
MuMiVA: a Multimedia Delivery Platform using
Format-agnostic, XML-driven Content Adaptation

Davy Van Deursen∗, Sarah De Bruyne∗, Wim Van Lancker∗,
Wesley De Neve∗, Davy De Schrijver∗, Hermann Hellwagner‡, and Rik Van de Walle∗

∗Ghent University – IBBT, ELIS – Multimedia Lab
Gaston Crommenlaan 8, bus 201, B-9050 Ledeberg-Ghent, Belgium

‡Klagenfurt University, ITEC
Universitätsstrasse 65-67, A-9020 Klagenfurt, Austria

Abstract— Due to the increasing heterogeneity in the current
multimedia landscape, the delivery of multimedia content has
become an important issue today. This heterogeneity is not only
reflected by a plethora of different usage environments, but also
by the presence of multiple (scalable) coding formats. Therefore,
format-independent adaptation engines have to be used within
a multimedia delivery platform, which are able to adapt the
multimedia content according to a certain usage environment,
independent of the underlying coding format of the content. By
relying on automatically created textual descriptions of the high-
level syntax of binary media resources, a format-independent
adaptation engine can be build. MPEG-21 generic Bitstream
Syntax Schema (gBS Schema) is a tool that is part of the
MPEG-21 Multimedia Framework. It enables the use of generic
Bitstream Syntax Descriptions (gBSDs), i.e., textual descriptions
in XML, to steer the adaptation of a binary media resource,
using format-independent adaptation logic. In this paper, we
address the design and performance evaluation of a multimedia
delivery platform that relies on gBS Schema-driven adaptation
engines. This platform is called MuMiVA; it is a fully integrated,
extensible platform for multimedia delivery in heterogeneous us-
age environments, using streaming technologies. To demonstrate
the flexibility of our multimedia delivery platform, we discuss
the functioning of two different applications (i.e., exploitation of
temporal scalability and shot selection) applied to two different
coding formats (i.e., MPEG-4 Visual and H.264/AVC).

Keywords— Content adaptation, Content delivery, MPEG-21
gBS Schema, XML transformations

I. INTRODUCTION

The efficient delivery of multimedia resources is gaining
importance these days because more and more devices are able
to consume multimedia content. The tremendous diversity in
these devices introduces difficulties for multimedia delivery
infrastructures, due to varying characteristics such as screen
size, processing power, and supported coding formats. Another
problem is the heterogeneity of network technologies, which
differ in terms of bandwidth, jitter, and error robustness. It is
clear that a transparent approach is needed in order to deliver
multimedia content anywhere, at anytime, and on any device.
This vision is generally known as Universal Multimedia Ac-
cess (UMA, [1]).

Scalable coding is an important tool to realize a UMA
environment. It enables the extraction of multiple (lower
quality) versions of the same media resource without the

need of a complete recoding process. The bitstream extraction
process typically involves the removal of particular data blocks
and the modification of the value of certain syntax elements.
This approach is in line with the UMA paradigm, where a
media resource only needs to be created once, after which it
can be published on all possible terminals.

A multimedia delivery platform needs an efficient adap-
tation strategy to deal with the heterogeneity in the current
and future multimedia landscape. The presence of different
(scalable) coding formats requires the usage of a single,
format-agnostic adaptation engine, which can be used for
the adaptation of still images, audio resources, and video re-
sources. The use of a generic adaptation engine also means that
the underlying implementation does not have to be updated in
case a new coding format has to be supported.

One way to realize a format-agnostic adaptation engine is
to rely on automatically generated textual descriptions. These
descriptions contain information about the high-level structure
of a scalable bitstream and are typically expressed by making
use of the eXtensible Markup Language (XML) [2].

In this paper, we introduce a fully integrated multimedia de-
livery platform called MuMiVA1. MuMiVA relies on format-
agnostic adaptation engines and aims at being deployable
in streaming environments. The outline of this paper is as
follows. Sect. II gives a general overview of XML-driven
content adaptation. The MuMiVA architecture is discussed in
Sect. III. Subsequently, Sect. IV elaborates on two applica-
tions of MuMiVA, providing insight in the practical use of
an XML-based content adaptation system. Sect. V provides
performance measurements regarding our multimedia delivery
platform. Future extensions are discussed in Sect. VI. Finally,
conclusions are drawn in Sect. VII.

II. XML-DRIVEN CONTENT ADAPTATION

As discussed in the introduction, XML-driven content adap-
tation enables the creation of a format-agnostic adaptation
engine, which is important to deal with different (scalable)
coding formats. Indeed, the engine operates at the XML level,
and does not have to be aware of the underlying coding

1MuMiVA is short for “Mutare, Mittere, Videre, Audire”, which is Latin
for “to adapt, to send, to watch, to hear”.

format. Furthermore, the use of XML descriptions allows for
an integration with other metadata standards, such as Dublin
Core and MPEG-7. Hence, XML-driven content adaptation
can also be used to realize so-called ‘intelligent’ adaptations,
like automatic video summarization and scene selection.

A. General Approach

An XML-driven content adaptation engine typically consists
of three main processes: the generation of an XML description,
the transformation of the XML description, and the creation of
an adapted bitstream using the transformed XML description.

