CCN 

 
Figure 2: CCN Naming Structure [2] 



the clients' bandwidth conditions. That is, the interest packet 
already provides the desired characteristics of a segment (such as 
bit rate, resolution, etc.) within the content name. Additionally, if 
bandwidth conditions of the corresponding interfaces or routing 
paths allow so, DASH media segments could be aggregated 
automatically by the CCN nodes, which reduces the amount of 
interest packets needed to request the content. However, such 
approaches need further research, specifically in terms of 
additional intelligence and processing power needed at the CCN 
nodes. 

After requesting the MPD, the DASH client will start to 
request particular segments. Therefore, CCN interest packets are 
generated by the CCN access component and forwarded to the 
available interfaces. Within the CCN, these interest packets 
leverage the efficient interest aggregation for, e.g., popular 
content, as well as the implicit multicast support. Finally, the 
interest packets are satisfied by the corresponding data packets 
containing the video segment data, which are stored on the origin 
server or any CCN node, respectively. With an increasing 
popularity of the content, it will be distributed across the network 
resulting in lower transmission delays and reduced bandwidth 
requirements for origin servers and content providers respectively.  
 

5. OVERHEAD ANALYSIS 
 

The first evaluation comprises the protocol overhead due to 
packet headers and the protocol-related communication. 
Therefore, the theoretical lower bound is calculated followed by a 
practical evaluation using our evaluation network with different 
bitrate versions of DASH-based content.  

HTTP is using TCP on the transport- and IP on the network-
layer. This introduces an overhead of 20 bytes for the TCP header 
(+ 12 bytes for the optional header fields) [11] and another 20 
bytes for the IP header [12]. If Ethernet [13] is used on the link 
layer, an additional 14 byte frame header is added to the TCP/IP 
packets. As Ethernet restricts the Maximum Transportation Unit 
(MTU) to 1500 bytes, the lower bound of the TCP/IP protocol 
overhead can be calculated as follows: Considering the resulting 
maximum payload of the TCP packet of 1448 bytes and the 
Ethernet frame size of 1514 (incl. Ethernet frame header) this 
results in an overhead of 4.56 % caused by headers. Additionally, 
one has to consider packets needed for TCP connection 
establishment and ACKs, as well as other Ethernet-related 
overhead like check sequence etc. On top of TCP, HTTP 
introduces further overhead for requesting and delivering DASH 
segments. This is depending on the length of the requested URL 
and the parameters used by the client and the server, which are 
approx. 150 bytes for the HTTP GET request and approx. 200 
bytes for the HTTP response header. As this overhead is fixed 
regardless of the requested segment size, its influence on small 
segments is higher than on large DASH segments. The size of a 
DASH segment results from two parameters: the segment length 
in seconds and the quality of the chosen representation. 
Considering DASH segments with a length of two seconds, as 
used in the following practical evaluation, a segment of the 
100kbps representation would have an HTTP-related overhead of 
1,37 %, resulting in an total overhead caused by headers of 5,93 
%. In the case of a segment of the 4500kbps representation the 

HTTP-related overhead is only 0,03 %, resulting in an total 
overhead caused by headers of 4,59 % for those kinds of 
segments.  

Basically, one has to consider that CCN is designed as a 
replacement of IP. However, as today’s Internet is based on IP, 
CCN can be used on top of UPD/IP as well as TCP/IP in order to 
be compatible to today’s infrastructure. Hence, for the following 
considerations we are using CCN on top of UPD/IP, as it is done 
by [2]. A UDP header of 8 bytes [14] is added to each CCN 
packet which is fragmented into IP packets based on the MTU 
(1500 bytes). This results in a UDP/IP-related lower bound of 
2.47% protocol overhead. On this basis, data packets with a 
maximum payload of 4096 bytes and a header of approx. 550 
bytes are transmitted. Each of those data packets is requested by 
an interest packet with sizes from approx. 150 to 250 bytes which 
causes a combined overhead of 18.31%. When considering the 
underlying UDP/IP overhead, the total overhead caused by 
headers is 20.78%. Additionally, one has to consider the overhead 
caused by retransmission of lost packets which is more expensive 
in CCN, due to the 4096 chunk payload. 

In the following evaluations the protocol overhead produced 
by HTTP as well as CCN is investigated in practice to give a 
comparison to the calculated lower bound.  
5.1 Methodology and Evaluation Setup 
The protocol overhead is calculated based on the sum of bytes 
transferred in the network divided by the sum of media bytes 
received at the clients' application, as shown in Equation 1. 

