Piece Selection Algorithm for Layered Video
Streaming in P2P Networks

Tibor Szkaliczki®!?, Michael Eberhard "3,
Hermann Hellwagner ®* and Lészlé Szobonya ®°

& eLearning Department, Computer and Automation Research Institute of the
Hungarian Academy of Sciences
Budapest, Hungary

b Institute of Information Technology
Klagenfurt University
Klagenfurt, Austria

Abstract

This paper introduces the piece selection problem that arises when streaming layered
video content over peer-to-peer networks. The piece selection algorithm decides
periodically which pieces to request from other peers (network nodes) for download.
The main goal of the piece selection algorithm is to provide the best possible quality
for the available bandwidth. Our recommended solution approaches are related to
the typical problems and solutions in the knapsack problem.

Keywords: streaming, layered video, knapsack problem

I Partial support of the Hungarian National Science Fund and the National Office for
Research and Technology (Grant No. OTKA 67651) is gratefully acknowledged.

2 Email: sztibor@sztaki.hu

3 Email: michael.eberhard@itec.uni-klu.ac.at

4 Email: hellwagn@itec.uni-klu.ac.at

5 Email: szobonya@sztaki.hu

1 Introduction

Nowadays peer-to-peer (P2P) networks provide a very popular alternative
to the traditional distribution of content through servers. Especially with
the increasing demand for high definition multimedia content, the bandwidth
required from the distribution servers is constantly increasing. P2P networks
provide a good alternative, as the content is distributed from the users to
other users during consumption. Another requirement on content distribution
today is the provision of content in different qualities. As the users want to
consume the content on various devices like HD TV sets, laptops, or mobile
phones, the content has to be provided in a quality suitable for the end devices’
displays as well as their computational capabilities. A possibility to provide
these different qualities within one bitstream is provided by scalable video
codecs like the Scalable Video Coding (SVC) extensions of the Advanced Video
Coding (AVC) standard [6].

To distribute scalable content over Bittorrent-based P2P networks, the
content needs to be split up into pieces. For scalable content, each piece be-
longs not only to a specific time slot, but also to a specific layer. It is important
to note that the higher layers of scalable codecs, which offer better quality,
depend on lower layers for the decoding process. Thus, a piece belonging to a
higher layer is only useful if also the piece from the lower layer it depends on is
available. During the download process, this layer dependency as well as the
availability of the pieces on multiple neighbour peers needs to be considered.

When the scalable content is distributed in a P2P network, the questions
when and which pieces to download to receive the content in the desired qual-
ity provides a challenging task. When non-scalable content is downloaded
over P2P networks, the piece selection algorithm, which selects the pieces for
download from other peers, is rather straightforward: the pieces with more
urgent deadlines are downloaded first and with higher priority, to ensure that
the playback of the multimedia content never stops. However, when consider-
ing scalable content, the piece selection process is becoming more complicated.
On the one hand, the user wants to receive the best possible quality for the
available bandwidth, but on the other hand an undisturbed playback of the
content should be guaranteed. Thus, the piece selection algorithm needs to
find the best trade-off between downloading the best possible quality while
still ensuring that all the pieces are received in time. Another requirement
to the piece selection algorithm is that frequent quality switches should be
avoided, as subjective quality measurements [7] have shown that users pre-
fer to consume the content at a constant lower quality than to consume the

t-1 t t+1 t+2 t+3 t+4 t4+5 t+6

EL3 | 0.0)00|00|00|00]|00]0.0]00

EL2 | 1.0(10]08|00|00|00|0.0(O00

EL1 1.0({10(10|05|00]00|00]0.0

BL 1.0|110(10]08|02]|00/|0.0]0.0

Fig. 1. Sliding Window

content with frequently switching higher quality.

The piece selection algorithm works on a so-called sliding window. The
sliding window is illustrated in Fig. 1.