An XML description contains information about the high-
level structure of a compressed bitstream. In particular, it
describes how the bitstream is organized in terms of layers
or packets of data. Note that such an XML description is not
meant to replace the original binary data; it rather acts as an
additional layer, similar to metadata.

The actual adaptation takes place in the XML domain during
the transformation of the XML description (e.g., by dropping
descriptions of layers or packets). This transformation process
takes into account the constraints of a given usage environment
(e.g., available bandwidth and screen resolution). Thanks to
the use of XML, many already existing XML transformation
tools can be used, such as eXtensible Stylesheet Language
Transformations (XSLT, [3]) or Streaming Transformations for
XML (STX, [4]).

The translation from the XML domain back to the binary
domain occurs in the last step, i.e., the creation of the adapted
bitstream. This process takes as input the transformed XML
description and the original bitstream in order to produce an
adapted bitstream, which is then suited for playback in a given
usage environment.

B. MPEG-21 gBS Schema

MPEG-21 generic Bitstream Syntax Schema (gBS Schema)
is a tool of Digital Item Adaptation (DIA, [5]), which is
part 7 of the MPEG-21 Multimedia Framework [6]. This
description tool can be used in a format-agnostic adaptation
engine. Furthermore, gBS Schema enables the creation of
format-independent descriptions, i.e., generic Bitstream Syn-
tax Descriptions (gBSDs) [7]. Indeed, gBS Schema acts as a
W3C’s XML Schema for these gBSDs.

The functioning of a gBS Schema-based adaptation frame-
work is illustrated in Fig. 1. In this figure, a particular
scene (i.e., scene 2) is extracted from a video sequence by
using XML-driven content adaptation. The first step is the
generation of a gBSD (step (1) in Fig. 1). This process is not
described in the DIA specification2, which implies that a gBSD
may be generated in any proprietary way. Subsequently, the
gBSD is transformed by using common XML transformation
technologies such as XSLT or STX (step (2) in Fig. 1).
After the transformation of the gBSD, an adapted bitstream
is obtained using the format-independent gBSDtoBin parser,
which takes as input the original bitstream and the transformed

2Only the gBS Schema is described in the specification, together with the
behaviour of a gBSDtoBin parser.

gBSD
generation

gBSD
transformation

Usage
environment
description

Original bitstream
<gBSDUnit start="0" marker="scene_1">
 <gBSDUnit start="0" length="10"/>
 <gBSDUnit start="10" length="20"/>
</gBSDUnit>
<gBSDUnit start="30" marker="scene_1">
 <gBSDUnit start="30" length="10"/>
 <gBSDUnit start="40" length="20"/>
</gBSDUnit>
<gBSDUnit start="60" marker="scene_2">
 <gBSDUnit start="60" length="10"/>
 <gBSDUnit start="70" length="20"/>
</gBSDUnit>

<gBSDUnit start="60" marker="scene_2">
 <gBSDUnit start="60" length="10"/>
 <gBSDUnit start="70" length="20"/>
</gBSDUnit>

gBSD

Transformed gBSD

gBSDtoBin
parser

gBS Schema

Adapted bitstream

scene_1

scene_2

scene_2

scene_1

scene_2

scene_2

(1)

(2)

(3)

Fig. 1. Scene selection using a gBS Schema-based adaptation framework.

gBSD (step (3) in Fig. 1). The gBSDtoBin parser relies on
the gBS Schema to translate the transformed gBSD into an
adapted bitstream [8].

The two most important gBS Schema elements are gBSD-
Unit and Parameter. gBSDUnit represents a segment of the
bitstream (e.g., a segment corresponding to a scene as illus-
trated in Fig. 1), while a Parameter is used to describe syntax
elements of the bitstream that might change (e.g., a syntax
element corresponding to the frame rate might change during
the adaptation). Markers can be present as attributes within
both the gBSDUnit and the Parameter. The use of markers
within a gBSD enables the creation of application-specific
gBSDs. More precisely, the markers contain semantically
meaningful information that can be used by the transformation
process. Note that some examples of gBSDs are also provided
in Sect. IV.

C. Related Work

In recent years, a number of XML-driven content adaptation
technologies have been developed, next to MPEG-21 gBS
Schema.

The Bitstream Syntax Description Language (BSDL, [9]),
which is part 5 of the MPEG-B standard, is built on top of the
W3C XML Schema Language. This XML language allows to
describe the structure of a (scalable) coding format in a so-
called Bitstream Syntax Schema (BS Schema) [10]. BSDL
comes with two standardized and format-agnostic parsers,
which both take as input a BS Schema. The BintoBSD parser
is responsible for producing XML descriptions, while the
BSDtoBin parser is used for generating adapted bitstreams.

The Formal Language for Audio-Visual Object Represen-
tation, extended with XML features (XFlavor, [11]) is a
declarative Java-like language. This tool provides means for
describing the syntax of a bitstream on a bit-per-bit basis. It
enables the automatic generation of a parser that is able to
generate an XML description for a given bitstream. A tool to
translate this XML description into an adapted bitstream is
provided as well.

III. MUMIVA: ARCHITECTURE

As discussed in the introduction, MuMiVA is a multi-
media delivery platform that is able to transparently deliver
multimedia content for heterogeneous usage environments.