  𝑶𝒗𝒆𝒓𝒉𝒆𝒂𝒅 =  ∑𝒃𝒚𝒕𝒆𝒔  𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒕𝒕𝒆𝒅
∑𝒃𝒚𝒕𝒆𝒔 𝒐𝒇 𝒎𝒆𝒅𝒊𝒂 𝒄𝒐𝒏𝒕𝒆𝒏𝒕

− 𝟏  ( 1 ) 

The practical overhead evaluation is based on our evaluation 
setup depicted in Figure 3 using different server/client 
components depending on the used protocols. The network 
emulation and bandwidth shaping nodes are not used for these 
experiments and the network is just limited by the 1Gbps network 
connection between the nodes. However, they are necessary for 
the next experiments in Section 6. All nodes are based on the 
same hardware and are running Ubuntu Linux 12.04. The 
produced traffic is analyzed using Wireshark 
(http://www.wireshark.org/) for HTTP and using the CCNx 
Wireshark plugin [6] for CCN. 

We conduct three different experiments delivering DASH-
based content with HTTP 1.0, HTTP 1.1, and CCN:  
Experiment 1 evaluates DASH with HTTP 1.0 [15]. Therefore, 
we use an Apache HTTP 1.0 Web server providing DASH 
content. On the client side we use the DASH VLC plugin [16].  
Experiment 2 evaluates DASH with HTTP 1.1 [17]. We use 
again the DASH VLC plugin and Apache Web server, but enable 
persistent connections and pipelining according to HTTP 1.1.  
Experiment 3 evaluates DASH with CCN [2]. We use a CCNx 
[6] node in the version 0.6.1 with a repository containing the same 
DASH content as used in Experiments 1 and 2, but with an MPD 
comprising CCN URIs instead of HTTP URIs. On the client side 
we use a modified version of the DASH VLC plugin, 
implementing a native interface to the ccnd daemon of CCNx. 

For each experiment we use the Big Buck Bunny DASH 
content of [5] with a segment length of two seconds. We evaluate 
the overhead separately for the following representations: 100, 
350, 700, 1300, 2800 and 4500 kbps. 
5.2 Evaluation Results 
The results are depicted in Figure 4 showing that the CCNx 
implementation maintains a relatively constant overhead of 23.5-
23.8% for representations greater than 100kbps. For the 100 kbps 
representation the overhead of around 24.7 % is slightly higher 

 
Figure 3: Evaluation Setup. 



which is caused by small segments comprising only a few data 
packets. As the last data packet of a DASH segment tends to not 
fully utilize the packet’s payload capacity of 4096 bytes, the 
influence of the CCN header for those packets gets bigger in 
comparison to packets fully utilizing the payload capacity, which 
causes the higher overhead for the lower bitrate representations. 

The measured overhead of the practical evaluation differs 
from the calculated lower bound of 20.78%. The approx. 3% 
additional overhead is caused by a suboptimal behavior of the 
CCNx ccnd daemon, i.e., the last data packet of a DASH segment 
is signaled by the FinalBlockID field of the signed information 
which is part of the data packet, but unfortunately only the last 
chunk of a segment contains this information. As the interest 
packets are requested in a pipelined manner, the ccnd daemon 
requests non-existing data packets until it receives and processes 
the data packet with the FinalBlockID field.  

In contrast to CCN, HTTP 1.0 and 1.1 maintain a relatively 
low overhead. The overhead of HTTP 1.0 is starting from 11.89% 
(100 kbps representation) and decreases to 5.42% (4500 kbps 
rep.). When HTTP 1.1 is used, the overhead is slightly lower, 
starting from 9.62% for the 100 kbps representation and decreases 
to 5.15% for the 4500 kbps representation. In both cases, HTTP 
1.0 and 1.1, one can see the influence of the fixed size HTTP 
header, which causes a higher overhead when small segment sizes 
are used, like in the case of the 100 kbps representation. The 
smaller overhead of HTTP 1.1 is caused by the usage of efficient 
features like one persistent TCP connection and the pipelining of 
HTTP requests. The measured overheads of 11,89 % and 9,63 % 
respectively are significant higher than the theoretical lower 
bound of 5,93 %, which comes from ACKs, not fully utilized 
TCP/IP packet payloads caused by the small segments and from 
the packets needed for connection establishment for each segment 
in the case of HTTP 1.0. When the segment size gets bigger, e.g., 

for the 4500 kbps representation, the influence of the HTTP 
header decreases and the overhead is very close to the theoretical 
lower bound of 4.59%. 

