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Abstract—HTTP streaming has gained significant attraction
in the last few years. Currently many commercial as well as
standardized streaming systems are already offering adaptive
streaming. In most cases, the adaptation is achieved by switching
between separately encoded video streams in different qualities.
In contrast to that, this paper focuses on the applicability of
scalable video coding based on the H.264/SVC standard for
adaptive HTTP streaming. Recent work has already highlighted
the conceptual advantages like better cache utilization, fine-
grained bit rate scalability, and lower storage requirements.
This paper discusses the actual realization and design options
for implementing priority streaming using the ISO Base Media
File Format (BMFF). We propose three different strategies for
organizing the scalable video bit stream that consider both the
possibilities as well as limitations of the ISO BMFF. The proposed
strategies are discussed and evaluated both conceptually and
quantitatively. For that purpose, we provide a detailed analysis
based on modeling both the overhead of the file format and the
HTTP encapsulation. The results for all three priority streaming
strategies show that the limitations of the ISO BMFF result in
a high relative overhead in the case of low bit rate content.
However, when applied to high quality content, priority streaming
of H.264/SVC can be implemented at a very low cost. Depending
on the number of layers and the offered scalability dimensions,
different strategies should be chosen to minimize the overhead.
Based on the analytical model and the discussion, this paper
provides guidance for selecting the most efficient strategy.

I. INTRODUCTION

HTTP video streaming is a topical issue in the field of
multimedia communication [1]. Although streaming based on
HTTP was considered inferior by the scientific community in
the past, it has been established as the predominant solution for
realizing VoD and live streaming services in the Internet. The
reason for its success is that it provides a simple solution for
current deployment issues of traditional UDP-based streaming
approaches, e.g., middlebox traversal, congestion control, and
scalability. At present, several commercial vendors offer HTTP
adaptive video streaming systems that are either based on
proprietary [2], [3] or standardized formats [4], [5]. Addi-
tionally, both 3GPP and MPEG have standardized an HTTP
streaming system entitled Dynamic Adaptive Streaming over
HTTP (DASH) [6].

Most of the approaches have in common that the video
content is not fetched in a single request but is rather split up in
smaller units in the order of several seconds of media playtime.
Depending on the system these units are typically called seg-

ments, fragments or streamlets. Although this fragmentation
introduces some overhead, it comes along with a variety of
advantages. First, the units can be fetched using multiple
connections and/or from multiple servers. Second, seeking to
a certain point in the video can be realized very easily. Finally,
the fragmentation allows switching between different qualities
and/or resolutions at the units’ boundaries. It is then up to the
client to decide which quality should be downloaded in order
to achieve the best video quality for the current networking
conditions. This behavior is not normative, but it is expected
that the client intelligently selects the proper unit based on
bandwidth estimation or similar heuristics. However, once the
download of a unit has been started, switching to a higher or
lower quality is not possible.

As shown in related work [7], the use of the scalable video
coding (SVC) extension of H.264/AVC offers potential advan-
tages like fine grained bit rate scalability and reduced storage
requirement at the server and in caches. More importantly,
the layered organization of the scalable bit stream allows
to perform priority streaming [8]. This means that the most
important part of the bit stream – the base layer – is transmitted
first, followed by enhancement layers that refine the video
quality gradually [9]. While we already investigated the com-
bination of priority streaming and H.264/SVC in our previous
work [10], this paper discusses how to realize priority stream-
ing using HTTP streaming based on the prevalent ISO Base
Media File Format (BMFF). We highlight some shortcomings
of the ISO BMFF related to H.264/SVC and discuss the impact
on the system performance and overhead. For that purpose
we introduce three different standard-compliant strategies and
analyze the overhead of the bit stream organization and the
HTTP encapsulation.

