
Decentralized topology aggregation for QoS estimation in large overlay networks

Stefan Wieser
Institute of Information Technology (ITEC)

Klagenfurt University
Klagenfurt, Austria
swieser@itec.aau.at

Laszlo Böszörmenyi
Institute of Information Technology (ITEC)

Klagenfurt University
Klagenfurt, Austria
laszlo@itec.aau.at

Abstract—This paper introduces a scalable approach for
efficient, low-cost multi-level Quality of Service (QoS) estima-
tion in large overlay networks (ON). We modify an existing
distributed partitioning algorithm [1], and use it to create ”QoS
maps”. QoS maps empower applications to quickly predict
several QoS metrics for any given route, and to obtain multiple
alternative routes to any target node in the ON. We show
that our modifications of the partitioning algorithm permit
the aggregation of large hubs, but still preserve the sub-
linear runtime of the original heuristic. Simulations with large
ONs are performed to evaluate the proposed approach and
demonstrate its scalability. Finally, we outline our estimation
algorithm that we use to predict QoS and perform QoS aware
routing in any given ON.

Keywords-overlay networks;QoS estimation;hierarchical ag-
gregation

I. INTRODUCTION

While ONs have received a lot of attention both in
practice and in research, routing and QoS prediction in large
ONs remain difficult problems [2]. Our goal is to provide
applications in existing large ONs with so-called ”QoS
maps” that allow low-cost estimates of the QoS experienced
on different paths, and that provide multiple alternative paths
to any target node.

To perform efficient, QoS-aware routing in ONs that are
too large to have a global view, we simplify their topologies
using hierarchical aggregation. This aggregation, together
with the aggregated QoS information stored throughout the
network is what we refer to as a ”QoS map”. In contrast
to other overlays that create a new hierarchical topology
to disseminate data, our QoS maps preserve the existing
topology of the underlying network.

The main contributions of this paper are as follows: First,
it explains how an existing distributed partitioning algorithm
should be changed, so that it partitions any ON into sub-
networks (”clusters”) that can be used for distributed hier-
archical aggregation. Second, it introduces three different
methods to deal with hubs - nodes with a lot of neighbors
- during partitioning, and evaluates their effects on the
aggregated topology. It shows that with our modifications,
large ONs can be aggregated into low-depth hierarchies with
clusters of a small, bounded size. As a result, nodes only
need to store little state about the ON to allow QoS-aware

routing. Finally, it outlines our algorithm to perform multi-
level QoS estimation using the aggregated information.

II. RELATED WORK

A number of approaches attempt to solve the problem
of scalability in large networks. Hybrid ONs and ONs that
build distribution trees are popular choices for multicast
data dissemination. They differ from our approach in that
they either cannot provide alternative routes and QoS es-
timates to applications, or rely on the underlying network
for routing entirely. NICE [3] also builds a hierarchy with
bounded cluster size; however, it is optimized against a
certain metric, such as delay, and builds a new ON based
on it. In contrast, our approach preserves the structure of
the underlying network, permits scalable routing and multi-
level QoS estimates based on any QoS metric known to the
network. Pheromones-based approaches mimic the behavior
of ants foraging food, however scalability of traffic caused by
simulated ants is not trivial and requires careful optimization
[4]. Furthermore, despite these optimizations, they offer no
direct support for QoS estimation.

To increase scalability in large ONs, topology aggregation
(TA) is commonly used [5]. By aggregating a topology con-
sisting of several nodes into a new, more compact topology,
less data is required to get a high level overview of the
whole. As the complexity of the topology is reduced, more
expensive routing algorithms become feasible. QoS epitomes
are used to approximate the QoS of all paths through
such an aggregated topology. The various approaches are
summarized in [6]. While we assume that QoS epitomes are
used to approximate the QoS of the clusters we aggregate,
we do not limit ourselves to a specific method.

To aggregate an ON, it has to be split into distinct
partitions first. Heuristics are used, as graph partitioning is
known to be an NP-complete problem [7]. However, many
approaches, assume a global view for at least the initial
partition step [8], use central components [9], or do not
bound the number of nodes in a cluster [10], [11], and thus
do not scale for a large dynamic environment. In addition,
common k-way partitions are not practical for creating an
aggregation, as the number of clusters is fixed to k, and
cluster size - a variable - may turn out to be very large.



Figure 1. A three level hierarchy with s = 4. Parts of the ON and
the aggregated topology have been omitted for clarity, and links to them
are represented as dashed lines. Level 0 contains the original ON, and is
partitioned into several clusters. Each cluster is represented by a virtual
node at level 1. This process is repeated, and at level 2, the entire network
is represented by only three clusters, making the structure of the network
easy to grasp. The shaded area illustrates node A’s view of the network.