ADTE
Streaming

Server
Broker

Global
Manager

Clients

Application Layer

Pool of Adaptation Engines

Pool of Streaming Servers

Network

(1)

(2)

(7) (3)

(6) (8)

(10) (9)

(5)

(4)

Session Manager

Content
Management

System

Streaming
Server

Streaming
Server

Adaptation
Engine

Adaptation
Engine

Session Manager

Selected
Adaptation

Engines

Selected
Streaming

Server
CMS

...

...

(a) A global view on MuMiVA.

ADTE
Streaming

Server
Broker

Global
Manager

Clients

Application Layer

Pool of Adaptation Engines

Pool of Streaming Servers

Network

(1)

(2)

(7) (3)

(6) (8)

(10) (9)

(5)

(4)

Session Manager

Content
Management

System

Streaming
Server

Streaming
Server

Adaptation
Engine

Adaptation
Engine

Session Manager

Selected
Adaptation

Engines

Selected
Streaming

Server
CMS

...

...

(b) Functioning of MuMiVA.

Fig. 2. Components of the MuMiVA platform in a fully distributed scenario.

Moreover, this transparent approach reflects in both a format-
agnostic (i.e., independent of the underlying coding format)
and application-agnostic characteristic (i.e., independent of the
adaptations applied to the media resources). In this section, an
overview is given of the MuMiVA architecture, together with
its strengths and weaknesses.

A. Distributed Architecture: a Global View on MuMiVA

Our multimedia delivery platform contains multiple com-
ponents that can be distributed across a managed network.
Such a distributed architecture increases the scalability of the
platform, since it allows extending the platform with additional
components in order to anticipate an increasing load.

Fig. 2(a) gives an overview of the components present in
our MuMiVA platform. In the current implementation of our
platform, these components communicate by means of sockets.
Explanatory notes for this figure are given below.

• Content Management System (CMS) is a multimedia
archive that contains multimedia content encoded with
(scalable) coding formats, as well as metadata about the
content. Both structural (e.g., a gBSD of a particular
bitstream) and semantic metadata (e.g., scene information
for a particular video sequence) are present in the CMS.

• Pool of Adaptation Engines is a collection of distributed
adaptation engines. An adaptation engine may deploy
multiple adaptation techniques. In this paper, we discuss
only one (format-agnostic) adaptation technique, i.e.,
gBS Schema. However, MuMiVA allows the adoption
of other (format-agnostic or format-specific) adaptation
tools. Examples of other adaptation tools are BSDL
(format-agnostic) and transcoders (format-specific).

• Pool of Streaming Servers is a collection of distributed
streaming servers.

• Session Manager couples the content servers, adaptation
engines, and streaming servers. It provides a front-end
for clients to the multimedia delivery platform by means
of an application layer (e.g., webservice). Furthermore,

this component selects the proper streaming server based
on an assessment of the current server load. Finally, this
component manages the different client sessions and is
able to take decisions regarding the adaptation of the
requested content, based on information regarding the
usage environment of the clients.

Distributing the components of MuMiVA across the network
makes it possible to achieve a scalable multimedia delivery
platform. More specifically, a distributed multimedia system
makes it easy to expand or contract its pool of servers to
accommodate increasing or decreasing loads of the platform.

B. Functioning of MuMiVA

The MuMiVA architecture is shown in Fig. 2(b), as well
as the communication between its different components. Ex-
planatory notes for the chain of interactions between the
different components of the MuMiVA platform are provided
below.

(1) A client requests multimedia content by contacting the
MuMiVA platform. Besides the requested content, the
client also sends information about its usage environment.

(2) The application layer provides the information about the
client to the global manager. The manager initializes a
new session for each particular client. Consequently, the
client receives a session ID.

(3) The global manager contacts the broker for the streaming
server in order to select a proper streaming server based
on the current server load. The selected streaming server
will be announced to the client by the global manager
through the application layer.

(4) The client connects to the selected streaming server, and
provides its session ID in order to receive the desired
content.

(5) The selected streaming server contacts the global man-
ager, in order to receive information about the incoming
request of the client, based on its session ID.

(6) The global manager fetches metadata about the requested
content (e.g., bit rate and resolution), which are stored in
the CMS.

(7) Once the global manager has all the necessary informa-
tion at its disposal (i.e., metadata about the requested
content and information about the usage environment), it
contacts the Adaptation Decision Taking Engine (ADTE).
The ADTE first decides which adaptation technique to
use, based on the available adaptation engines. Once
an adaptation technique is chosen (e.g., gBS Schema),
the ADTE might take additional decisions related to the
adaptation technique (e.g., the XML transformation tool
in case of an XML-driven adaptation technique). Next,
it calculates the adaptation parameters by matching the
metadata about the requested content and the information
about the usage environment (e.g., comparison of the
resolution of a video sequence with the size of the screen
of the end-user device). When the requested content
includes both audio and video, the ADTE will select two
adaptation engines: one for the video stream and one for
the audio stream. In the latter case, the synchronization
between the output of the adaptation engines is done by
the streaming server.

(8) The global manager initializes the selected adaptation
engines with the collected adaptation parameters.