II. BACKGROUND

The scalable extension to H.264/AVC was standardized
in 2007 as an amendment to the successful H.264/AVC video
compression standard. It provides scalability features for the
video bit stream in a backward-compatible way at the cost of
a relatively low bit rate overhead. The bit stream is organized
in Network Abstraction Layer units (NAL units) which either
contain encoded video data or additional information (e.g.,
for decoder initialization). Scalability is offered in the spatial,
temporal, and SNR dimensions. In order to achieve backward-



compatibility, the bit stream contains a base layer which
is fully H.264/AVC compliant. It contains only H.264/AVC
NAL units and can be decoded by any legacy decoder. The
scalability is achieved by introducing new NAL units that
gradually refine the quality of the base layer. The adaptation
of the video can be performed by simply discarding NAL
units that do not belong to a certain layer representation.
The layer information is contained in the extension header
of the scalable NAL units. For H.264/AVC-only NAL units
this information is signaled by a so called prefix NAL unit
to ensure backward-compatibility. All the NAL units that are
used for reconstructing a single sampling instance in time, i.e.,
a picture, are referred to as access unit. An important aspect of
the bit stream organization is that all NAL units of the access
unit have to be stored sequentially in decoding order.

In the context of adaptive video streaming, we consider
the SNR scalability as the most appropriate tool to adapt
the video quality according to the network conditions. In
H.264/SVC two different mechanisms for SNR scalability are
available. The coarse-grain quality scalable coding (CGS)
allows to encode a few different quality levels of the video
in a single bit stream. For that purpose, similar mechanisms
as for the spatial scalability are employed. The disadvantage
is poor encoding performance when the bit rate difference
between adjacent layers becomes small [9]. On the contrary,
the medium-grain quality scalability coding (MGS) is used
for encoding video streams that should offer a larger variety
of different bit rates. It can be considered as a variant of CGS
but offers a more flexible way to remove certain NAL units
of the quality enhancement layer to trade off visual quality
and the resulting bit rate. This enables a very accurate control
over the bit rate since a single enhancement layer can be used
to extract a multitude of different quality variations. Besides,
it implies the possibility to switch the video bit rate at every
access unit. When using CGS switching is only possible at
certain access units.

III. ISO BASE MEDIA FILE FORMAT

Since HTTP only defines the transport mechanism for fetch-
ing files or parts thereof, it is required to use a multiplexing
format for the multimedia content. In this paper we focus on
the ISO Base Media File Format (BMFF), that is used both by
proprietary solutions like Microsoft’s Smooth Streaming and
in current standards [11]. Alternatives to the ISO BMFF are
the MPEG-2 Transport Stream, which is however known to be
inefficient for low bit rate streams [12], and proprietary for-
mats like [3], which we do not consider in our investigations.

The Base Media File Format organizes the multimedia data
and its meta data in data structures called boxes. A box consists
of a length field, its type and its payload. The structure of
the payload depends on the type of the box. Boxes can be
organized sequentially or hierarchically. The composition rules
of the boxes are specified in the corresponding standards and
are identified by a file brand. A file brand also defines which
boxes are considered mandatory or optional. The standard can
be tailored for different purposes by defining a new file brand

Fig. 1. Different ISO BMFF file organization strategies

that uses only a subset of the boxes offered by the standard.
The file brand that a file is based upon is signaled at its
beginning in an ftyp box.

