
Dipl.-Ing. Robert Kuschnig

Congestion-Aware Quality-Adaptive

Streaming of Scalable Video

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

Studium: Informatik

Alpe-Adria Universität Klagenfurt

Fakultät für Technische Wissenschaften

1. Begutachter: Univ.-Prof. Dipl.-Ing. Dr. Hermann Hellwagner

Institut: Institut für Informationstechnologie

Alpe-Adria Universität Klagenfurt

2. Begutachter: Prof. Dr.-Ing. Wolfgang Effelsberg

Institut: Lehrstuhl für Praktische Informatik IV

Universität Mannheim

Juli/2012

ii

Declaration of honour

I hereby confirm on my honour that I personally prepared the present

academic work and carried out myself the activities directly involved with it.

I also confirm that I have used no resources other than those declared. All

formulations and concepts adopted literally or in their essential content from

printed, unprinted or Internet sources have been cited according to the rules for

academic work and identified by means of footnotes or other precise indications

of source.

The support provided during the work, including significant assistance

from my supervisor has been indicated in full.

The academic work has not been submitted to any other examination

authority. The work is submitted in printed and electronic form. I confirm that

the content of the digital version is completely identical to that of the printed

version.

I am aware that a false declaration will have legal consequences.

Klagenfurt, Juli/2012

iii

vi

Acknowledgements

I would like to thank my supervisor professor Hermann Hellwagner for giving me the

opportunity and financial support to conduct this research. He encouraged me to focus on

TCP-based adaptive video streaming, which was - till recently - seen controversial even for

Internet deployments.

In addition, I want to acknowledge professor Wolfgang Effelsberg for giving me im-

portant feedback on my thesis. The discussions helped to pinpoint the research focus and

the contributions made.

Finally, I want to thank all colleagues at ITEC - especially Ingo Kofler - for their

fruitful discussions and our joint work.

vii

viii

Kurzfassung

Während das Internet anfangs hauptsächlich für die Verbreitung von Informationen genutzt wurde, kon-

nten mit der flächendeckenden Einführung von Breitband-Internet-Anschlüssen auch neue Geschäftsfelder

erschlossen werden. Eine dieser neuen Anwendungen ist Internet-Video-Streaming. Doch die Übertragung

großer Datenmengen über das Internet ist nicht unproblematisch, da es im Internet keine Möglichkeiten zur

Sicherstellung von Dienstgüte gibt. Die daraus resultierenden Probleme sind große Schwankungen in der

verfügbaren Bandbreite und der Paketlatenz, Paketverlust und Überlastung des Netzwerkes. Diese Rah-

menbedingungen erschweren einen reibungslosen Videokonsum und machen Internet-Video-Streaming zu

einem sehr interessanten Forschungsgebiet. Das Transmission Control Protocol (TCP) ist das Standard-

protokoll im Internet für zuverlässige Datenübertragung mit Überlaststeuerung. Im Besonderen wurde das

Design von TCP auf die Bedürfnisse der zuverlässigen Datenübertragung im Internet abgestimmt. Dieser

Umstand verlieh TCP-basiertem Internet-Video-Streaming Auftrieb.

Aus diesem Grund konzentriert sich diese Arbeit auf TCP-basiertes Video-Streaming für das Internet.

Das Ziel ist es, Video-Streaming in überlasteten und fehlerbehafteten Netzwerken zu verbessern. Die Arbeit

umfasst sechs wissenschaftliche Beiträge, welche im Folgenden näher erläutert werden. (1) Drei adaptive

Streaming-Verfahren basierend auf TCP wurden evaluiert, um die Leistungsfähigkeit von TCP-basiertem

Streaming unter diversen Netzwerkbedingungen zu bestimmen. Die Ergebnisse dieser Evaluierung dienen

als Referenz für weitere Untersuchungen. (2) Untersuchung über den Einfluss von Paketverlust auf die Leis-

tungsfähigkeit von TCP-basiertem Video-Streaming. (3) Ein neues Video-Streaming-Verfahren basierend

auf dem Anfrage-Antwort-Prinzip wurde entworfen, um die Einschränkungen von TCP-Streaming zu umge-

hen (die Leistungsfähigkeit von TCP-Streaming verschlechtert sich rapide mit steigendem Paketverlust).