Finally, as the number of nodes in an ON may not be known
in advance, choosing a fitting k can be difficult. We therefore
follow a non-sequential and fully distributed variant of the
Basic Partition algorithm proposed by [1], which produces
partitions with bounded radius. The heuristic provided in [1]
has low runtime and message complexity, however, naı̈vely
applying it repeatedly to create a hierarchy results in topolo-
gies with only trivial (single-node) partitions that cannot
be aggregated any further. We make several modifications,
which are described in this paper.

III. HIERARCHY CONSTRUCTION

Consider an existing large ON of n nodes with unique
identifiers. For scalability, we aggregate this network into a
hierarchy of h levels: The lowest hierarchy level, level 0,
is the original ON and therefore contains all n nodes with
no aggregation. This level is then partitioned into several
clusters based on the nodes’ locality in the original ON,
while bounding the number of nodes per cluster with the
constant s. The identifier of a cluster is the largest identifier
of the nodes it contains. Each cluster on level l is represented
as a single (virtual) node on level l + 1. A virtual node
uses the identifier of the cluster it represents as its own
identifier. Connections between nodes of different clusters
on level l also exist on level l+1 between the virtual nodes
of both clusters. We continue building hierarchy levels until
the uppermost hierarchy level consists of at most s clusters.
Figure 1 shows this concept with a hierarchy of three levels.

A. Simulation Setup

We evaluate our changes through simulations on large
random graphs with varying density. During the simulation,
nodes exchange messages to partition the network and
aggregate the topology. The simulation advances in discrete
steps. At each step, every node may read all messages
it has received, and may send messages to its directly

connected neighbors. This is reasonable, as the average
time to parse and respond to a message is negligible [12].
Note that the simulation steps directly relate to the expected
runtime on ”real” networks if multiplied by the average
packet propagation and queuing delay on the network. For
example, aggregating a dense network with 3, 000 nodes
takes 2, 503±58.3 simulation steps. If we assume an average
propagation and queuing delay of 50ms, the aggregation
takes an average of 125.15± 2.92 sec.

B. Distributed Partitioning

To aggregate the topology of the ON, we first partition it:
For this, we build up on the partitioning algorithm described
in [1], which partitions the network by building clusters.
Each node (a potential ”cluster head”) attempts to add
surrounding nodes with increasing hop-count (”layers”) to
its own cluster. The ith layer consists of all nodes with a
distance of i hops from the cluster head that do not already
belong to a ”finished” cluster. Whenever one node attempts
to add another, the node with the highest identifier prevails.
A stopping condition is used to decide when to stop adding
layers: The original heuristic stops growing a cluster if the
ratio between cluster members and neighbors exceeds a
threshold that is determined by a configurable constant and
the total number of nodes in the network. If this stopping
condition is fulfilled after adding a new layer, that layer is
dropped again, and the cluster is declared to be ”finished”.
A cluster is also finished if no more nodes are found that
could be added. Finished clusters no longer participate in the
algorithm. Once all clusters are finished and the number of
clusters in the uppermost hierarchy level is not larger than
s, the simulation is considered complete.

C. Modifications to the Heuristic

Several changes to the partitioning algorithm were needed,
to make it suitable for our QoS maps:

1) Stopping Condition: The original algorithm [1] bounds
the number of inter-cluster edges, dependent on the network
size. This requires knowledge of the total number of nodes
in the network graph, which is costly to derive accurately
for large ONs. We evaluated several stopping conditions
in [12], and found that bounding the number of inter-
cluster edges e in addition to the cluster size s works well.
In our experiments, we set s to 10, as it offers a good
compromise between runtime overhead and hierarchy depth,
and e to s − 1, to decreases the likelihood of aggregating
nodes into hubs with more than s − 1 neighbor clusters.
Because imposing a hard limit on inter-cluster edges made
it impossible to aggregate highly connected networks, we
always allow cluster heads to add their first layer, even if
the number of inter-cluster edges exceeds e.

2) Multiple Hierarchy Levels: As the algorithm runs in
parallel, without explicit synchronization, no global knowl-
edge of when the current hierarchy level is fully partitioned



into clusters exists1. Any finished cluster immediately begins
running the partitioning algorithm in the next highest hier-
archy level. Therefore, we must consider that different parts
of the ON may perform aggregation on different hierarchy
levels at the same time. We include each node’s current
hierarchy level in every message it sends. A node will not
execute the partitioning algorithm until all its neighbors are
at least the same hierarchy level as itself. Any node with
a neighbor with a higher hierarchy level considers it to be
part of a finished cluster. These changes do not affect the
correctness of the algorithm in [1].