In the sliding window shown in Fig. 1, the piece selection algorithm has to
decide which pieces should be downloaded for the upcoming time slots ¢t + 1
to t +4. The numbers in the cells indicate the download progress, where 1.0
indicates a successfully finished download and 0.0 indicates that the download
has not yet started. During previous decision points, the download for EL2 of
t+1, BL and EL1 for t+2, and BL for ¢+ 3 has already been started and is still
in progress. At the current decision point, the algorithm has to decide which
pieces to download first: the base layer pieces for ¢t + 4 and ¢ + 5 (to ensure
undisturbed playback), the EL2 piece for ¢t + 2 (to ensure that the current
quality is kept), or even the EL3 piece for ¢ + 1 (if there is enough bandwidth
available). In addition to the decision which pieces to download, a neighbour
peer has to be assigned for each piece for the download process. This decision
is taken based on the priority and size of the selected piece as well as based
on the estimated provided download bandwidths of the neighbour peers.

2 The Problem Model of Piece Selection

In this section, some notations are introduced for the specification of the piece
selection problem and the problem is defined formally.

Let m and n denote the number of columns (time slots) and rows (layers)
in the sliding window, respectively. Let [; denote the ¢th layer of the stream
(¢ =0..n—1). Let P,; denote the piece of the stream of layer /; for the ith
time slot in the sliding window. Let the utility of piece F;; be denoted by
u; ;. The calculation of the utility of a piece is quite complicated and is out of
the scope of the present paper. Let the cost (size) of the piece be denoted by
¢ij. The cost of the piece is a constant piece packet size ¢ multiplied by the

number of piece packets needed for one time slot at layer [;. Typically, the
cost of the piece does not depend on the time slot (i.e., is independent from
i). x;; shows whether P, ; is requested by the client from any node. There is
a limited buffer size S on the client.
Maximize

The total utility of the selected pieces: Y w;; - x;;

Subject to
(1) Zcm xiy <8
]
(2) (ZEZ‘,]‘ =1 /\] > O) = (I’@j/ = 1) VJ, <j
(3) (ij=1Ni>1)= (21, =1)
(4) z; € {0,1}

The first constraint expresses the limit on the total size of the pieces. The
dependency between the pieces is described in constraints 2 and 3. Constraint
2 describes that if a piece is selected then all pieces in layers in lower layers are
also selected. In order to avoid frequent quality switches, constraint 3 ensures
that a piece is selected only if the piece in the preceding time slot in the same
layer is also selected for download.

3 Algorithms to Solve the Problem

The piece selection process tries to maximize the utility of the selected pieces
without surpassing the available resource limit. This problem is similar to the
Knapsack problem (its 0-1 version when at most one sample can occur from
each item). The only but relevant difference is that a piece can be selected only
if the pieces it depends on are also downloaded. The running time is critical
because the piece selection is executed repeatedly at the decision point of each
time slot.

3.1 Greedy Approximation Algorithm

For the piece selection problem, the greedy solution of the knapsack problem
[3] offers a fast solution: select the pieces for which the value and size ratio
is the highest among the pieces whose size is not larger than the available
resource. We may restrict the selection to the pieces for which the pieces they
depend on are already selected or their download has been started before. This
greedy selection can be repeated as long as there are still enough resources for
the download of one complete piece available. This approximation algorithm

runs fast but the solution of the algorithm may be far from optimal in the
worst case.

3.2 Dynamic Programming 1

There is well-known efficient solution using dynamic programming if the cost
values are integers [1]. Applying it to our case, the algorithm proceeds on
each possible total cost values and on the available pieces and calculates the
maximum utility in a step-by-step way that can be achieved using at most the
current cost value and the pieces up to the current piece.