Die Neuerung dieses HTTP-basierten Verfahrens ist, dass die Fairness gegenüber TCP akzeptabel bleibt,

obwohl gleichzeitig mehrere Datenströme für die Übertragung verwendet werden. (4) Ein Modell des HTTP-

basierten Anfrage-Antwort Streaming-Verfahrens wurde entwickelt, welches die Leistungsfähigkeit des Ver-

fahrens für unterschiedliche Systemparameter und Netzwerkbedingungen beschreibt. (5) Um die Gültigkeit

des Modells zu bestätigen, wurde die Leistungsfähigkeit des Anfrage-Antwort-Streaming-Verfahrens unter

diversen Netzwerkbedingungen evaluiert. Zusätzlich wurde die Fairness gegenüber TCP gemessen. Die

Systemparameter des Streaming-Verfahrens können so konfiguriert werden, dass Fairness gegenüber TCP

gewährleistet werden kann. (6) Ein mobiles Video-Streaming Szenario mit großen Bandbreitenschwankun-

gen und RTTs wurde genutzt, um die Leistungsfähigkeit des HTTP-basierten Anfrage-Antwort-Streaming-

Verfahrens unter schwierigen Netzwerkbedingungen zu ermitteln. Das Verfahren nutzt die verfügbare Band-

breite effizient und kann die Anzahl der Qualitätsänderungen gering halten.

Das HTTP-basierte Anfrage-Antwort-Streaming-Verfahren vereint die gesamte Streaming-Logik im

Streaming-Client und schafft es dadurch, die Komplexität des Streaming-Verfahrens zu minimieren.

Zusätzlich kann auf Änderungen der Netzwerkbedingungen schneller reagiert werden, da der Regelkreis nicht

das Netzwerk involviert. Ein weiterer Vorteil von HTTP-basierten Ansätzen ist die Möglichkeit, auf vorhan-

dene Infrastruktur (wie z.B. HTTP-Server oder -Proxies) zurückzugreifen, um damit die Einsatzkosten zu

verringern oder die Skalierbarkeit zu verbessern.

ix

x

Abstract

Internet video streaming is a hot topic in multimedia systems. A large variety of devices (computers, mobile

phones, TVs, etc.) are connected to the Internet via wired or wireless networks and are capable of receiving

and decoding HD video content. To enable new services like HD video streaming (e.g., online video rental),

the Internet’s infrastructure was enhanced. But the Internet is still a best-effort network, which does not

implement quality-of-service or admission control, resulting in time-varying bandwidth and packet delay,

packet loss and network congestion. Because video streaming accounts for a considerable amount of the

Internet’s traffic, video streaming needs additionally to be congestion-aware, to avoid a congestion collapse

of the Internet. The Transmission Control Protocol (TCP) can adapt to changing network conditions and is

currently the de facto standard protocol for congestion-aware and reliable data transmission in the Internet.

This fact gave TCP-based video streaming a huge momentum.

Consequently, this thesis investigates TCP-based adaptive video streaming for the Internet. The main

goal is to provide a solution for congestion-aware video streaming, while still being able to achieve a rea-

sonable performance in error-prone networks. To complement existing work on congestion-aware adaptive

streaming, this thesis makes six contributions. (1) The baseline performance of TCP-based adaptive stream-

ing is identified by means of an evaluation of different adaptive streaming approaches. The results represent

a reference for further investigations. (2) An investigation on the influence of TCP’s behavior in presence

of packet loss on the video streaming performance. (3) To overcome the shortcomings of TCP-based video

streaming (single TCP connections fail to deliver a good performance in case of packet loss), a new ap-

proach to video streaming based on multiple request-response streams was introduced. The novelty of this

system is that it is able to make use of multiple HTTP-based request-response streams while still providing

TCP-friendliness. (4) A performance model of the HTTP-based request-response streams was developed, to

estimate the influence of the system parameters and the network characteristics on the throughput perfor-

mance. (5) A comprehensive evaluation of the HTTP-based request-response streams under diverse network

conditions was conducted, to validate the model’s estimations. Additionally, the TCP-friendliness was eval-

uated, showing that request-response streaming systems can be configured to achieve TCP-friendliness. (6)

A cellular network with high bandwidth fluctuations and RTTs was used to investigate the performance of

the request-response streaming system in a mobile video streaming scenario. The results indicate that the

streaming system can make good use of the available bandwidth, while the number of quality switches is

kept low.

