
AN EXPERIMENTAL ANALYSIS OF DYNAMIC ADAPTIVE STREAMING OVER HTTP IN
CONTENT CENTRIC NETWORKS

Stefan Lederer, Christopher Mueller, Benjamin Rainer, Christian Timmerer, and Hermann Hellwagner
Alpen-Adria-Universität Klagenfurt

Universitätsstraße 65-67
9020 Klagenfurt am Wörthersee, Austria

{firstname.lastname}@itec.aau.at

ABSTRACT

This paper presents the usage of CCN, which is a candidate for
the next-generation Internet, in combination with the new
Dynamic Adaptive Streaming over HTTP (DASH) standard,
which was recently ratified by ISO/IEC MPEG. In contrast to the
Internet Protocol, which is mainly based on the host-to-host
connection paradigm originated in the 1970s, Content Centric
Networking (CCN) focuses on the content itself, instead of its
location. Considering the dominance of multimedia traffic in
todays' Internet, the streaming performance of DASH over CCN
as well as the problems introduced by this combination is worth to
be investigated in detail. Therefore, we evaluate the protocol
overhead introduced by the usage of CCN compared to the HTTP
versions 1.0 and 1.1. Furthermore, the performance of DASH over
CCN under different network conditions is compared to the
performance of HTTP 1.0/1.1. Our results showed that although
CCN comes together with higher protocol overhead than HTTP
1.0/1.1 as well as a prototype implementation, it can definitely
compete with HTTP 1.0 in media streaming. Based on the
evaluation results, problems as well as improvement possibilities
are identified, which are the basis for future work in this area.

Index Terms – MPEG-DASH, CCN, Dynamic Adaptive
Streaming over HTTP, Content Centric Networking, Evaluation

1. INTRODUCTION

A variety of new Internet architectures have been proposed in the
last decade [1] and some of them seem to overcome the current
limitations of todays' Internet. One of these new Internet
architectures is the Content Centric Network approach [2], which
moves the focus of traditional end-to-end connections to the
content, rather than on addressing its location, i.e., devices in a
network. CCN could eventually replace IP in the future, but it is
also possible to deploy it on top of IP. In comparison to IP, where
clients set up connections between each other to exchange
content, CCN is directly requesting the content without any
connection setup. This means that a client, which wants to
consume content, simply sends an interest for this content into the
network and the network responds with the corresponding
content, wherever it may be located. Additionally, CCN is meant
to provide security und trust as an integral part of the network.

From a content perspective, multimedia is omnipresent in the
Internet, e.g., producing 58% of the total Internet traffic in North
Americas' fixed access networks [3]. Especially the adaptive
delivery of multimedia content over HTTP is gaining more and
more momentum, which resulted in the standardization of
MPEG’s Dynamic Adaptive Streaming over HTTP (DASH) [4].

As CCN is a promising candidate for the Future Internet (FI)
architecture, it is worthwhile to investigate its suitability in
combination with multimedia streaming standards like DASH.
Considering that CCN and DASH have several elements in
common like, e.g., the client-initiated pull approach as well as the
content being dealt with in pieces, this can be a potentially good
combination.

The purpose of this paper is to present the delivery of
DASH-based multimedia content over CCN and to give a
comprehensive evaluation thereof with respect the different
existing HTTP features. As DASH is designed for the delivery
over HTTP, we describe different options how to deliver DASH-
based content over CCN. The actual evaluation thereof comprises
two parts. First, we evaluate the overhead in terms of headers and
protocol-related communication introduced by replacing HTTP
with CCN as transport protocol for DASH-based content. Second,
we compare the delivery performance of DASH-based content
over CCN in comparison to HTTP. Previous evaluations [5] have
shown a significant impact of different HTTP features on the
effective media throughput. Therefore, we also investigate HTTP
1.0 as well as mature 1.1 features such as HTTP request
pipelining and persistent TCP connections. However, one has to
consider that HTTP in its different versions is already well proven
in practice and the implementations as well as the underlying
protocol stack are highly optimized nowadays. The experimental
results of the DASH over CCN overhead and performance offer
deep insights, which are the basis to identify promising
improvements of the protocol as well as the resulting streaming
performance, as presented in this paper.