Once the necessary negotiation between the client and
MuMiVA is done, the client can start consuming the requested
multimedia content. The streaming server, adaptation engines,
and CMS form a pipeline system, where the communication
is based on a pull-system. More specifically, the streaming
server pulls content from the adaptation engine, which subse-
quently pulls content from the CMS. The following steps are
performed during the streaming of the multimedia content to
the client.
(9) The streaming server reads the adapted media resources

from the adaptation engines. Subsequently, these adapted
resources are send to the client by using the Real-time
Transport Protocol (RTP, [12]). Real Time Streaming
Protocol (RTSP, [13]) is used for the exchange of control
operations between client and streaming server (e.g., the
client can decide to pause the streaming of the content).

(10) The adaptation engines read the original media resources
from the CMS. Furthermore, an adaptation engine cus-
tomizes a given media resource according to the adap-
tation parameters received from the global manager.
More detailed information about the internal working
of an adaptation engine within MuMiVA is provided in
Sect. III-C.

C. XML-driven Adaptation Engine

One the main features of our MuMiVA platform is the
use of XML-driven content adaptation engines, based on
MPEG-21 gBS Schema. As discussed in Sect. II, XML-driven
content adaptation by using gBS Schema consists of three
steps: gBSD generation, gBSD transformation, and bitstream

Adaptation Engine

gBSDtoBin

STX engine
adapted
bitstream

SAX filter

gBSD +
STX stylesheet(s) +

adaptation
parameters

original
bitstream

Fig. 3. Functioning of a MuMiVA adaptation engine, based on MPEG-21
gBS Schema. The dashed arrows denote the adaptation parameters and STX
stylesheets. The bold arrows denote the data flow of the gBSD. The dotted
arrows illustrate the possibility for multiple transformations of a gBSD during
the adaptation.

generation. Within the MuMiVA platform, gBSD generation
is seen as a preprocessing step. Consequently, the gBSDs of
the corresponding media resources are already available in the
CMS. Hence, the adaptation engines only need to perform the
last two steps of the XML-driven content adaptation chain,
i.e., gBSD transformation and bitstream generation.

Different XML transformation tools exist to transform a
gBSD. There are two approaches to interpret and to transform
XML documents. Firstly, traditional procedural programming
languages such as Java or C++, together with a parser, can
be used to consume XML data. Secondly, transformations
can be implemented by using stylesheets together with a
generic engine for interpreting these stylesheets (e.g., XSLT
and STX). The main difference between the two approaches
is the possibility to make use of generic software modules
(transformation engines) in the latter case. Moreover, two
main types of XML parsers exist. One built on top of tree-
based models (e.g., Document Object Model (DOM)) and one
on event-based models (e.g., Simple API for XML (SAX)).
MuMiVA only uses SAX-based XML transformation tools,
since these can be used in streaming environments (in contrast
to DOM-based XML transformation tools) [14]. Therefore,
two different transformation tools can be used within an
adaptation engine of MuMiVA: a SAX filter (i.e., a Java
program for XML transformations using a SAX-based parser)
and a STX engine.

The functioning of an adaptation engine is depicted in
Fig. 3. As discussed in the previous section, the adaptation
engine receives adaptation parameters from the global man-
ager. Furthermore, it reads the original bitstream from the
CMS, together with its corresponding gBSD. When STX is
used as XML transformation technology, the necessary STX
stylesheets are also fetched from the CMS.

Based on the adaptation parameters, the adaptation engine
selects the proper transformation tool (i.e., SAX filter or STX)
and transforms the gBSD. Different transformations can be
applied to the gBSD during the adaptation (see the dotted
arrows in Fig. 3). For example, the first transformation may

consist of temporal rescaling by using a SAX filter; the second
transformation may consist of scene extraction by using a STX
engine. This will be further explained in Sect. IV.

After the transformation of the gBSD, the adapted content
is generated by MPEG-21 DIA’s gBSDtoBin parser, taking as
input the transformed gBSD and the original bitstream.

It is important to notice that the adaptation engine is fully
format-agnostic when STX is used, since STX uses a format-
agnostic engine for executing a particular stylesheet. This is
in contrast with the use of a SAX filter, which does not rely
on format-agnostic logic.

D. Strengths of the MuMiVA Platform

In the previous section, we have discussed the overal
architecture of our multimedia delivery platform, together with
the internal functioning of its different components. Delivering
multimedia content by using MuMiVA has the following
benefits.

• supports format-agnostic adaptation: the use of XML-
driven content adaptation implies that the adaptation
engines can operate independent of the underlying coding
format (i.e., the software modules are format-agnostic).

• supports application-agnostic adaptation: the use of
XML-driven content adaptation also implies that the
adaptation engines support application-agnostic adapta-
tions, i.e., the software modules are independent of the
application. In this context, an application corresponds
to the kind of adaptation that is executed on the media
resource (e.g., temporal scalability or scene selection).

• extensible: since our multimedia delivery platform is
format-agnostic and application-agnostic, it can be con-
sidered straightforward to extend MuMiVA with new
coding formats and applications.

• scalable: MuMiVA contains different components that
can be distributed across the network, i.e., adaptation
engines, streaming servers, and a CMS. It is rather
straightforward to add or to remove these components
from the MuMiVA platform. Hence, a high degree of
scalability can be obtained.

• support for varying usage environments: when the usage
environment of a client changes during the consump-
tion of the requested multimedia content, the MuMiVA
platform can dynamically change adaptation parameters
according to the updated usage environment.