While aggregating multiple TCP connections to improve the TCP streaming performance is quite com-

mon, usually the improvement comes at the cost of high deployment effort. By placing the streaming logic

at the client, request-response streams can avoid this complexity. Additionally, this client-driven approach

responds faster to changing network conditions and enables easy recovery from connection stalls or aborts,

because the control loop is at the client. To improve the network efficiency and the scalability in terms of

number of clients served, HTTP-based request-response streams can utilize HTTP proxies and caches.

xi

xii

Contents

Acknowledgements vii

Kurzfassung ix

Abstract xi

1 Introduction 1

1.1 Motivation and Use Case . 1

1.2 Related Work . 3

1.3 Research Goals and Contributions . 7

1.4 Structure . 10

2 Video Codecs and Adaptation 11

2.1 Video Codecs . 11

2.1.1 MPEG-4 AVC - H.264 . 12

2.1.2 H.264/SVC - Scalable Video Coding 15

2.2 Adaptation Constraints . 17

2.2.1 Usage Environment . 17

2.2.2 User Preferences . 19

2.3 Video Adaptation . 19

2.3.1 Video Transcoding . 20

2.3.2 Scalable Video Adaptation . 23

3 Video Transmission in IP Networks 27

3.1 Internet Protocol Suite . 27

xiii

3.2 Application Layer Protocols for Video Streaming 31

4 Adaptive Video Streaming in Networks with Time-Varying Bandwidth 37

4.1 Rate-Control for Adaptive Video Streaming 39

4.2 Stream Switching . 41

4.3 Priority Streaming . 43

4.4 Adaptive Streaming Architectures . 46

4.4.1 Server-side Adaptive Streaming . 47

4.4.2 Client-driven Adaptive Streaming 49

4.4.3 In-Network Adaptation . 51

4.4.4 Hybrid Systems . 54

4.5 Related Work . 54

4.5.1 Related Work in Research . 55

4.5.2 Standards and Applications . 57

5 TCP-based Adaptive Internet Video Streaming 59

5.1 TCP-based Adaptive Video Streaming . 60

5.2 TCP-based Adaptive Streaming of H.264/SVC 63

5.2.1 Stream Switching using Application-layer Bandwidth Estimation . . 64

5.2.2 Stream Switching using TCP-Stack-based Bandwidth Estimation . . 68

5.2.3 Priority-based Adaptive Streaming 68

5.3 Evaluation of TCP-based Adaptive Video Streaming 71

5.3.1 Test Setup . 72

5.3.2 Network Scenarios . 73

5.3.3 Test Content . 74

5.3.4 Evaluation Methodology . 75

5.4 Results . 77

5.5 Limitations of TCP-based Adaptive Video Streaming 89

6 Parallel HTTP-based Request-Response Streams 93

6.1 TCP-based Video Streaming in Error-Prone Networks 93

6.2 Modelling HTTP-based Request-Response Streams 95

6.2.1 Simple Model . 97

xiv

6.2.2 Enhanced Model utilizing Network Characteristics 100

6.3 Adaptive Video Streaming with Parallel HTTP-based Request-Response

Streams . 105

7 Performance of Parallel HTTP-based Request-Response Streams 109

7.1 Evaluation Methodology . 109

7.1.1 System Parameters . 110

7.1.2 Network Scenarios . 110

7.2 Video Content . 111

7.3 Performance Metrics . 113

7.4 Test Setup . 114

7.5 Results . 115

7.5.1 System Parameters . 115

7.5.2 TCP-friendliness . 119

7.5.3 Comparison with Enhanced Model 122

7.5.4 Video Quality . 122

8 Mobile Video Streaming using Request-Response Streams 127

8.1 Cellular Network Traces . 128

8.2 Evaluation Methodology . 130

8.3 Results . 131

9 Conclusion 151

Bibliography 155

xv

xvi

CHAPTER

1 Introduction

1.1 Motivation and Use Case

The Internet and its applications are accelerating technical innovation in consumer

electronics. Currently, a growing number and variety of devices are connected to the

Internet. To support new applications, the network infrastructure was enhanced, resulting

in considerably increased last-mile bandwidths [19]. One of these new applications

is Internet video streaming, which heavily relies on network bandwidth. While video

conferencing was popular for a long period of time, video-on-demand (e.g., online video

rental) and Live Video (TV broadcasts) are new emerging video streaming applications.