 

6. PERFORMANCE ANALYSIS 
 

In this section, we evaluate the performance in terms of 
transmitted media data of the dynamic adaptive streaming over 
HTTP 1.0, HTTP 1.1, and CCN. The performance is measured for 
each protocol by comparing the effective media bitrate received 
and the buffer level at the client. The evaluations are performed in 
the same manner for all three protocols and are based on a 
predefined track of bandwidth variations. As different network 
delays influence the performance of the different protocols, we 
carry out these evaluations using different round trip times (RTT) 
ranging from 0 to 150ms.  
6.1 Evaluation Setup and Methodology  
For these evaluations, the network emulation setup in Figure 3 is 
used. For bandwidth shaping, the Linux Traffic Control system 
(tc) is used in combination with a Hierarchical Token Bucket (htb) 
packet scheduler using Statistical Fair Queuing (sfq). The network 
emulation node controls the RTT using the Linux Network 
Emulator (netem). Each experiment uses the Big Buck Bunny 
DASH content from the dataset in [5], which is encoded at 14 
different bitrates from 100 to 4500 kbps and has a segment length 
of 2 seconds. The available bandwidth, depicted as dashed line in 
the Figure 5 and Figure 6, is equal for all experiments and 
changes every 20 seconds.  

We used parts of the metrics from [19] for our experiments. 
The average media bitrate is retrieved by the client, which could 
be seen as the overall performance indicator of the system. 
Furthermore, the buffer level represents the current fill state of the 
buffer of the DASH client, which gives additional information 
about the adaptation performance of the system. 
6.2 Evaluation Results 
The results for the average media bitrate and the buffer level are 
provided for RTT = 0 and 150 ms in the following result graphs, 
separated for (a) HTTP 1.0, (b) HTTP 1.1, and (c) CCN. The term 
“Bandwidth” indicates the available bandwidth which is 
predefined as introduced above. The term “Media Bitrate” 
indicates the requested bitrate of the segments and, thus, the 
playback bitrate at the client.  

Figure 5 shows the results for RTT = 0 ms. In terms of the 
requested media bitrate, there are only a few differences between 
the used protocols, e.g., noticeable between seconds 20 and 40 as 
well as between seconds 125 and 145, where lower bitrates are 
requested in the case of CCN in comparison to the other protocols. 

 
Figure 4: Protocol Overhead Analysis 

 
Figure 5: Performance Evaluation with RTT = 0 ms. 



Additionally, all three protocols maintain a very similar buffer fill 
pattern, which is caused by the same behavior of the DASH 
adaption logic in all three experiments. Nevertheless, there are 
noticeable differences, as one may see between seconds 0 and 50 
where CCN consistently has a higher buffer fill level than the 
other systems. HTTP 1.0/HTTP1.1 are relatively sensitive to 
variations in the size of the DASH segments, as they are caused 
by variations of the encoding bitrate due to different scene 
complexity in the content. This results in the higher amount of 
bitrate switches in Figure 5 (a) and (b). In contrast to this, DASH 
over CCN in (c) is relatively constant which is caused by the fixed 
overhead, as already shown in Figure 4, and the usage of UDP 
instead of TCP.  

Figure 6 shows the results for RTT = 150 ms. Although CCN 
comes together with a higher overhead, it achieves a better 
performance than HTTP 1.0 with a 1% higher average bitrate. 
However, when comparing the buffer fill levels one may see that 
CCN has more problems to reach the maximum buffer level. In 
these evaluations, one clearly sees the advantages of HTTP 1.1 in 
Figure 6 (b), which still maintains nearly the same average media 
bitrate as in the other experiment with lower RTT. It also adjusts 
much faster to the available bandwidth conditions than HTTP 1.0 
and CCN, as one can notice at the beginning of the session 
between seconds 0 and 10 as well as 80 and 85. This lower 
performance of HTTP 1.0 is caused, by the lower link utilization 
due to the two RTTs needed for TCP connection establishment 
and HTTP GET request for each DASH segment. With higher 
RTT in Figure 6, CCN has more and more problems reaching the 
maximum buffer level of 40 seconds of content. This is caused by 
the relative high header overhead of CCN data packets and a poor 
link utilization of CCN at high RTTs. 

Considering that CCN is a new as well as experimental 
concept and the used CCNx implementation is a prototype and not 
integrated, e.g., into the system’s kernel like TCP is, the overall 
performance of DASH over CCN in terms of average media 
bitrate is relatively good as shown in Figure 7. The difference of 
117 kbps, or 6 %, to HTTP 1.0 and of 219 kbps, or 11 %, to 
HTTP 1.1 in the case of 0 ms RTT is lower than expected, 
especially when considering the previously shown protocol 
overhead as well as the computational overhead at the CCN 
nodes, introduced by cache lookup, bloom filters, etc. 
Furthermore, the performance of DASH over CCN decreases 
monotonically in contrast to conventional DASH over HTTP 1.0, 
which finally leads to a 1 % better performance of CCN than 
HTTP 1.0 when the RTT increases to 150 ms. However, the CCN 
performance at this high network delay is still 735 kbps, or 39 % 
lower than HTTP 1.1.  