This solution of the general knapsack problem does not consider the con-
straints among the pieces, i.e., that the piece is useful only if the pieces it
depends on (pieces of lower layers or pieces in the preceding timeslot) are also
selected. However, if Eq. 5 holds then a piece is selected in the optimal solu-
tion only if all pieces it depends on are also selected. This can be proved easily
in an indirect way: let us assume that there is a piece that is not included in
the solution although a depending piece is selected. Let us add this piece to
the solution and omit the depending piece. The size constraints is still fulfilled
while the utility is increased, which contradicts the optimality. Therefore, the
above dynamic programming solution can be used if the value of the utilities
and sizes harmonise with the dependency among the pieces.

(5) (Piy.j, depends on Py, j,) = (i, j, > iy gy A Ciy gy < Ciy o)

The running time is O(S - m - n) (the cost values go from 0 to S and the
number of different pieces is m - n). It is a pseudo-polynomial time algorithm
because the value S is exponential in the numeric representation of S in the
input.

3.8 Dynamic Programming 2

Now, let us consider a more general algorithm that can be used in the case
when the relative values of the utilities and sizes of different pieces are in-
dependent from the dependency between the pieces. We apply the dynamic
programming approach again, but in this case the dependency between pieces
in the neighbouring timeslots has to be considered in an explicit way in the
steps of the algorithm. Let us sort the pieces according to the time slots and
the pieces in the same time slot according to the layer in increasing order. Let
U(i,j, k), (i =1.m,j = 0..n,k = 0..5) denote the maximum utility that can
be attained with size less than or equal to £ using pieces Py j up to piece F; j_;
(le. (" <)V (7 =1iNnj" <j))if j > 0 and piece P, ; is certainly selected or

using pieces from the time slots before the ith one if j = 0. Although the dy-
namic programming solutions to the knapsack problem usually do not require
that the current item is definitely included into the partial solution represented
by the state variable, P(i,j) has to be included into the optimal partial so-
lutions represented by U(i, j, C') because of the constraints on dependency
between the pieces. Auxiliary variables are introduced to store cumulative
values of utilities and sizes of the piece and all of the pieces it depends on
in the same timeslot, respectively: C;; = > >%,_j¢; ;o and Ui j = Y25 _gujj if
J > 0 otherwise C;p = 0,U; o = 0.

(6) U(i,5,0)=0 if C<Ci;, i=1.m,j=0.nC=0.5
(7) U(l,j, O) = Ul,j if C Z Oi,j,] = OTL,O =0..5

(8) U(i,j,C) = max (U; + U(i — 1,5,C = Cy))
j'=j.n

Eq. 6 claims that the achievable utility is O if the size limit C' is less than
the overall sizes of the piece P;; and of the pieces it depends on. Processing
the first time slot is easy, in this case the achievable utility is the cumulative
utility of the piece if its cumulative size is below the size limit (Eq. 7). In
the general case as shown in Eq. 8, piece P;; can be selected only if piece
P,_; ; is also selected. In the first time slot (i = 1), U(¢, j,C') = 0 implies that
U(i,5',C) is also 0 for each j° > j (Egs. 6 and 7). Eq. 8 ensures that this
condition is fulfilled for the other time slots as well and if U(i, j,C) = 0 then
U(i,j+ 1,C) is also equals to 0.

Now U (4, j, C') can be calculated for each possible 7, j and C' values based on
the recursive equations. The maximum total utility is max; U(m, j, S). Simi-
larly to the dynamic programming solution of the general knapsack problem,
the selection belonging to the maximum utility can be found by backtracking
the U(i, 7, k) array. The running time is O(S - n - m?).

3.4 Multiple-choice Multidimensional Knapsack Problem

The dependency of the pieces from lower layers can be omitted if we consider
the multiple-choice knapsack problem (MCKP). In this case, there are several
groups of items and it is enough to choose only one item from each group. In
our problem, one item represents the piece sequence from the lowest layer piece
which is still not downloaded to any higher layer piece. The items belonging
to the same time slot form a group. In this case, we have to select at most
one item for each time slot.