The remainder of the paper is organized as follows. Section 2
describes related work and Section 3 provides a brief overview of
CCN. Section 4 demonstrates how MPEG-DASH can be
integrated into CCN. The evaluation concerning the overhead is
provided in Section 5 and Section 6 comprises the actual
performance evaluation. Finally, Section 7 concludes the paper.

2. RELATED WORK

Concepts around Named Data Networking exist already since
1970 [1]. Nevertheless, CCN received a lot more attention in the
past few years, encouraged by the implementations like [6].
However, the number of publications related to CCN and adaptive
multimedia streaming is still limited.

In [7], authors provide an implementation and evaluation of
Voice over IP (VoIP) for CCN, demonstrating that CCN is very
well suited for real-time multimedia data, that it comes together
with an improved availability as well as reliability, and that the
computational overhead introduced by encryption or signing of
the data can be neglected. However, protocol overhead and
streaming performance was not covered by them. The authors in
[8] demonstrate the usage of Apples' HTTP Live Streaming (HLS)
using CCNx [6], but without investigating the streaming
performance or the adaption of the stream to, e.g., bandwidth

Acknowledgments: This work was supported in part by the EC in
the context of the ALICANTE (FP7-ICT-248652), SocialSensor
(FP7-ICT-287975), and QUALINET (COST IC 1003) projects
and partly performed in the Lakeside Labs research cluster at
AAU.

conditions, like it is done in our paper. They propose a CCN video
streaming application which acts as a proxy between the HLS
client (i.e., VLC) and the CCNx implementation. In our paper, we
describe another possibility which is detailed in Section 4. Live
streaming over CCN on a mobile client is described in [10] and
also compared against HLS. However, this comparison is focusing
on the use case when multiple clients are accessing the same
content, where CCN clearly demonstrates its advantages over
HTTP (without considering existing HTTP proxy and caching
infrastructures).

3. PRINCIPLES OF CCN

Direct communication between hosts as well as the sharing of
hardware resources of hosts fits the use cases of the early years of
the Internet, but todays' needs and communication schemes have
changed, where everything is about the content and its ubiquitous
access. TCP/IP was not designed for such tasks, but various
approaches have been developed to circumvent the mapping of
content to specific machines like, e.g., peer-to-peer (P2P)
networks or content delivery networks (CDN) in combination
with intelligent Domain Name Service (DNS) resolution.

Jacobson et al. [2] present their next generation networking
approach called Content Centric Networking (CCN), which
focuses on the content the user requests, rather than the
interconnection between hosts. In the CCN approach, there exist
only two types of packets: interest and data. The former are used
for requesting the content whereas the latter are used for their
actual delivery. The maximum payload of a data packet is 4096
bytes and also referred to as a CCN chunk. Data packets are
handled efficiently on the network nodes, e.g., to satisfy
consolidated interest packets originating from multiple clients
and, thus, providing implicit support for multicast and caching of
data packets on CCN nodes within the delivery network.

The interest packet addresses the content by name and may
contain further selection information. For example, in case a user
wants to watch a movie from example.com, the interest packet
contains a content name as a Uniform Resource Identifier (URI)
such as ccnx://example.com/videos/movie.mpg, which is also the
basis for routing in the network. The packet could then be sent
over multiple interfaces, e.g., Ethernet, 3G, and WiFi
simultaneously. The CCN nodes will forward the interest packet
based on a longest prefix matching scheme which is also used in
IP routing.

4. INTEGRATION OF DASH AND CCN

The basic concept of DASH [4] is to use segments of media
content, which can be encoded at different resolutions, bitrates,
etc. as so-called representations. These segments are served by
conventional HTTP Web servers and can be addressed via HTTP
GET requests from the client. As a consequence, the streaming
system is pull-based and the entire streaming logic is located on
the client, which makes it possible to adapt the media stream to its

capabilities. In addition to this, the content can be distributed
using conventional CDNs and their HTTP infrastructure, which
also scales very well. In order to specify the relationship between
the contents' media segments and the associated bitrate,
resolution, and timeline, the Media Presentation Description
(MPD) is used, which is a XML document.