In Figure 1.1, the transmission path in an Internet video streaming scenario is shown. As

already mentioned, Internet video streaming generates a considerable amount of network

traffic and its still growing [55, 94]. For that reason, Internet video streaming needs to be

congestion-aware, to avoid a congestion collapse of the Internet.

Figure 1.1: Internet video streaming scenario.

Page 2 CHAPTER 1. INTRODUCTION

The Transmission Control Protocol (TCP) is currently the de facto standard protocol

for congestion-aware and reliable data transmission in the Internet. This fact gave TCP

video streaming a huge momentum. As a result, video delivery over the Internet based

on TCP became very popular in the recent past. TCP was often seen as an improper

choice for video streaming [49], because its reliable data transfer and congestion control

introduces significant delay. While this is certainly a problem in VoIP, which requires low

end-to-end delays, other applications like Video-on-Demand or video in social networks [42]

are less demanding. Start-up delays of several seconds are tolerated, if jerky playback can

be avoided.

In the beginning of TCP-based video streaming, the download-and-play and progressive-

download paradigms were dominant [7]. These methods usually deploy video content with

constant bit rate (CBR) and use excessive buffering to overcome possible bandwidth short-

ages. As a result, very high start-up delays are introduced. While these approaches work

reasonably well for short video clips, serving videos of one or more hours play-out time is

difficult. But play-out buffers can only compensate packet jitter and/or bandwidth varia-

tions. As a result, even large buffers may drain if the play-out duration is very long and

a constant network bandwidth/video bit rate mismatch is present. Eventually, the buffer

is empty and re-buffering will happen, which leads to a stall in the video play-out (jerky

playback).

There are several reasons why such a bandwidth/video bit rate mismatch may occur.

One possibility is that the video bit rate may have been selected improperly and exceeds

the maximum available bandwidth. While this problem can be solved easily, the networks’

characteristics impose more challenging problems. The Internet and the last-mile networks

are shared resources, so the available bandwidth changes constantly with users joining or

leaving the network. In addition, the amount of traffic generated by the users may change

over time. This reflects the best-effort characteristic of the Internet, which features no

quality of service (QoS) or admission control. As a result, a bandwidth/video bit rate

mismatch may occur at any time, because of the ever changing network conditions, namely

the available bandwidth, the packet delay, the packet loss and the congestion level of the

network.

Nowadays, a massive shift to adaptive video streaming can be observed

CHAPTER 1. INTRODUCTION Page 3

[114, 64, 15, 4, 5, 37, 70]. This is because of the increasing requirements of high-

definition (HD) video and changed user expectations. Users are simply not willing to

wait minutes before the video starts to play. On the other hand, it is not possible to

download a whole HD video within seconds. The key to short start-up delays is adaptive

video streaming. Because it adapts the video bit rate to the available network bandwidth,

bandwidth/video bit rate mismatches are less likely to occur. For that reason, adaptive

streaming is able to limit the buffer usage and therefore the needed buffer size. Another

aim of adaptive video streaming is the efficient usage of the available bandwidth and to

provide the best possible video quality. Changes in the video quality should be kept at a

minimum, while offering a good average quality. Because it is not possible to fulfill both,

infrequent quality changes and good average quality, a trade-off has to be found between

these requirements.

In the following, the state-of-the-art of adaptive video streaming will be reviewed. Sec-

tion 1.3 will outline the research goals of this thesis, followed by a brief overview of the

contributions made to the state of the art in the field.

1.2 Related Work

Video streaming spans a broad field of research, involving different scientific disciplines.

While the most prominent fields are related to video coding and networking aspects, also

other technologies need to be integrated before a streaming system can be deployed.

Additionally, the intended use case has to be considered. The main use cases for adap-

tive Internet video streaming are video-on-demand and live video streaming. In video-on-

demand, a pre-encoded video (e.g., a movie clip) is streamed from a video server to a client.