Another generalisation of the knapsack problem is the multidimensional
knapsack problem. In this case, there are several knapsacks (resources) each of
them with limited capacity. The resource needs of the items can be described
as a vector because an item needs several resources at the same time. The
aim is to optimise the value of the selected items while none of the resources is
overloaded. The main advantage of applying the multidimensional knapsack
problem is that it can consider not only the buffer size but simultaneously
other resources as well, e.g., the bandwidth capacities on the routes from the
peers to the client.

Several heuristic algorithms have been proposed for the multiple-choice
multidimensional knapsack problem (MMKP) in the literature. [4] gives a
good overview on them. [5] applied the MMKP for an adaptive multimedia
problem. This approach proved to be an efficient method to solve problems like
quality adaptation, admission control and integrated resource management. A
heuristic method and an exact branch-and-bound method were introduced as
well for checking the results. [2] applied the MCKP to select sources for
different video layers. The approaches based on MCKP can deal well with
the dependency between the layers but they do not consider the dependency
between pieces in the subsequent time slots.

4 Conclusion

In this paper we recommended solutions to the piece selection problem ap-
pearing in the area of multimedia. We found that the problem is in close
relation to the knapsack problem and we adapted the typical solution meth-
ods of this combinatorial optimisation problem to our case. The efficiency of
the different methods varies and some of them need additional constraints.
Table 1. compares the presented algorithms w.r.t the additional conditions
they require to solve the piece selection problem.

Applying the presented approaches to an adaptive video streaming sys-
tem yields a better multimedia experience for the user. Solution methods for
MCKP have to be adapted to our problem by considering the dependency
between the subsequent time slots. Experiments will be performed to appro-
priately adapt the methods to the practical problem. It should be again noted
that the pieces selected during the piece selection process are downloaded from
a number of different neighbour peers that provide some or even all of the se-
lected pieces. Thus, we are also developing algorithms to the peer selection
process. The peer selection is based on the output of the piece selection and
it assigns a peer to every selected piece considering the limited bandwidths to

Table 1
Comparision of the examined solution approaches

Method Special condition Ezact/approzimating
Greedy none possible large error
Dyn. Prog 1 || integer piece sizes and Cond. 5 exact
Dyn. Prog 2 integer piece sizes exact
MCKP based without Cond. 3 various methods

the peers serving the pieces.

References

[1] Andonov, R., Poirriez, V. and Rajopadhye, S., Unbounded knapsack problem:
Dynamic programming revisited, European Journal of Operational Research
123, Issue 2, (2000), Pages 394-407

[2] Cheok, L-T. and Eleftheriadis, A. Operations Research Approach Towards
Layered Multi-Source Video Delivery, in Picture Coding Symposium 2004, (San
Francisco, CA, USA), Dec. 2004.

[3] Dantzig, G. B., DiscreteVariable Extremum Problems, Operations Research, 5,
(1957), 266277.

[4] Han, B., Leblet J., and Simon, G., Hard multidimensional multiple choice
knapsack problems, an empirical study, Computers and Operations Research,
37, 1, January 2010, Pages 172-181

[5] Khan, S., Li, K.F., Manning, E.G., Akbar, M., Solving the knapsack problem
for adaptive multimedia, Studia Informatica (special issue on Cutting, Packing
and Knapsacking Problems) 2 (1), (2003), pp. 157-178

[6] Schwarz, H., Marpe, D., Wiegand, T., Overview of the Scalable Video Coding
Extension of the H.264/AVC Standard, IEEE Trans. on CSVT, 17, no. 9,
(2007), pp. 1103-1120.

[7] Zink, M., Kuenzel, O., Schmitt, J., Steinmetz, R., Subjective Impression of
Variations in Layer Encoded Videos, IWQoS 2003: 137-154.

	Introduction
	The Problem Model of Piece Selection
	Algorithms to Solve the Problem
	Greedy Approximation Algorithm
	Dynamic Programming 1
	Dynamic Programming 2
	Multiple-choice Multidimensional Knapsack Problem

	Conclusion
	References