In contrast to CCN, the technology behind DASH is already
well advanced and large-scale deployments of comparable
proprietary media streaming solutions are available by major
industry players (e.g., Adobe, Apple, Microsoft). DASH is
intended to enable adaptive streaming, i.e., each content piece can
be provided in different qualities, formats, languages, etc. to cope
with the diversity of todays' networks and devices. As this is an
important requirement for Future Internet proposals like CCN, the
combination of those two technologies seems to be obvious. Since
those two proposals are located at different protocol layers –
DASH at the application and CCN at the network layer – they can
be combined very efficiently to leverage the advantages of both
and potentially eliminate existing disadvantages.

In principle, there are two options to integrate DASH and
CCN: a proxy service acting as a broker between HTTP and CCN
as proposed in [8], and the DASH client implementing a native
CCN interface. The former transforms an HTTP request to a
corresponding interest packet as well as a data packet to an HTTP
response, including reliable transport as offered by TCP. This may
be a good compromise to implement CCN in a managed network
[9] and to support legacy devices. As such a proxy is already
described in [8] we are focusing on a more integrated approach,
aiming at fully exploiting the potential of CCN. That is, a native
CCN interface within the DASH client, which adopts a CCN
naming scheme (CCN URIs) to denote segments in the Media
Presentation Description (MPD). Figure 1 presents the proposed
architecture of DASH over CCN where DASH-related
components are marked in red, CCN-related components in green,
and implementation-depended components in blue. As one can
see, only the network access component on the client has to be
modified and the segment URIs within MPD have to be updated
according to the CCN naming scheme.

Initially, the DASH client retrieves the MPD containing the
CCN URIs of the content representations including the media
segments. The naming scheme of the segments may reflect
intrinsic features of CCN like versioning and segmentation
support as presented in [7] and shown in Figure 2. Such
segmentation support is already compulsory for multimedia
streaming in CCN and, thus, can also be leveraged for DASH-
based streaming over CCN. The CCN versioning can be adopted
to signal different representations of the DASH-based content,
which enables an implicit adaptation of the requested content to

Figure 1: DASH over CCN

Figure 2: CCN Naming Structure [2]

the clients' bandwidth conditions. That is, the interest packet
already provides the desired characteristics of a segment (such as
bit rate, resolution, etc.) within the content name. Additionally, if
bandwidth conditions of the corresponding interfaces or routing
paths allow so, DASH media segments could be aggregated
automatically by the CCN nodes, which reduces the amount of
interest packets needed to request the content. However, such
approaches need further research, specifically in terms of
additional intelligence and processing power needed at the CCN
nodes.

After requesting the MPD, the DASH client will start to
request particular segments. Therefore, CCN interest packets are
generated by the CCN access component and forwarded to the
available interfaces. Within the CCN, these interest packets
leverage the efficient interest aggregation for, e.g., popular
content, as well as the implicit multicast support. Finally, the
interest packets are satisfied by the corresponding data packets
containing the video segment data, which are stored on the origin
server or any CCN node, respectively. With an increasing
popularity of the content, it will be distributed across the network
resulting in lower transmission delays and reduced bandwidth
requirements for origin servers and content providers respectively.

5. OVERHEAD ANALYSIS

The first evaluation comprises the protocol overhead due to
packet headers and the protocol-related communication.
Therefore, the theoretical lower bound is calculated followed by a
practical evaluation using our evaluation network with different
bitrate versions of DASH-based content.