Because the whole movie is available at the server, the video server can transmit the video

slower or faster, to keep the buffer level on the client constant. As a result, the aver-

age transmission rate of the video (stream-out rate) can be lower/higher than the average

video bit rate. In addition, remote-control-like operations, like fast-forward, rewind, pause,

etc., can be easily implemented. In contrast to video-on-demand, live video streaming is

more challenging, because the video is not available beforehand. Consequently, the average

stream-out rate is usually limited to the average video bit rate.

Page 4 CHAPTER 1. INTRODUCTION

Figure 1.2: Example of an Adaptive Streaming Architecture.

Adaptive Internet video streaming can be classified into several research topics [7]. In

Figure 1.2, an example of an adaptive streaming architecture is shown. The main topics

are described in the following.

Video Codecs and Adaptation: Efficient video codecs are an important aspect of video

streaming, because they enable the transmission of video content in good quality,

even in networks with bandwidth restrictions. Video adaptation is usually deployed

to tailor the video content to the user’s requirements or current network conditions.

Scalable video codecs support adaptation by design, enabling new approaches to adap-

tive video streaming.

Transmission of Video Content: The delivery of the video data to the client is coor-

dinated by transmission protocols. Usually, these protocols are either located in the

transport- or application-layer and are optimized for the transport of video data. In

case of Internet video streaming, also congestion-control and error-resilience have to

be provided, to be able to cope with the best-effort nature of the Internet. Because

transmission errors are very likely to occur, error recovery is needed to handle con-

nection resets or stalls in the transmission, while error correction/concealment is used

to correct or mitigate transmission errors.

CHAPTER 1. INTRODUCTION Page 5

Adaptive Streaming Systems: Streaming systems are a challenging research topic, be-

cause they aim to optimize the interaction between the single components under

various constraints. In addition to video codecs, adaptation and transmission proto-

cols, streaming systems integrate components for signaling the content-location and

content-related metadata. Adaptive streaming systems also have to cope with band-

width fluctuations, which call for bandwidth estimation or sender rate control. De-

pending on the application, transport security may be needed to prevent unauthorized

access to the video data. All components needed for building a streaming system are

incorporated into a streaming system architecture, which additionally defines the in-

teractions between the components.

Evaluation of Adaptive Streaming Systems: For streaming systems, the performance

under different network conditions is usually the benchmark criterion. The perfor-

mance is measured for different channel bandwidths, round-trip-times (RTTs), packet

loss rates and congestion levels and compared in terms of effective throughput and/or

video quality (peak signal-to-noise ratio - PSNR). In Internet-like scenarios, also TCP-

friendliness has to be provided, because TCP is currently the de facto standard for

congestion-aware data transmission in the Internet. For real-world deployments, scal-

ability in terms of number of clients served and network efficiency are of most impor-

tance, because they help to keep the deployment costs low.

In the early days of the Internet, video streaming was only possible at low resolutions

and bit rates. For that reason, it was necessary to use the available bandwidth in a very

efficient manner. The Real-Time Transport Protocol (RTP) [85] - developed for packet

switched networks - was used to keep the protocol overhead low and to enable error recovery

in case of packet loss. Because RTP needs dedicated server and network infrastructure

and has several issues with network address translation (NAT) and firewalls, the usage

of RTP for Internet video streaming was rather low. With increasing video traffic in the

Internet [55], the deployment of RTP - in most cases on top of the User Datagram Protocol

(UDP) - is not justifiable, because UDP lacks congestion control. The Datagram Congestion

Control Protocol (DCCP) [48] was created to provide application layer protocols like RTP

with congestion control, but - in contrast to TCP - DCCP does not provide reliable data

transmission, because it would break the real-time requirements of DCCP [95]. For Internet

Page 6 CHAPTER 1. INTRODUCTION

applications using low data rates like Voice-over-IP (VoIP), UDP’s congestion-unawareness

is not seen as a problem. In contrast to this, Internet video streaming has to be congestion-

aware, because it accounts for a significant part of the Internet traffic [55, 94]. But even

in this case, the usage of DCCP is problematic, because DCCP would need to use forward

error correction (FEC) [7] to cope with potentially lost packets. FEC usually recovers lost

packets up to a specified packet loss rate, which is dictated by the transmission channel.

While channel characteristics are known in private networks (like for IPTV networks [10]),

this is not the case for the Internet.