The performance drop of DASH over HTTP 1.0 results from 
establishing a new TCP connection for each segment as well for 
requesting the segments via a subsequent HTTP GET request. The 
used TCP connection is closed again after the HTTP response. 
This also influences the bandwidth utilization, since the TCP slow 
start uses the default initial congestion window of the system for 
each connection establishment. Furthermore, two times the RTT 
are needed for establishing the TCP/IP connection and sending the 
HTTP request for the desired segment until the first bytes of it are 
received, which is also responsible for the lower bandwidth 
utilization.  

The experimental results showed the good performance of 
HTTP 1.1 in environments with high RTT, like in mobile 
networks. When the RTT is increased, the reduction of the 
average bitrate for HTTP 1.1 is significantly lower than for HTTP 
1.0 and CCN, which is caused by the usage of persistent TCP 
connections and pipelining in HTTP1.1. In this case the client 
does maintain one TCP connection for the whole streaming 
session and requests the subsequent DASH segment while 
downloading the previous one. Due to this, the downlink is always 
fully utilized, which causes the good performance with high 
RTTs. Furthermore, the TCP connection window is initialized 
only at the beginning of the streaming session, i.e., for the first 
segment 

According to these results, the current CCN implementation 
has the potential to compete with DASH over HTTP 1.0, 
however, it definitely needs some work to come closer to the 
performance of HTTP 1.1. Therefore, the high overhead and the 
lower link utilization have to be addressed. In particular, the link 
utilization of DASH over CCN is influenced directly by the 
network delay. This influence can be reduced by improving the 
pipelining of CCN interest packets on the transport layer, as it is 
done by TCP. Furthermore, the performance can be increased by 
eliminating unnecessary interest packets at the end of the data 

  
Figure 6: Performance Evaluation with RTT = 150 ms. 

 
Figure 7: Average Media Throughput for different RTTs 



transfer of a DASH segment, which was already mentioned in the 
overhead evaluation in Section 5. The interest packets are 
requested in a pipelined manner, so non-existing data packets are 
requested while the last data packet containing the FinalBlockID 
field is received and processed by the client. These unnecessary 
interest packets can be easily avoided by sending the 
FinalBlockID field in an earlier data packet, e.g., the first one of 
the transfer, to notify the requesting node which is the last data 
packet. Of course, this also effects the bandwidth utilization in 
networks with higher delays, as instead of sending unnecessary 
interest packets, the client can already request data packets of the 
subsequent DASH segment and, therefore, reduce the time in 
which the link is unused. Additionally, research has to focus on a 
more efficient possibility for content encryption and signing 
which is currently mainly responsible for most of the header size 
and as a consequence also for the protocol overhead. 
 

7. CONCLUSIONS 
 

This paper proposed and evaluated the combination of CCN with 
DASH. As both concepts maintain several elements in common, 
like, e.g., the content in different versions being dealt with in 
segments, a deep integration of DASH and CCN can be achieved. 
Out of several implementation possibilities, a direct integration in 
the DASH client has been proposed and evaluated in different 
experiments focusing on dynamic multimedia streaming against 
the same client based on HTTP 1.0 and HTTP 1.1. 

The first evaluations analyzed the protocol overhead 
introduced by CCN and its chunk-based data retrieval in 
comparison to HTTP 1.0 and HTTP 1.1. As CCN separates data to 
fixed size chunks of 4 kB, identified by URIs and equipped with 
signing information, the protocol overhead is significantly higher 
than in the case of HTTP 1.0/1.1, where the overhead caused by 
TCP/IP and the HTTP headers is relatively low in comparison. 
Nevertheless, the CCN header information enables further 
possibilities which are not possible with IP-based protocols such 
as HTTP, e.g., the automatic retrieval of content via the fastest 
available link with an intrinsic error resilience w.r.t. the network, 
as show in our previous work in [21].  

Additionally, we evaluated the dynamic adaptation 
characteristics and the performance in terms of media throughput 
for all solutions. This has been conducted based on a given test 
scenario with different bandwidth variations, which has been 
analyzed under different network delays. We showed that 
streaming adaptive media using DASH on top of CCN is possible. 
As expected, CCN cannot compete with HTTP 1.1 and its 
efficient usage of one TCP connection for the whole streaming 
session as well as the pipelining of HTTP requests. However, 
HTTP 1.1 is not supported by every Web server and causes 
problems in combination with proxies like, e.g., the Head-of-Line 
blocking where a range of responses can be delayed by, e.g., only 
one pending response [20]. DASH over CCN can definitely 
compete with HTTP 1.0, showing the same RTT-sensibility 
characteristics and slightly outperforming it already in scenarios 
with high network delay. Considering the prototype 
implementation of CCN and the modification possibilities 
proposed in this paper, DASH over CCN has the possibility to 
outperform HTTP 1.0 and strive towards the efficiency of HTTP 
1.1., while maintaining its advantages like, e.g., its efficient 
caching and intrinsic multicast support.  
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