• support for streaming: the MuMiVA platform offers
(adapted) multimedia content in a streaming environment.
As discussed above, it implements the RTSP protocol, im-
plying that mediaplayers such as VideoLan Client (VLC),
Osmo, and QuickTime can play the content streamed by
the MuMiVA platform. The adaptation of the content
also occurs in a streaming fashion, since the XML-driven
content adaptation engine is fully SAX-based [14].

• interoperable: it is important to make use of standardized
and open technologies to obtain interoperability. The
following technologies are used within the MuMiVA

platform: MPEG-21 DIA, SAX, STX, RTSP, and RTP.
Note that STX is not standardized yet; however, this
technology is currently under consideration for standard-
ization by W3C.

• fully integrated: to the best knowledge of the authors, the
MuMiVA platform is the first multimedia content delivery
platform that offers a fully integrated solution regarding
format-agnostic and application-agnostic delivery of mul-
timedia content in a streaming environment.

To illustrate the extensibility of our platform, we will
discuss the necessary steps that need to be taken to extend
the MuMiVA platform with the H.264/AVC Scalable Video
Coding (SVC) format. It is important to notice that we did
not yet provide support for SVC within MuMiVA due to the
following reasons: the specification of SVC is not finalized
yet, the RTP specification for SVC is still under development,
and there is currently a lack of real-time SVC decoders.
A straightforward application for SVC is the exploitation
of scalability along its three scalability axes (i.e., temporal,
spatial, and Signal-to-Noise Ratio (SNR)) [15]. The following
steps need to be taken so that MuMiVA can provide support
for the delivery of SVC bitstreams, adapted according to a
certain usage environment.

• The SVC-compliant bitstreams, located in the CMS, need
to be accompanied by their structural metadata (i.e., XML
descriptions of the high-level structure of the bitstreams).
These metadata will be used to adapt the bitstreams.

• One or more STX stylesheets or SAX filters need to be
written, so that the adaptation engine is able to apply the
necessary XML transformations to the XML descriptions.
More specifically, these transformations correspond to
the exploitation of different types of scalability in SVC
bitstreams.

• Finally, the streaming server needs to be extended in order
to enable the streaming of SVC-compliant bitstreams.

Note that, besides SAX filters, only new software has to be
written for the streaming server. All other steps have no impact
on the software of the MuMiVA platform. Consequently, the
streaming server is not format-agnostic. However, MPEG-
21 Digital Item Streaming (DIS, [16]), which is currently
under development, provides a solution for format-agnostic
streaming of multimedia content. In the future, MuMiVA could
be extended with support for DIS, offering a fully format-
agnostic solution for the adaptation and delivery of multimedia
content.

IV. MUMIVA APPLICATIONS

Two applications (i.e., video frame rate reduction and shot
selection), which are deployed on our MuMiVA platform, are
discussed in more detail in this section. Both applications
are applied to two coding formats, i.e., MPEG-4 Visual [17]
and H.264/AVC [18]. Since MuMiVA supports both coding
formats, multimedia content compliant with these two coding
formats is present in the CMS, together with its metadata (i.e.,
gBSDs describing the high-level structure of the bitstreams).

1 <gBSDUnit syntacticalLabel="bitstream" start="0">
<!-- ... -->
<gBSDUnit syntacticalLabel="RAU" start="0" marker="

:shot=3|shot=4">
<gBSDUnit syntacticalLabel="FRAME" start="0" length

="876" marker=":shot=4:fps=6"/>
5 <gBSDUnit syntacticalLabel="FRAME" start="876"

length="604" marker=":shot=4:fps=12"/>
<gBSDUnit syntacticalLabel="FRAME" start="1480"

length="597" marker=":shot=3:fps=24"/>
<gBSDUnit syntacticalLabel="FRAME" start="2077"

length="595" marker=":shot=4:fps=24"/>
</gBSDUnit>
<gBSDUnit syntacticalLabel="RAU" start="2672" marker=

":shot=4|shot=5">
10 <gBSDUnit syntacticalLabel="FRAME" start="2672"

length="945" marker=":shot=5:fps=6"/>
<gBSDUnit syntacticalLabel="FRAME" start="3617"

length="545" marker=":shot=4:fps=12"/>
<gBSDUnit syntacticalLabel="FRAME" start="4162"

length="675" marker=":shot=4:fps=24"/>
<gBSDUnit syntacticalLabel="FRAME" start="4837"

length="611" marker=":shot=5:fps=24"/>
</gBSDUnit>

15 <!-- ... -->
</gBSDUnit>

Fig. 4. Example of a gBSD for an H.264/AVC-encoded bitstream, containing
information about the frame rate and the different shots.

Note that multiple gBSDs can be present for one resource.
Indeed, as discussed in Sect. II-B, gBSDs can be application-
specific due to the occurrence of markers. For simplicity, we
assume that the gBSDs, present in the CMS, support both
applications. More specifically, markers contain information
regarding the frame rate and the different shots of the corre-
sponding bitstream. An example of such a gBSD is given in
Fig. 4. Note that the gBSD contains details up to frame level,
which is sufficient for both applications.

A. Shot Selection

Shot selection enables the personalization of video content
according to the preferences of a user. More specifically,
a user can select individual shots out of a video sequence
(e.g., goals in a soccer match). However, special attention
needs to be payed to the extraction of the desired shots as
the adapted bitstream needs to remain compliant with the
corresponding specification. Therefore, we use the algorithm
proposed in [19], where the gBSDs contain a description of the
Random Access Units (RAUs). Each RAU contains a list of
one or more frames, which in their turn belong to a particular
shot. This is also illustrated in Fig. 4, which contains two
RAUs (lines 3 and 9).