As a result, the usage of DCCP for Internet video streaming is seen very controversial,

because nowadays the users are not willing to accept visual artifacts due to errors in the

video transmission [10]. Up to now, there was little acceptance of DCCP in research or

industry. This is mainly because it is not clear in which cases DCCP will be beneficial

compared to UDP or TCP. In contrast to DCCP, TCP is well established and the de facto

standard protocol of the Internet. While in classical streaming TCP was often seen as a

bad choice [49], TCP’s ability to adapt to changing network conditions makes it a good

candidate for Internet video streaming.

Consequently, this thesis focuses on TCP-based adaptive video streaming for the Internet

and investigates its applicability for video-on-demand services. The related research topics

are application-layer transport protocols, adaptive streaming systems and the evaluation

of streaming systems. In Section 4.5, the most prominent work on TCP-based adaptive

streaming will be discussed. Because Internet video streaming is of most importance to the

industry, also standards and applications related to TCP-based adaptive video streaming

are presented. To keep the review of the related work concise, current developments in

video codecs, video adaptation and transmission protocols will be discussed separately in

Chapters 2 and 3. Chapter 2 introduces the most prominent video codecs currently used

in video streaming systems. In addition, the basic principles of video adaptation will be

reviewed to gain insights which adaptation options are available to adaptive video streaming.

Chapter 3 will give an overview on currently standardized network protocols with a special

focus on the applicability to the envisioned use case (Internet video streaming).

CHAPTER 1. INTRODUCTION Page 7

1.3 Research Goals and Contributions

Traditional non-adaptive streaming systems are server-centered and therefore allow for a

centralized solution. Scalability in terms of clients served and network utilization can be

realized by utilizing multicast networks [7, 78]. While multicasting works well in private

networks (like IPTV networks), things get complicated in the Internet.

An Internet video streaming system should at least be:

• Adaptive. The Internet is a best-effort service, hence, changes in the available band-

width may occur any time. The system should avoid jerky playback by adapting to

the current network conditions.

• TCP-friendly. Competition over the available bandwidth should be fair. Currently,

TCP-friendliness is the metric to assess the fairness of a network protocol, because

TCP is the de facto standard protocol of the Internet.

• Scalable in terms of clients served. The overhead to provide adaptiveness and TCP-

friendliness should not lower the number of clients served.

• Network-efficient. The available bandwidth should be used in an efficient manner and

additional redundancies in the video transmission should be avoided. E.g., n clients

requesting the same video content should not utilize bandwidth equal to n times the

video bit rate, but ideally consume only the bandwidth of a single video stream.

When evaluating existing approaches to adaptive video streaming (see related work in

Section 1.2 and 4.5), it became evident that TCP-based adaptive video streaming is most

suited to be deployed in the Internet. While streaming systems based on UDP estimate

the available bandwidth based on client feedback, adaptive TCP streaming uses TCP’s

inherent adaptability to steer the stream-out rate. TCP-based adaptive streaming can

produce good results even in congested networks, which makes it a good candidate for

Internet video streaming.

Page 8 CHAPTER 1. INTRODUCTION

But TCP also exhibits unfavorable characteristics, which limit streaming performance.

Packet loss has a severe effect on TCP’s performance, making video streaming almost im-

possible. Additionally, TCP streaming has several scalability issues. Usually, all streaming

and adaptation logic is placed on the server, to avoid adding the network delay to the con-

trol loop. This may lead to poor scalability in terms of clients served, because compared to

non-adaptive streaming it requires additional effort to manage the client state and adapt

the video content. TCP’s end-to-end transmission paradigm and the adaptation to the spe-

cific client requirements lead to a unique streaming session for each client. For that reason,

no caching or proxying of the video data can be deployed in the network, leading to a bad

utilization of the network resources.

HTTP-based video streaming can utilize content distribution networks (CDNs) and

HTTP caches to enhance the scalability in terms of of clients served and the network

efficiency, because - unlike TCP - it uses resource identifiers to locate the video data.

In addition, existing infrastructure can be reused, resulting in low deployment and

maintenance costs. Apart from the improved scalability, HTTP’s client-driven paradigm

also enables new approaches to adaptive streaming.

The main research goal of this work is congestion-aware video streaming in error-

prone networks with a focus on video-on-demand. To complement existing work on this

topic, this thesis makes the following contributions:

• Performance Evaluation of TCP-based Adaptive Video Streaming. Different adapta-

tion approaches to TCP-based adaptive video streaming are evaluated. As a result,

the baseline performance of a TCP-based streaming system is identified, which should

represent a reference.