3) Aggregation of Large Hubs: Hubs with more than s−1
neighbors pose a problem for the original heuristic, as it
partitions the network by adding layers of surrounding nodes
to the partition of a potential cluster head. If the first layer
exceeds the partition size bound, it is dropped again, which
results in a partition with only a single node. Once the entire
network consists of such hubs, no further aggregation is
possible. Hubs are very common in ONs, and frequently
occur in higher hierarchy levels during aggregation. We
considered several approaches to deal with them. First, we
permitted adding at least one layer, even if it exceeded the
desired cluster size s. We refer to this as Naı̈ve Aggregation
(NA). Figures 2 and 3 show this simple approach resulted
in the lowest runtime and hierarchy depth, however, clusters
are no longer bounded. On our ONs with 5, 000 nodes and
a target cluster size of 10, the average size of the clusters
on the topmost hierarchy level is 170.17 ± 20.624 nodes.
As excessively large cluster sizes defeat the purpose of
aggregation, we do not consider NA suitable for QoS maps.

We approach this new problem in two steps. The original
algorithm either adds all nodes of a layer, or none. We
change the algorithm to perform ”Partial Explorations” (PE):
If a node is surrounded by more than s − 1 neighbors, the
cluster head randomly accepts s− 1 nodes into the cluster.
The remaining nodes are dropped and the cluster is switched
to a finished state. Figure 2 shows that the runtime of the
algorithm increases. This is expected, as excess nodes are
dropped and continue to participate in the algorithm. NA
would have accepted these nodes, creating very large clusters
that are unbounded. In the worst case, NA aggregates the
entire network into a single cluster with n nodes. In contrast,
PE bounds the size of each cluster at s nodes. Furthermore,
despite the increase, PE retains the sub-linear runtime of
the original algorithm. As an upper bound on the cluster
size is crucial for scalability, we argue that this trade-off is
worthwhile. The main problem of PE is seen in Figure 3:
The hierarchy depth increases sharply, which is again caused
by large hubs: As the number of a hub’s neighbors is only
reduced by up to s− 1 nodes at each hierarchy level, hubs
with many neighbors cause a significant increase in depth.

1An exception to this is the uppermost hierarchy level. As all nodes are
in the same cluster, they observe that their cluster has no inter-cluster edges,
which indicates that the hierarchy has fully been built.

Figure 2. Runtime on random dense ONs; different numbers of nodes.

Figure 3. Hierarchy depth on random dense ON; different numbers of
nodes.

We therefore introduce Virtual Nodes (VNs): Once a cluster
completes a partial exploration, the cluster head splits into
the finished cluster, and a virtual node. The virtual node is
connected to the cluster, as well as all remaining neighbors,
and continues to participate in the algorithm. With VNs,
hubs are broken up effectively within a single hierarchy
level. While this causes additional load on the hub, we
argue that if such large hubs exist in the network or the
hierarchy, they are likely sufficiently powerful to handle the
additional load. Figure 2 shows the runtime increases over
PE and NA. This is again expected, as a hub splitting into
two nodes effectively introduces new (albeit virtual) nodes
to the network. On the other hand, Figure 3 shows that VNs
decrease the hierarchy depth once more. While the runtime
increased over the original heuristic, it remains sub-linear.
In addition, all large clusters have been removed, and the
hierarchy depths are only one to two levels deeper than
the theoretical optimum. We therefore consider the runtime
increase of VN a reasonable trade-off for our QoS maps.

IV. QOS ESTIMATION

Once the hierarchy is created, it can be used for efficient
routing and QoS estimation in the original ON. In this
section we outline our approach for QoS estimation. The
detailed algorithm with a complexity of O(log2 n), and
its evaluation are omitted due to space limitations, and



can be found in our technical report [12]. Whenever a
cluster is finalized, QoS epitomes of any desired QoS metric
are created. They approximate the QoS experienced for
traversing that cluster from any entry node to any exit node,
which reduces the amount of information that needs to be
advertised to other clusters. Note that any cluster in our QoS
map may be the target cluster of a route, in which case they
do not have an exit node. We therefore compute the worst
QoS metrics from each entry point to any node in the cluster
and include it in the epitome. Obtaining this information has
little overhead as the cluster size is bounded.

A node that wishes to predict the QoS experienced on
a path to a target node first locates the highest hierarchy
level that contains both its own cluster and the cluster of
the target. Recall that every node has a local view of the
topology, which contains the topology of its own cluster, and
all its parent clusters. For example, Figure 1 shows the local
view of node ”A”. Therefore, using its local view, it can now
find possible routes to the cluster of the target node on that
hierarchy level, utilizing any common routing algorithm.