The internal file organization differs significantly when
using the ISO BMFF for storage only or when using it for
streaming purposes. Figure 1 illustrates the different file orga-
nization methods discussed in the following. If streaming is not
an issue, a file is typically separated into a kind of file header
that provides means for indexing and seeking – the moov box
– and the actual media samples in the mdat box. However, this
organization is neither suitable for the purpose of streaming
nor for incremental generation of the content at the server.
Consequently, multiplexing of the indexing information and
the media samples is a requirement for streaming applica-
tions. This concept is called fragmentation and allows for
incremental generation of the media file as well as progressive
download capabilities [13]. Still, the media file contains a kind
of file header – the movie (moov) box. However, this box
contains rather decoder initialization information and metadata
that is valid for the whole file. The rest of the file consists of
an alternating sequence of movie fragment (moof ) and mdat
boxes. The moof box contains the meta data and seeking
information for a single media fragment, while the mdat box
holds the fragment’s media samples (e.g., audio or video
frames). In the context of adaptive HTTP streaming, a related
mechanism called segmentation was introduced by 3GPP [11].
It allows to split the media content into self-contained files
called segments. These segments can be identified by their
own URLs and can be downloaded separately. Besides, having
segments that contain only parts of the content is also consid-
ered advantageous for HTTP caches. Each segment typically
consists of a segment type box (styp), which acts as a kind of
file header, an optional segment index box (sidx) and one or
multiple fragments. Again, each fragment consists of a moof
and a mdat box.



IV. H.264/SVC PRIORITY STREAMING

Adaptive HTTP streaming based on non-scalable video
codecs typically works as follows. The video content is split
into a sequence of segments/fragments, which are offered at
different bit rates resulting in different quality levels. As an
aside, these different levels are called representations in the
terminology of the upcoming DASH standard. During stream-
ing, the client must decide a priori which representation of a
segment to download next. This decision typically incorporates
a network bandwidth estimation and the consideration of the
client buffer occupancy level in some heuristics. However,
once this decision has been made and downloading a certain
representation of a segment has been started, switching to
a different representation is not possible. This means that if
the decision was wrong, e.g., because the network bandwidth
decreased during the download of the segment, it is no longer
possible to switch to a representation at a lower bit rate. But
also in the opposite case, when the bandwidth increases during
the download and would allow a higher quality representation,
the client is bound to its initial decision.

In this context, the use of H.264/SVC offers potential
advantages [7]. The layered organization of the scalable bit
stream allows to perform priority streaming. This means that
the most important part of the bit stream – the base layer
– is transmitted first, followed by enhancement layers that
refine the video quality gradually. Obviously, the sequence
of transmission is in descending priority order. Instead of
deciding on a certain representation, this allows a simpler
implementation where the client receives as much of the bit
stream as possible in a given time interval. The more data of
the enhancement layers the client retrieves, the better is the
final video quality. Due to the incremental transmission, this
approach can also react to bandwidth fluctuations during the
download of a single segment. Besides, as shown in [10] it
does not solely rely on a bandwidth estimation by the client
to decide which representation to download.

While we already investigated the combination of priority
streaming and H.264/SVC in our previous work [10], we now
focus on how to realize this mechanism using the ISO BMFF.
Unfortunately, the extensions to the BMFF for H.264/SVC
do not allow to arrange the NAL units of the different layers
arbitrarily in the mdat box. Instead, all the NAL units of
the base layer and the enhancement layer that belong to an
encoded video frame have to be stored sequentially in the file.
Nevertheless, we identified three standard-compliant strategies
how to realize priority streaming under these constraints.
These strategies have in common that they do not require
special support by the server, i.e., an ordinary HTTP server
can be used for streaming the content. The strategies only
differ in how the content is stored in the ISO BMFF files
and how the client issues HTTP requests to fetch the content.
As also the upcoming DASH standard makes use of the ISO
BMFF, it is possible but not necessarily required to use the
strategies also in the context of DASH.

Fig. 2. Priority streaming of a single fragment based on the subs box

subs-box strategy: The first strategy is to use a single,
fragmented media file and to add a sub-sample information
box (subs) [13] to each fragment. This box acts as a fine-
grained table of content of the fragment’s mdat box. It allows
for describing each sample (i.e., video frame) on a sub-sample
basis. In the ISO BMFF terminology, a sub-sample is typically
a single NAL unit1, which might belong to the base or any
enhancement layer. Consequently, the subs box allows to infer
the position and size of each NAL unit in the fragment’s mdat
box as well as its layer information. Based on this information,
the client can request the sub-samples (NAL units) in priority
order by issuing an HTTP request specifying a list of byte
ranges. In its response, the server would then transmit the
NAL units in descending priority order. This implies that the
client has to initially download the fragment header which
contains this subs box. This strategy of file organization and
HTTP download is illustrated in Figure 2.