HTTP is using TCP on the transport- and IP on the network-
layer. This introduces an overhead of 20 bytes for the TCP header
(+ 12 bytes for the optional header fields) [11] and another 20
bytes for the IP header [12]. If Ethernet [13] is used on the link
layer, an additional 14 byte frame header is added to the TCP/IP
packets. As Ethernet restricts the Maximum Transportation Unit
(MTU) to 1500 bytes, the lower bound of the TCP/IP protocol
overhead can be calculated as follows: Considering the resulting
maximum payload of the TCP packet of 1448 bytes and the
Ethernet frame size of 1514 (incl. Ethernet frame header) this
results in an overhead of 4.56 % caused by headers. Additionally,
one has to consider packets needed for TCP connection
establishment and ACKs, as well as other Ethernet-related
overhead like check sequence etc. On top of TCP, HTTP
introduces further overhead for requesting and delivering DASH
segments. This is depending on the length of the requested URL
and the parameters used by the client and the server, which are
approx. 150 bytes for the HTTP GET request and approx. 200
bytes for the HTTP response header. As this overhead is fixed
regardless of the requested segment size, its influence on small
segments is higher than on large DASH segments. The size of a
DASH segment results from two parameters: the segment length
in seconds and the quality of the chosen representation.
Considering DASH segments with a length of two seconds, as
used in the following practical evaluation, a segment of the
100kbps representation would have an HTTP-related overhead of
1,37 %, resulting in an total overhead caused by headers of 5,93
%. In the case of a segment of the 4500kbps representation the

HTTP-related overhead is only 0,03 %, resulting in an total
overhead caused by headers of 4,59 % for those kinds of
segments.

Basically, one has to consider that CCN is designed as a
replacement of IP. However, as today’s Internet is based on IP,
CCN can be used on top of UPD/IP as well as TCP/IP in order to
be compatible to today’s infrastructure. Hence, for the following
considerations we are using CCN on top of UPD/IP, as it is done
by [2]. A UDP header of 8 bytes [14] is added to each CCN
packet which is fragmented into IP packets based on the MTU
(1500 bytes). This results in a UDP/IP-related lower bound of
2.47% protocol overhead. On this basis, data packets with a
maximum payload of 4096 bytes and a header of approx. 550
bytes are transmitted. Each of those data packets is requested by
an interest packet with sizes from approx. 150 to 250 bytes which
causes a combined overhead of 18.31%. When considering the
underlying UDP/IP overhead, the total overhead caused by
headers is 20.78%. Additionally, one has to consider the overhead
caused by retransmission of lost packets which is more expensive
in CCN, due to the 4096 chunk payload.

In the following evaluations the protocol overhead produced
by HTTP as well as CCN is investigated in practice to give a
comparison to the calculated lower bound.
5.1 Methodology and Evaluation Setup
The protocol overhead is calculated based on the sum of bytes
transferred in the network divided by the sum of media bytes
received at the clients' application, as shown in Equation 1.

 𝑶𝒗𝒆𝒓𝒉𝒆𝒂𝒅 = ∑𝒃𝒚𝒕𝒆𝒔 𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒕𝒕𝒆𝒅
∑𝒃𝒚𝒕𝒆𝒔 𝒐𝒇 𝒎𝒆𝒅𝒊𝒂 𝒄𝒐𝒏𝒕𝒆𝒏𝒕

− 𝟏 (1)

The practical overhead evaluation is based on our evaluation
setup depicted in Figure 3 using different server/client
components depending on the used protocols. The network
emulation and bandwidth shaping nodes are not used for these
experiments and the network is just limited by the 1Gbps network
connection between the nodes. However, they are necessary for
the next experiments in Section 6. All nodes are based on the
same hardware and are running Ubuntu Linux 12.04. The
produced traffic is analyzed using Wireshark
(http://www.wireshark.org/) for HTTP and using the CCNx
Wireshark plugin [6] for CCN.

We conduct three different experiments delivering DASH-
based content with HTTP 1.0, HTTP 1.1, and CCN:
Experiment 1 evaluates DASH with HTTP 1.0 [15]. Therefore,
we use an Apache HTTP 1.0 Web server providing DASH
content. On the client side we use the DASH VLC plugin [16].
Experiment 2 evaluates DASH with HTTP 1.1 [17]. We use
again the DASH VLC plugin and Apache Web server, but enable
persistent connections and pipelining according to HTTP 1.1.
Experiment 3 evaluates DASH with CCN [2]. We use a CCNx
[6] node in the version 0.6.1 with a repository containing the same
DASH content as used in Experiments 1 and 2, but with an MPD
comprising CCN URIs instead of HTTP URIs. On the client side
we use a modified version of the DASH VLC plugin,
implementing a native interface to the ccnd daemon of CCNx.