Each of these routes contains up to three types of clusters:
a source cluster, a target cluster and zero or more transit
clusters. Note that for the trivial case, in which both nodes
share the same cluster at level 0, source and target clusters
may be identical. These cluster types differ in the amount
of local information the source node has, and are treated
differently for QoS prediction purposes: Transit clusters are
traversed on route to the target node. As QoS epitomes for
each cluster contain the aggregated QoS from each entry to
each exit point, they can be used directly to get an estimate
of the cost of traversing them. The target cluster is the least
accurate cluster type. As they do not have an exit point, it
would be necessary to have a view of the target cluster in
order to provide a precise estimation. Without said view, the
worst case QoS from its entry node to any node in the cluster
has to be assumed. The source cluster can be broken down
to the next lowest hierarchy level to use less aggregated QoS
epitomes and so increase the quality of the prediction. We set
the new target node to any exit point we consider and apply
the algorithm recursively, until we reach the unaggregated
ON of our own cluster at level 0. After the QoS epitomes
for each cluster are combined, the source node now has a
coarse estimate of the QoS for each path without consuming
any network resources. The accuracy of this estimate can
be improved in two ways: A cooperative target node can
estimate the QoS from each entry point of its cluster to itself
as described before, and transmit that information to the
source node. In addition, with the cooperation from nodes of
any transit cluster, its less aggregated next-lowest hierarchy
level can be considered in place of the QoS epitome.

Note that the topology of the ON is aggregated without
considering QoS. Therefore, a cluster may contains paths
and nodes with vastly different quality. This is intended:
QoS maps aim at giving a view of the landscape of the

given ON. We do not intend to change the landscape itself.
By comparing the range of QoS metrics in the QoS epitomes,
they can be used to identify poor topology-awareness in the
underlying ON and thus help to find a better one. In any case,
our QoS maps allow QoS estimation regardless of how well
or poorly the underlay is organized.

V. CONCLUSION AND FUTURE WORK

This paper introduced QoS maps, a decentralized hierar-
chical approach to perform scalable QoS estimation in large
ONs. We have shown that by modifying a decentralized
version of the Basic Partition algorithm [1], we are able to
aggregate the network topology into a hierarchy with small
cluster sizes and low depth. Finally, we outlined a multi-level
QoS estimation algorithm that uses QoS maps to predict QoS
on any path between two nodes starting using only local
information. Future work will address churn in the ON: In
a first experiment, we follow a similar approach to [3] and
perform small, localized changes to the hierarchy, merging
sparse and splitting large clusters as necessary. However, a
detailed evaluation of this approach for our QoS maps is
subject of future research.

REFERENCES

[1] B. Derbel, M. Mosbah, and A. Zemmari, “Sublinear fully
distributed partition with applications,” Theory Comput. Syst.,
vol. 47, no. 2, pp. 368–404, 2010.

[2] R. Hou, K.-S. Lui, K.-C. Leung, and F. Baker, “Routing with
QoS information aggregation in hierarchical networks,” in
17th Int. Workshop on Quality of Service, July 2009, pp. 1–9.

[3] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable
application layer multicast,” SIGCOMM Computer Commu-
nication Review, vol. 32, pp. 205–217, August 2002.

[4] S. S. Aman, M. R. Akbarzadeh-Totonchi, and M. Naghib
zadeh, “A novel approach to distributed routing by Super-
AntNet,” in Proc. IEEE CEC 2008, 2008, pp. 2151–2157.

[5] S. Uludag, K.-S. Lui, K. Nahrstedt, and G. Brewster, “Analy-
sis of topology aggregation techniques for QoS routing,” ACM
Comput. Surveys, vol. 39, no. 3, 2007.

[6] W. Y. Tam, K. S. Lui, S. Uludag, and K. Nahrstedt, “Quality-
of-service routing with path information aggregation,” Com-
put. Networks, vol. 51, no. 12, pp. 3574–3594, 2007.

[7] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some
simplified NP-complete problems,” in Proc. 6th Annual ACM
Symposium STOC ’74. New York, NY, USA: ACM, 1974,
pp. 47–63.

[8] F. Pellegrini and J.-H. Her, “Efficient and scalable parallel
graph partitioning,” in 5th Int. Workshop PMAA’08, Neuchâtel
Suisse, 2008.

[9] D. G. Thaler and C. V. Ravishankar, “Distributed top-down
hierarchy construction,” in Proc. IEEE INFOCOM ’98, 1998,
pp. 693–701.

[10] S. Basagni, “Distributed clustering for ad hoc networks,” in
Proc. 4th Int. Symposium on Parallel Architectures, Algo-
rithms, and Networks, I-SPAN ’99, 1999, pp. 310–315.

[11] Y. Wan, S. Roy, A. Saberi, and B. Lesieutre, “A stochastic
automaton-based algorithm for flexible and distributed net-
work partitioning,” in Proc. SIS 2005, 2005, pp. 273–280.

[12] S. Wieser and L. Boeszoermenyi, “Self-organizing topology
aggregation for QoS maps and routing,” Klagenfurt Univer-
sity, Tech. Rep. TR/ITEC/01/2.11, March 2011.