While this approach can be ideally combined with medium-
grained scalability, it comes also with some drawbacks. First,
the subs box introduces an additional overhead which depends
both on the size of the fragment (the number of samples)
as well as the number of enhancement layers (number of
sub-samples per sample). Second, specifying multiple byte
ranges in a single HTTP request causes the server to organize
its response as multipart message [14]. This mechanism also
introduces an overhead for each sub-sample (i.e., NAL unit)
delivered by the server. An exact analysis of the overhead
will be provided in the next section.

Multi-track strategy: The second strategy is also based
on a fragmented media file but the scalable video stream
is split into multiple tracks. Typically, tracks are used to
represent different audio and video streams within a media file.
However, in the case of scalable video a single video stream
can also be represented by multiple tracks, where each track
represents a single layer. This mechanism was extensively
discussed in [15] but in a different context. There, the authors
demonstrated how multiple tracks can be used for erosion
storage support. This track-based approach allows to store all
NAL units of a single layer sequentially in a track. This allows
to fetch all NAL units of the fragment that belong to the
same layer (= track) in a single HTTP byte range request.

1Note that in certain cases it is possible to aggregate NAL units into a
single sub-sample, e.g., if they are belonging to the same layer like the prefix
NAL unit and its associated AVC NAL unit.



Fig. 3. Priority streaming of a single fragment using multiple tracks

Decoding dependencies exist among the tracks of the scalable
video since higher layers can only be decoded based on lower
layers. The references to dependent layers are realized by so
called extractors, which represent a special type of NAL units.
The extractors are used to reference NAL units of the base
layer or other layers used for prediction in order not to break
the standard’s requirement to store all NAL units of a sample
sequentially in the file. The organization of a single fragment
following this strategy is illustrated in Figure 3. The extractor
NAL units are represented by the hatched boxes in this figure.

Compared to the subs-box strategy, this approach avoids
specifying a large number of byte ranges in the HTTP
request. Instead, each layer can be addressed by a single
byte range which reduces the overhead of the multipart
response. While the overhead of the HTTP delivery is lower,
the overhead of the ISO BMFF container increases. First,
each track that contains a layer results in a track fragment
(traf ) box in the moof box of the fragment. Second, the
extractor NAL units that are required for reference purposes
also require additional storage in the mdat box. Both
requirements obviously limit the number of quality levels
that can be described efficiently. Consequently, it is not well
suited for medium-grained scalability where the bit rate is
controlled by selectively discarding NAL units of a certain
layer. This would imply that the video is organized in up to
64 different tracks which is obviously not a reasonable option.

Multi-segment strategy: The third strategy is similar to
the proposed approach that uses multiple tracks. But instead
of storing the tracks that contain the different layers in a
single fragment, each track is stored in its own segment (i.e.,
file) as shown in Figure 4. Consequently, we denote this
approach strategy as multi-segment strategy. This approach
is inspired by the emerging DASH standard, which allows
to split scalable content into multiple segments and provides
means for signaling their interdependency. Storing the layers in
different segments allows an easier and separate caching of the
distinct layers by HTTP caches which can be very beneficial in
certain scenarios [7]. Besides, using byte ranges in the HTTP
request is not necessary, since the whole files are fetched at
once. Compared to the second approach this also reduces the

Fig. 4. Priority streaming using multiple segments

number of HTTP requests by one, as the first request that
fetches the moof box only is not necessary. The drawback
of this approach is the increased overhead by the ISO BMFF
because each segment will contain an styp box to make it self
describing and also the moof box and the relevant mfhd box
must be part of each segment.