For each experiment we use the Big Buck Bunny DASH
content of [5] with a segment length of two seconds. We evaluate
the overhead separately for the following representations: 100,
350, 700, 1300, 2800 and 4500 kbps.
5.2 Evaluation Results
The results are depicted in Figure 4 showing that the CCNx
implementation maintains a relatively constant overhead of 23.5-
23.8% for representations greater than 100kbps. For the 100 kbps
representation the overhead of around 24.7 % is slightly higher

Figure 3: Evaluation Setup.

which is caused by small segments comprising only a few data
packets. As the last data packet of a DASH segment tends to not
fully utilize the packet’s payload capacity of 4096 bytes, the
influence of the CCN header for those packets gets bigger in
comparison to packets fully utilizing the payload capacity, which
causes the higher overhead for the lower bitrate representations.

The measured overhead of the practical evaluation differs
from the calculated lower bound of 20.78%. The approx. 3%
additional overhead is caused by a suboptimal behavior of the
CCNx ccnd daemon, i.e., the last data packet of a DASH segment
is signaled by the FinalBlockID field of the signed information
which is part of the data packet, but unfortunately only the last
chunk of a segment contains this information. As the interest
packets are requested in a pipelined manner, the ccnd daemon
requests non-existing data packets until it receives and processes
the data packet with the FinalBlockID field.

In contrast to CCN, HTTP 1.0 and 1.1 maintain a relatively
low overhead. The overhead of HTTP 1.0 is starting from 11.89%
(100 kbps representation) and decreases to 5.42% (4500 kbps
rep.). When HTTP 1.1 is used, the overhead is slightly lower,
starting from 9.62% for the 100 kbps representation and decreases
to 5.15% for the 4500 kbps representation. In both cases, HTTP
1.0 and 1.1, one can see the influence of the fixed size HTTP
header, which causes a higher overhead when small segment sizes
are used, like in the case of the 100 kbps representation. The
smaller overhead of HTTP 1.1 is caused by the usage of efficient
features like one persistent TCP connection and the pipelining of
HTTP requests. The measured overheads of 11,89 % and 9,63 %
respectively are significant higher than the theoretical lower
bound of 5,93 %, which comes from ACKs, not fully utilized
TCP/IP packet payloads caused by the small segments and from
the packets needed for connection establishment for each segment
in the case of HTTP 1.0. When the segment size gets bigger, e.g.,

for the 4500 kbps representation, the influence of the HTTP
header decreases and the overhead is very close to the theoretical
lower bound of 4.59%.

6. PERFORMANCE ANALYSIS

In this section, we evaluate the performance in terms of
transmitted media data of the dynamic adaptive streaming over
HTTP 1.0, HTTP 1.1, and CCN. The performance is measured for
each protocol by comparing the effective media bitrate received
and the buffer level at the client. The evaluations are performed in
the same manner for all three protocols and are based on a
predefined track of bandwidth variations. As different network
delays influence the performance of the different protocols, we
carry out these evaluations using different round trip times (RTT)
ranging from 0 to 150ms.
6.1 Evaluation Setup and Methodology
For these evaluations, the network emulation setup in Figure 3 is
used. For bandwidth shaping, the Linux Traffic Control system
(tc) is used in combination with a Hierarchical Token Bucket (htb)
packet scheduler using Statistical Fair Queuing (sfq). The network
emulation node controls the RTT using the Linux Network
Emulator (netem). Each experiment uses the Big Buck Bunny
DASH content from the dataset in [5], which is encoded at 14
different bitrates from 100 to 4500 kbps and has a segment length
of 2 seconds. The available bandwidth, depicted as dashed line in
the Figure 5 and Figure 6, is equal for all experiments and
changes every 20 seconds.