• Analysis of TCP-based Video Streaming Regarding Packet Loss. The influence of

TCP’s behavior in presence of packet loss on the video streaming performance is

investigated.

• A New Approach to Video Streaming based on Multiple Request-Response Streams.

Because single TCP connections fail to deliver a good performance in case of packet

loss, a new streaming system based on the request-response paradigm is introduced.

CHAPTER 1. INTRODUCTION Page 9

The novelty of this system is that it is able to make use of multiple HTTP-based

request-response streams while still providing TCP-friendliness.

• Performance Model of HTTP-based Request-Response Streams. A detailed model es-

timates the influence of the system parameters and the network characteristics on the

throughput performance.

• Comprehensive Evaluation of HTTP-based Request-Response Streams. The streaming

system is evaluated under diverse network conditions to validate the model’s estima-

tions. In addition to the throughput performance, also the TCP-friendliness is evalu-

ated, showing that request-response streaming systems can be configured to achieve

TCP-friendliness.

• HTTP-based Request-Response Streams in a Mobile Video Streaming Scenario. The

performance of the request-response streaming system is investigated in a cellular

network scenario with high bandwidth fluctuations and RTTs. The streaming system

can make good use of the available bandwidth, while keeping the number of quality

switches low.

While using multiple TCP streams to enhance the TCP streaming performance is quite

common (see related work in Section 4.5), usually the enhancement comes at the cost of

high deployment effort. Request-response streams avoid this complexity, by placing the

streaming logic at the client. In short, no new TCP implementation is needed and no

additional feedback loop between the server and the client. The approaches described in

the related work need a rather complex feedback loop between the client and the server,

which has to coordinate the transmission in case of connection aborts. This client-driven

approach responds faster to changing network conditions and enables easy recovery from

connection stalls or aborts, because the control loop is at the client. HTTP-based request-

response streams can utilize HTTP proxies or caches to improve the network efficiency and

the scalability in terms of number of clients served.

Page 10 CHAPTER 1. INTRODUCTION

1.4 Structure

The remainder of the thesis is organised as follows. The most prominent video codecs used

for video streaming, the mechanism of video adaptation, the adaptation constraints and

the computational cost of video adaptation will be reviewed in Chapter 2. Chapter 3 will

present the most important network protocols used in IP-based video transmission. The

main algorithms and architectures behind adaptive Internet video streaming will be shown

in Chapter 4. In Chapter 5, the performance of TCP-based adaptive video streaming using

H.264/SVC will be evaluated. The behavior of TCP- and HTTP-based request-response

streams in error-prone networks will be investigated in Chapter 6. In a comprehensive

evaluation, the request-response streaming system will be profiled, comparing the modeled

throughput performance to the measured results (see Chapter 7). In Chapter 8, the request-

response streams will be evaluated in a mobile video streaming scenario, which shows the

impact of a highly time-varying bandwidth on the streaming performance. Chapter 9 con-

cludes this thesis.

CHAPTER

2 Video Codecs and Adapta-

tion

Usually, videos are produced at a high resolution and quality, which results - even if com-

pression is used - in very high bit rates. For that reason, videos cannot be used directly in

the recorded format, but have to be tailored for specific use cases like video-on-demand or

end devices (e.g., smart phones or tablet computers). Video adaptation modifies the char-

acteristics of the video (like spatial resolution, frame rate, visual quality or video bit rate)

such that they meet the requirements of the given use case. Also the content of the video

can be modified in the adaptation process if the use case requires it (e.g., removing violent

scenes). Because video is usually stored in a compressed/encoded format, video adaptation

has also to cope with different video codecs.

In this chapter, video adaptation will be reviewed in the context of video streaming.

In the following, the main properties of video will be discussed, followed by a review of

the currently most prominent video codecs used for video streaming. Different types of

requirements which steer the adaptation process will be presented in Section 2.2. The basic

methods of video adaptation will be discussed in Section 2.3.