V. OVERHEAD ANALYSIS

In order to analyze the overhead of the three strategies,
we model both the size of the required boxes of the ISO
BMFF and the overhead introduced by the HTTP responses.
This overhead is then set into relation to the media bit rate
to study the relative overhead imposed by each strategy. We
varied the number of layers contained in the bit stream and
investigated the resulting overhead relative to the A/V bit rate.
The file header common to all of the three strategies including
the moov box is neglected in this model. Its size is typical
around a few KiB and can be considered as insignificant when
streaming a video with a reasonable playback duration. The
file organization was modeled as described above but considers
an additional non-scalable AAC audio track. We consider
this as more representative than just study the overhead of
video-only transmission. As the overhead of the fragmenta-
tion depends on the fragment duration, we assume a rather
conservative fragment duration of 4 seconds for our model.
While the majority of the boxes have a fixed size, the size of
the trun box depends on the number of samples it describes.
The trun box is an index that allows to extract the samples
and their timestamps from the mdat box. For our analysis, we
assume a 30 fps video content and an audio sampling rate of
44.1 kHz to determine the size of the trun box. To model the
overhead of the HTTP protocol, we assume that each HTTP
request results in a response with a response header size of
280 bytes. This value was derived by observing the response of
a typical HTTP server. In case of multipart HTTP responses,
the overhead for fetching multiple byte ranges with a single
request is significantly higher. Based on our observations we
assume an average overhead of 92 bytes for each byte range
requested.

The results of the overhead analysis for A/V bit rates below
1 Mbps is given in Figure 5. The graphs indicate that the
overhead of all three strategies is very high when considering
5 video layers. The overhead of the subs-box strategy is far
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Fig. 5. Overhead analysis for low bit rate content

from being reasonable at these low bit rates. Surprisingly,
the multi-track and multi-segment strategies perform almost
equally well for both 2 and 5 layers. It turned out that in
the case of multiple segments the larger overhead of the
ISO BMFF is compensated by the lower HTTP overhead.
Although these two strategies perform better than the first
one, the overhead is still more than 5 percent. When con-
sidering this container overhead and the additional overhead
of about 10 percent imposed by the scalable video coding, it is
questionable if H.264/SVC can compete with stream-switching
approaches based on traditional video coding at these bit rates.

As one can see from Figure 6, the proposed strategies are
more competitive when applied to high definition content. In
this case, the overhead of the ISO BMFF and the HTTP
response header can be compensated by video bit rates on
the order of several Mbps. The multi-track and multi-segment
strategies lead to a relative overhead lower than 2 percent for
bit rates higher than 2.5 Mbps. This renders the approaches
well suited when providing two or three spatial resolutions
combined with coarse-grained quality scalability. The analysis
also suggests that the subs-box strategy can be used advan-
tageously for medium-grained scalability. Its flexible access
mechanism by fetching each NAL unit based on a separate
byte range allows to achieve a reasonable bit rate scalability.
Using a base layer and a single MGS enhancement layer up to
64 quality degradations (and bit rate steps) can be realized at
a competitive overhead. Compared to adaptive streaming that
uses traditional video coding this strategy combines higher
adaptivity and a lower storage requirement.

Finally, one can conclude that the subs-based strategy is
recommendable when using medium-grained scalability for an
HD video offered at a single spatial resolution. The multi-
track and multi-segment strategies are better suited when using
different spatial resolutions and/or coarse-grained scalability.

VI. CONCLUSIONS

In this paper, we studied the applicability of H.264/SVC
priority streaming based on the ISO BMFF. The main problem
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Fig. 6. Overhead analysis for high bit rate content

with the ISO BMFF is the inflexible arrangement of the en-
hancement layers in the media file. We discuss three different
strategies to work around this problem. The proposed strate-
gies either lead to a high overhead due to HTTP byte range
requests or to inefficient structures in the file organization.
Unfortunately, these shortcomings render priority streaming
based on the BMFF as too inefficient for bit rates lower than
1 Mbps. Consequently, it can be only considered as a beneficial
option for high-definition content.
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