We used parts of the metrics from [19] for our experiments.
The average media bitrate is retrieved by the client, which could
be seen as the overall performance indicator of the system.
Furthermore, the buffer level represents the current fill state of the
buffer of the DASH client, which gives additional information
about the adaptation performance of the system.
6.2 Evaluation Results
The results for the average media bitrate and the buffer level are
provided for RTT = 0 and 150 ms in the following result graphs,
separated for (a) HTTP 1.0, (b) HTTP 1.1, and (c) CCN. The term
“Bandwidth” indicates the available bandwidth which is
predefined as introduced above. The term “Media Bitrate”
indicates the requested bitrate of the segments and, thus, the
playback bitrate at the client.

Figure 5 shows the results for RTT = 0 ms. In terms of the
requested media bitrate, there are only a few differences between
the used protocols, e.g., noticeable between seconds 20 and 40 as
well as between seconds 125 and 145, where lower bitrates are
requested in the case of CCN in comparison to the other protocols.

Figure 4: Protocol Overhead Analysis

Figure 5: Performance Evaluation with RTT = 0 ms.

Additionally, all three protocols maintain a very similar buffer fill
pattern, which is caused by the same behavior of the DASH
adaption logic in all three experiments. Nevertheless, there are
noticeable differences, as one may see between seconds 0 and 50
where CCN consistently has a higher buffer fill level than the
other systems. HTTP 1.0/HTTP1.1 are relatively sensitive to
variations in the size of the DASH segments, as they are caused
by variations of the encoding bitrate due to different scene
complexity in the content. This results in the higher amount of
bitrate switches in Figure 5 (a) and (b). In contrast to this, DASH
over CCN in (c) is relatively constant which is caused by the fixed
overhead, as already shown in Figure 4, and the usage of UDP
instead of TCP.

Figure 6 shows the results for RTT = 150 ms. Although CCN
comes together with a higher overhead, it achieves a better
performance than HTTP 1.0 with a 1% higher average bitrate.
However, when comparing the buffer fill levels one may see that
CCN has more problems to reach the maximum buffer level. In
these evaluations, one clearly sees the advantages of HTTP 1.1 in
Figure 6 (b), which still maintains nearly the same average media
bitrate as in the other experiment with lower RTT. It also adjusts
much faster to the available bandwidth conditions than HTTP 1.0
and CCN, as one can notice at the beginning of the session
between seconds 0 and 10 as well as 80 and 85. This lower
performance of HTTP 1.0 is caused, by the lower link utilization
due to the two RTTs needed for TCP connection establishment
and HTTP GET request for each DASH segment. With higher
RTT in Figure 6, CCN has more and more problems reaching the
maximum buffer level of 40 seconds of content. This is caused by
the relative high header overhead of CCN data packets and a poor
link utilization of CCN at high RTTs.

Considering that CCN is a new as well as experimental
concept and the used CCNx implementation is a prototype and not
integrated, e.g., into the system’s kernel like TCP is, the overall
performance of DASH over CCN in terms of average media
bitrate is relatively good as shown in Figure 7. The difference of
117 kbps, or 6 %, to HTTP 1.0 and of 219 kbps, or 11 %, to
HTTP 1.1 in the case of 0 ms RTT is lower than expected,
especially when considering the previously shown protocol
overhead as well as the computational overhead at the CCN
nodes, introduced by cache lookup, bloom filters, etc.
Furthermore, the performance of DASH over CCN decreases
monotonically in contrast to conventional DASH over HTTP 1.0,
which finally leads to a 1 % better performance of CCN than
HTTP 1.0 when the RTT increases to 150 ms. However, the CCN
performance at this high network delay is still 735 kbps, or 39 %
lower than HTTP 1.1.

The performance drop of DASH over HTTP 1.0 results from
establishing a new TCP connection for each segment as well for
requesting the segments via a subsequent HTTP GET request. The
used TCP connection is closed again after the HTTP response.
This also influences the bandwidth utilization, since the TCP slow
start uses the default initial congestion window of the system for
each connection establishment. Furthermore, two times the RTT
are needed for establishing the TCP/IP connection and sending the
HTTP request for the desired segment until the first bytes of it are
received, which is also responsible for the lower bandwidth
utilization.