As depicted in Fig. 4, each gBSDUnit corresponding to a
RAU contains a marker. This marker denotes, among other
things, the shots that are located within the RAU. When a user
selects a specific shot, only the RAUs containing frames which
belong to the requested shot are kept during the transformation.
Subsequently, within each selected RAU, frames which do not
belong to the requested shot and which are located after the
frames belonging to the requested shot (in decoding order), are
dropped. Given the gBSD in Fig. 4, selecting shot 4 will keep
only the two RAUs depicted in this figure. Furthermore, the
last frame of the second RAU will be dropped, since it does not

1 <stx:transform pass-through="all" output-method="xml">
<stx:param name="frame_rate" select="12"/>
<stx:template match="gBSDUnit[@syntacticalLabel='

FRAME']">
<stx:if test="number(substring-after(@marker,':fps

=')) <= $frame_rate">
5 <stx:process-self/>

</stx:if>
<!-- else: drop the gBSDUnit -->

</stx:template>
</stx:transform>

Fig. 5. Simplified STX stylesheet for the exploitation of temporal scalability.
gBSDUnits are dropped based on the frame rate located in their marker.

belong to shot 4. Note that the above discussed algorithm for
shot selection can be applied to both H.264/AVC and MPEG-4
Visual.

B. Video Frame Rate Reduction

Reduction of the frame rate in a video sequence is obtained
by dropping frames. This form of adaptation is also known
as the exploitation of temporal scalability. Since the gBSDs
already contain information regarding the frame rate, the trans-
formation of the gBSDs can be considered straightforward for
both H.264/AVC and MPEG-4 Visual. Indeed, as illustrated in
Fig. 4, every gBSDUnit corresponding to a frame contains a
frame rate. When the user requests a frame rate equal to 12 fps,
each frame containing a higher frame rate than 12 is dropped.
This is also illustrated by the simplified STX stylesheet that
is depicted in Fig. 5.

C. Combining Shot Selection and Frame Rate Reduction

If the gBSDs support both shot selection and frame rate
reduction, the two applications can be combined (i.e., selection
of a particular shot, at a particular frame rate).

Two approaches are possible for this combination within
the MuMiVA framework. A first option is the creation of a
single STX stylesheet (or SAX filter) that can deal with both
applications. This stylesheet would take two parameters as
input: the requested shot and the frame rate. A second option
is the development of two separate STX stylesheets (and/or
SAX filters): one for each application. This is possible since
an adaptation engine allows multiple XML transformations
during the adaptation of media resources (as discussed in
Sect. III-C). Note that the second approach provides more
flexibility since it allows the reuse of the two transformation
filters as stand-alone filters (e.g., when only shot selection is
needed as an application).

V. PERFORMANCE RESULTS

In order to provide an estimate of the necessary computa-
tional power for our MuMiVA platform, we have evaluated the
MuMiVA applications described in Sect. IV, i.e., exploitation
of temporal scalability, shot selection, and the combination
thereof, applied to MPEG-4 Visual and H.264/AVC. These
applications were implemented by means of STX stylesheets.
The gBSDs describe the bitstream syntax up to the level of a
frame; however, in order to estimate the impact of the level of

TABLE I
BITSTREAM AND GBSD CHARACTERISTICS OF THE TEST SEQUENCES.

Format Bitstream Frame Length Bit rate gBSD Coarse gBSD
size (MB) rate (fps) (s) (Mbit/s) size (KB) size (KB)

H.264/AVC 36.3 24 83.3 3.5 231 13
MPEG-4 Visual 72.1 24 83.3 6.9 392 n/a

detail of a gBSD, we have also created an additional gBSD for
the H.264/AVC format which is detailed up to RAU level. Note
that this coarse-grained gBSD is only suitable for a simplified
version of the shot selection application (i.e., unnecessary
frames are not removed inside the selected RAUs).

Characteristics of the used test sequences (having a reso-
lution of 1280x512) can be found in Table I. Note that the
gBSD for MPEG-4 Visual is more verbose than the gBSD
for H.264/AVC due to the inclusion of parameters for each
Video Object Sequence (VOS). The experiments were done
on a PC having an Intel Pentium D 2.8 GHz CPU and 1
GB of system memory at its disposal. The operating system
used was Windows XP Pro SP2, running Sun Microsystems’s
Java 2 Runtime Environment (Standard Edition version 1.5).
The Joost STX engine (version 2006-10-5) was used, together
with version 3.0.3 of MPEG-21 DIA’s gBSDtoBin parser.
The streaming server is based on the C++ library of Live555
Streaming Media. JProfiler version 4.2.1 and AQTime version
4 were used for profiling the adaptation engine and the
streaming server respectively.

Table II tabulates the CPU usage of the adaptation engine
and the streaming server (both executed on a separate core),
together with the file sizes of the transformed gBSDs and
the resulting bitstreams. A comparison between the adaptation
engine and the streaming server in terms of CPU usage reveals
that the adaptation engine operates very efficiently (from 3 %
to 10 % average CPU usage), while the streaming server
requires two times more CPU power than the adaptation engine
(average CPU usage varying from 19 % to 25 %). The latter
is due to the fact that the streaming server needs to parse the
incoming bitstreams in order to correctly assign timestamps.
This is in contrast with the adaptation engine, which can
rely on the information located in the gBSD to perform the
adaptations.

The following factors influence the CPU usage of the adap-
tation engine and/or the streaming server: application, coding
format, and the level of detail of the gBSD (see Table II). It
is important to remark that the STX engine takes the most
CPU usage of the adaptation engine, since it includes the
transformation logic (the gBSDtoBin parser mainly performs
byte copy operations).

• Application: the CPU usage of the adaptation engine
is application-dependent. Shot selection is more com-
plex than temporal scalability because large parts of
the sequence might be skipped (in case of shot selec-
tion), which implies that the transformation needs to be
faster than real time during the skipping of particular
shots. Combining two applications takes more CPU time;

TABLE II
FILE SIZES AND CPU USAGE FOR THE DIFFERENT MUMIVA SCENARIOS.

H.264/AVC MPEG-4 Visual
TSa SS SS+TS SSc TS SS SS+TS

Transformed gBSD size (KB) 122 96 53 6 280 156 122
Adapted bitstream size (MB) 21.8 16.2 9.9 18.0 43.5 31.4 19.1

Adaptation Engine CPUA
b (%) 3 5 7 4 8 9 10

Adaptation Engine CPUP (%) 5 8 10 6 15 20 25
Streaming Server CPUA (%) 25 24 24 23 19 18 19
Streaming Server CPUP (%) 50 50 50 50 45 45 40

aTS, SS, and SSc denotes Temporal Scalability (obtain a frame rate of
12 fps), Shot Selection (select 25 shots out of 60 shots), and Shot Selection
with a coarse-grained gBSD respectively.

bCPUA and CPUP denotes average and peak CPU usage respectively.

0%

20%

40%

60%

80%

100%

TS SS SS+TS SSc TS SS SS+TS

gBSDtoBin
STX engine

H.264/AVC MPEG‐4 Visual

Fig. 6. Partition of the execution times (inclusive I/O operations) of the STX
engine and the gBSDtoBin parser.

however, the second XML transformation (i.e., temporal
scalability) only has to transform the gBSD fragments
selected by the first transformation (i.e., shot selection).
The CPU usage of the streaming server is application-
independent as shown in Table II.

• Coding format: the CPU usage of both the adaptation
engine and the streaming server is format-dependent. The
adaptation engine takes more CPU usage for MPEG-
4 Visual than for H.264/AVC due to the more verbose
gBSD for the MPEG-4 Visual bitstream. This larger
gBSD demands more CPU time during the XML trans-
formation. The streaming server takes more CPU usage
for H.264/AVC than for MPEG-4 Visual because the
parsing process is more complex for H.264/AVC in order
to assign proper timestamps to video frames.

• The level of detail of the gBSD: this factor only influences
the CPU usage of the adaptation engine. This can be
deduced from Table II by comparing the CPU usage of
the shot selection application once for a gBSD with detail
up to frame level and once for a gBSD with detail up
to RAU level. The CPU usage of the adaptation engine
increases when the level of detail of the gBSD increases.
Obviously, the CPU usage of the streaming server is
independent of the level of detail of the gBSD.

The memory usage is constant for both the adaptation
engine and the streaming server (a maximum of 5 MB of
memory is used). Moreover, applications, coding formats, and
the level of detail of a gBSD have a negligible impact on the
memory usage of these components.

To examine the adaptation engine in more detail, the pro-
portion in terms of execution times between the STX engine
and the gBSDtoBin parser is depicted in Fig. 6. In case of the
MPEG-4 Visual format, the gBSDtoBin parser takes most of
the execution time (63 % to 83 %) because the bit rate of the
MPEG-4 Visual sequence is twice as high than the bit rate of
the H.264/AVC sequence. Hence, more I/O operations need
to be performed by the gBSDtoBin parser for the MPEG-4
Visual bitstream. Furthermore, the application also influences
the proportion between the STX engine and the gBSDtoBin
parser, i.e., the STX engine will take more time when more
complex transformations are executed.

VI. FUTURE EXTENSIONS

In the near future, our MuMiVA platform will be extended
with the following features.

• Support for SVC: MuMiVA will be extended with support
for the SVC coding format (as discussed in Sect. III-D).

• XML binarization: the efficient representation of the
XML descriptions is an important issue in the context
of XML-driven content adaptation. It is important to
use an XML binarization technology that allows efficient
transformations of the XML descriptions in the binary
domain in terms of execution speed.

• Format-independent streaming: as mentioned in Sect. III-
D, providing support for format-independent streaming
within the MuMiVA platform would allow to offer a fully
format-agnostic solution for the adaptation and delivery
of multimedia content. Note that the use of format-
agnostic software modules implies the possibility to im-
plement these modules in hardware, hereby obtaining
hardware-accelerated, XML-driven content adaptation.

• Other adaptation methods: in the future, MuMiVA will
be extended with additional adaptation methods (besides
gBS Schema). Examples of other adaptation methods are
MPEG-B BSDL and transcoders.