The experimental results showed the good performance of
HTTP 1.1 in environments with high RTT, like in mobile
networks. When the RTT is increased, the reduction of the
average bitrate for HTTP 1.1 is significantly lower than for HTTP
1.0 and CCN, which is caused by the usage of persistent TCP
connections and pipelining in HTTP1.1. In this case the client
does maintain one TCP connection for the whole streaming
session and requests the subsequent DASH segment while
downloading the previous one. Due to this, the downlink is always
fully utilized, which causes the good performance with high
RTTs. Furthermore, the TCP connection window is initialized
only at the beginning of the streaming session, i.e., for the first
segment

According to these results, the current CCN implementation
has the potential to compete with DASH over HTTP 1.0,
however, it definitely needs some work to come closer to the
performance of HTTP 1.1. Therefore, the high overhead and the
lower link utilization have to be addressed. In particular, the link
utilization of DASH over CCN is influenced directly by the
network delay. This influence can be reduced by improving the
pipelining of CCN interest packets on the transport layer, as it is
done by TCP. Furthermore, the performance can be increased by
eliminating unnecessary interest packets at the end of the data

Figure 6: Performance Evaluation with RTT = 150 ms.

Figure 7: Average Media Throughput for different RTTs

transfer of a DASH segment, which was already mentioned in the
overhead evaluation in Section 5. The interest packets are
requested in a pipelined manner, so non-existing data packets are
requested while the last data packet containing the FinalBlockID
field is received and processed by the client. These unnecessary
interest packets can be easily avoided by sending the
FinalBlockID field in an earlier data packet, e.g., the first one of
the transfer, to notify the requesting node which is the last data
packet. Of course, this also effects the bandwidth utilization in
networks with higher delays, as instead of sending unnecessary
interest packets, the client can already request data packets of the
subsequent DASH segment and, therefore, reduce the time in
which the link is unused. Additionally, research has to focus on a
more efficient possibility for content encryption and signing
which is currently mainly responsible for most of the header size
and as a consequence also for the protocol overhead.

7. CONCLUSIONS

This paper proposed and evaluated the combination of CCN with
DASH. As both concepts maintain several elements in common,
like, e.g., the content in different versions being dealt with in
segments, a deep integration of DASH and CCN can be achieved.
Out of several implementation possibilities, a direct integration in
the DASH client has been proposed and evaluated in different
experiments focusing on dynamic multimedia streaming against
the same client based on HTTP 1.0 and HTTP 1.1.

The first evaluations analyzed the protocol overhead
introduced by CCN and its chunk-based data retrieval in
comparison to HTTP 1.0 and HTTP 1.1. As CCN separates data to
fixed size chunks of 4 kB, identified by URIs and equipped with
signing information, the protocol overhead is significantly higher
than in the case of HTTP 1.0/1.1, where the overhead caused by
TCP/IP and the HTTP headers is relatively low in comparison.
Nevertheless, the CCN header information enables further
possibilities which are not possible with IP-based protocols such
as HTTP, e.g., the automatic retrieval of content via the fastest
available link with an intrinsic error resilience w.r.t. the network,
as show in our previous work in [21].

Additionally, we evaluated the dynamic adaptation
characteristics and the performance in terms of media throughput
for all solutions. This has been conducted based on a given test
scenario with different bandwidth variations, which has been
analyzed under different network delays. We showed that
streaming adaptive media using DASH on top of CCN is possible.
As expected, CCN cannot compete with HTTP 1.1 and its
efficient usage of one TCP connection for the whole streaming
session as well as the pipelining of HTTP requests. However,
HTTP 1.1 is not supported by every Web server and causes
problems in combination with proxies like, e.g., the Head-of-Line
blocking where a range of responses can be delayed by, e.g., only
one pending response [20]. DASH over CCN can definitely
compete with HTTP 1.0, showing the same RTT-sensibility
characteristics and slightly outperforming it already in scenarios
with high network delay. Considering the prototype
implementation of CCN and the modification possibilities
proposed in this paper, DASH over CCN has the possibility to
outperform HTTP 1.0 and strive towards the efficiency of HTTP
1.1., while maintaining its advantages like, e.g., its efficient
caching and intrinsic multicast support.