VII. CONCLUSIONS

In this paper, we have introduced MuMiVA, which is a
multimedia delivery platform relying on XML-driven content
adaptation engines. MuMiVA tackles the diversity in the
current multimedia landscape by streaming multimedia content
that is adapted according to the constraints of a certain usage
environment. The multimedia content is customized using
format-agnostic adaptation engines which, in their turn, use
MPEG-21 gBS Schema as underlying technology.

An in-depth discussion of the architecture and functioning
of our multimedia delivery platform has been provided. Fur-
thermore, we have shown that MuMiVA is a fully integrated,
extensible platform that supports varying usage environments
and that is deployable in streaming environments. In order
to demonstrate the flexibility of MuMiVA in terms of appli-
cations and coding formats, two different applications (i.e.,
exploitation of temporal scalability and shot selection) were
applied to two different coding formats (i.e., MPEG-4 Visual
and H.264/AVC).

ACKNOWLEDGMENT

The research activities as described in this paper were
funded by Ghent University, the Interdisciplinary Institute for
Broadband Technology (IBBT), the Institute for the Promotion
of Innovation by Science and Technology in Flanders (IWT),
the Fund for Scientific Research-Flanders (FWO-Flanders),
the Belgian Federal Science Policy Office (BFSPO), and the
European Union.

REFERENCES

[1] A. Vetro, C. Christopoulos, and T. Ebrahimi, “Universal Multimedia
Access,” IEEE Signal Processing Mag., vol. 20, no. 2, p. 16, March
2003.

[2] M. Amielh and S. Devillers, “Multimedia Content Adaptation with
XML,” in 8th International Conference on Multimedia Modeling
(MMM’2001), Amsterdam, The Netherlands, November 2001, pp. 127–
145.

[3] M. Kay, XSLT Programmers’s Reference, 2nd Edition. Birmingham,
UK: Wrox Press Ltd., 2001.

[4] P. Cimprich et al., “Streaming Transformations for XML,” April 2007,
Available on http://stx.sourceforge.net/documents/spec-stx-20070427.
html.

[5] ISO/IEC, “21000-7:2004 Information technology – Multimedia frame-
work (MPEG-21) – Part 7: Digital Item Adaptation,” October 2004.

[6] I. Burnett, F. Pereira, R. Van de Walle, and R. Koenen, Eds., The MPEG-
21 book. John Wiley & Sons, March 2006.

[7] C. Timmerer, G. Panis, H. Kosch, J. Heuer, H. Hellwagner, and A. Hut-
ter, “Coding Format Independent Multimedia Content Adaptation using
XML,” in Proceedings of SPIE International Symposium ITCom 2003
on Internet Multimedia Management Systems IV, vol. 5242, Orlando,
September 2003, pp. 92–103.

[8] G. Panis, A. Hutter, J. Heuer, H. Hellwagner, H. Kosch, C. Timmerer,
S. Devillers, and M. Amielh, “Bitstream Syntax Description: a Tool for
Multimedia Resource Adaptation within MPEG-21,” Signal Processing:
Image Communication, vol. 18, no. 8, pp. 721–747, September 2003.

[9] ISO/IEC, “FDIS 23001-5:2007 Information technology – MPEG sys-
tems technologies – Part 5: Bitstream Syntax Description Language,”
January 2007.

[10] M. Amielh and S. Devillers, “Bitstream Syntax Description Language:
Application of XML-Schema to Multimedia Content Adaptation,” in
Proceedings of WWW2002: The Eleventh International World Wide Web
Conference, Honolulu, USA, May 2002, Available on http://wwwconf.
ecs.soton.ac.uk/archive/00000185/01/index.html.

[11] D. Hong and A. Eleftheriadis, “XFlavor: Bridging Bits and Objects in
Media Representation,” in Proceedings of the 2002 IEEE International
Conference on Multimedia and Expo (ICME), Lausanne, Switzerland,
August 2002, pp. 773–776.

[12] RFC 3550, “RTP: A Transport Protocol for Real-Time Applications,”
Available on http://www.ietf.org/rfc/rfc3550.txt.

[13] RFC 2326, “Real Time Streaming Protocol,” Available on http://www.
ietf.org/rfc/rfc2326.txt.

[14] S. Devillers, C. Timmerer, J. Heuer, and H. Hellwagner, “Bitstream
Syntax Description-Based Adaptation in Streaming and Constrained
Environments,” IEEE Trans. Multimedia, vol. 7, no. 3, pp. 463–470,
June 2005.

[15] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Ex-
tension of the H.264/MPEG-4 AVC Video Coding Standard,” Accepted
for publication in IEEE Trans. Circuits Syst. Video Technol.

[16] ISO/IEC, “FDIS 21000-18:2007 Information technology – Multimedia
framework (MPEG-21) – Part 18: Digital Item Streaming,” January
2007.

[17] ——, “14496-2:2004 Information technology – Coding of audio-visual
objects – Part 2: Visual,” May 2004.

[18] ITU-T and ISO/IEC JTC 1, “Advanced Video Coding for Generic
Audiovisual Services,” ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC,
2003.

[19] S. De Bruyne, D. De Schrijver, W. De Neve, D. Van Deursen, and
R. Van de Walle, “Enhanced Shot-Based Video Adaptation using MPEG-
21 generic Bitstream Syntax Schema,” in Proceedings of the 1st IEEE
Symposium on Computational Intelligence in Image and Signal Process-
ing, Honolulu, USA, April 2007, pp. 380–385.