8. REFERENCES

[1] J. Pan, S. Paul, and R. Jain, “A Survey of the Research on
Future Internet Architectures”, In IEEE Communications
Magazine, Vol. 49, Issue 7, 26 – 36, 2011.

[2] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs,
and R. Braynard, “Networking named content”, In Proc. of
the 5th Int. Conf. on Emerging Netw. Experiments and
technologies (CoNEXT '09), ACM, New York, NY, USA, 1-
12, 2009.

[3] Sandvine, Global Internet Phenomena Report 1H 2012,
Sandvine Intelligent Broadband Networks, 2012.

[4] ISO/IEC DIS 23009-1.2, Information technology — Dynamic
adaptive streaming over HTTP (DASH) — Part 1: Media
presentation description and segment formats

[5] S. Lederer, C. Mueller and C. Timmerer, „Dynamic adaptive
streaming over HTTP dataset”, In Proc. of the 3rd
Multimedia Systems Conf. (MMSys '12). ACM, New York,
NY, USA, 89-94, 2012.

[6] CCNx Projects V. 0.6.1, URL: http://www.ccnx.org (last
access: Dec. 2012).

[7] V. Jacobson, D. Smetters, N. Briggs, M. Plass, P. Stewart, J.
Thornton and R. Braynard, “VoCCN: voice-over content-
centric networks”, In Proc. of the 2009 Works. on Re-
architecting the Internet (ReArch '09), ACM, New York,
USA, 1-6, 2009.

[8] A. Detti, M. Pomposini, N. Blefari-Melazzi, S. Salsano and
A. Bragagnini, “Offloading cellular networks with
Information-Centric Networking: The case of video
streaming”, In Proc. of the Int. Symp. on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM ‘12), IEEE,
San Francisco, CA, USA, 1-3, 2012.

[9] D. Perino and M. Varvello, “A Reality Check for Content
Centric Networking”, In Proc. of the 10th Int. Conf. on
Networks (ICN ‘11), Canada, Toronto, 44-49, 2011.

[10] Z. Chen, R. Chen and J. Cao, “Live Streaming with Content
Centric Networking", In Proc. of the 3rd Int. Conf. on Netw.
and Distributed Computing, Hangzhou, China, 2012.

[11] Transmission Control Protocol, URL:
http://tools.ietf.org/html/rfc793(last access: Dec. 2012),

[12] Internet Protocol, RFC 791, URL:
http://tools.ietf.org/html/rfc791(last access: Dec. 2012)

[13] IEEE 802.3-2800 Ethernet
[14] J. Postel, User Datagram Protocol, RFC 768, URL:

http://tools.ietf.org/html/rfc768 (last access: Dec. 2012).
[15] T. Berners-Lee, R. Fielding, R. and H. Frystyk, Hypertext

Transfer Protocol -- HTTP/1.0, URL:
http://www.w3.org/Protocols/HTTP/1.0/spec.html (last
access: Dec. 2012)

[16] C. Mueller and C. Timmerer, “A VLC Media Player Plugin
enabling Dynamic Adaptive Streaming over HTTP”, In Proc.
of the 19th ACM Int. Conf. on Multimedia (ACM MM '11).
ACM, New York, NY, USA, 723-726, 2011

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach and T. Berners-Lee, “Hypertext Transfer Protocol --
HTTP/1.1”, URL:
http://www.w3.org/Protocols/rfc2616/rfc2616.html (last
access: Dec. 2012).

[18] K. J. Grinnemo, T. Andersson, A. Brunstrom, “Performance
Benefits of avoiding head-of-line blocking in SCTP,” In
Proceedings of ICAS/ICNS, pp.44, Tahiti, 2005.

[19] S. Lederer, C. Müller, B. Rainer, C. Timmerer, and H.
Hellwagner, “Adaptive Streaming over Content Centric
Networks in Mobile Networks using Multiple Links”, in
Proc. of the IEEE Int. Workshop on Immersive & Interactive
Multimedia Comm. over the Future Internet, Budapest,
Hungary, June, 2013.