2.1 Video Codecs

The amount of information stored within a video is very high. For example, a 1080p HD

video at 50 fps using 4:4:4 subsampling represents approximately 2.5 Gbit of data per sec-

ond. Because of that, it is not practicable to store videos without using compression. Video

codecs are used to reduce the amount of data needed for storage by removing redundancies

Page 12 CHAPTER 2. VIDEO CODECS AND ADAPTATION

between consecutive video frames. Further reductions can be achieved by removing infor-

mation (irrelevancies), which cannot be recognized by the human visual system. The most

prominent example is 4:2:0 chroma subsampling, which reduces the resolution of the color

information by half in each dimension. Other tools used for encoding images are transforma-

tions to the frequency domain, like the discrete cosine transform or the wavelet transform.

A video codec bundles different video coding tools to enhance the video compression [79].

Depending on the application domain, different video codecs are used. For example, low-

latency applications like video conferencing restrict video codecs by keeping the structural

delay of the prediction structures at a minimum. Because video conferencing is a real-time

application, also encoding and decoding of the content in real-time is mandatory, which

obviously restricts the complexity of the video codec.

On the other hand, the requirements for video-on-demand services are quite different.

Because the video content is usually pre-encoded, very efficient video codecs can be used

to optimize the rate-distortion ratio. But when streaming video over the Internet, a single

quality/bit rate of the video content may not be sufficient. The available bandwidth may

change during the video play-out and cause jerky playback. There are several ways to cope

with these requirements. One can pre-encode multiple representations of the content with

different qualities. This is very straight forward, but creates a lot of overhead in storage and

encoding requirements. To overcome these problems, scalable video codecs were proposed,

which embed multiple representations of the same video content in a single bit stream.

While the design of scalable video codecs is very elegant, the increased complexity in the

encoder and decoder and the inferior rate-distortion performance (compared to non-scalable

video codecs) are the major drawbacks.

In the following, the video codec H.264 and its scalable extension H.264/SVC will be

briefly introduced.

2.1.1 MPEG-4 AVC - H.264

ISO/IEC 14496-10 (MPEG-4 AVC) - also called H.264 (ITU-T) - is a joint standard for

video coding established by the MPEG and ITU-T consortium [110]. It is a high efficiency

video codec supporting a broad range of applications. H.264 works similarly to existing

video codecs like MPEG-2 video (ISO/IEC 13818-2) [2], following a block-based hybrid

CHAPTER 2. VIDEO CODECS AND ADAPTATION Page 13

Figure 2.1: Example of a hybrid video coding approach of inter-frame prediction and trans-
form coding.

video coding approach of inter-frame prediction and transform coding (see Figure 2.1).

Each video frame is split into blocks (macroblocks), which are the basic elements for fur-

ther operations. Intra (I) encoded macroblocks are created without using motion prediction.

Inter-frame motion prediction is used to remove redundancies between consecutive frames.

In H.264, two different inter-frame prediction modes for macroblocks are defined. Predicted

(P) macroblocks can use macroblocks of preceding frames as a reference and bi-predicted

(B) macroblocks can utilize macroblocks of preceding and future frames for prediction. Af-

ter the prediction, the residual is computed out of difference of the reference frame (motion

compensation) and current frame. The residual is then transformed and the transformed

signal is quantized. Typically a transformation to the frequency domain is used, which com-

pacts the information for natural images around the low frequencies (images with structured

texture). As a result, the amount of information needed to reproduce perceptual similar

results is reduced drastically. To further reduce the bit rate, the transform coefficients are

quantized, leading to more or less perceptible artifacts in the resulting image. After quan-

tization, entropy encoding is applied, to remove redundancies within the remaining video

data. H.264 provides different tools for motion prediction, transformation and entropy

encoding. Profiles and levels for H.264 decoders define the complexity of the decoder by

Page 14 CHAPTER 2. VIDEO CODECS AND ADAPTATION

choosing which video coding tools are to be used and how many macroblocks are to be pro-

cessed per second. In the following, the most prominent improvements of H.264 compared

to former video codecs are presented.

The multi-frame inter prediction can use two or more images to predict the content

of a frame. In the past, it was usually only possible to predict either from a preceding

or a subsequent frame. One application of this tool is the prediction of objects, which

were hidden in one frame, but are visible in another frame, basically taking the best fitting

parts of each frame. Intra frame prediction can be used to significantly reduce the size of

I-frames, because it enables the prediction of a macroblock from neighbouring macroblocks.

Another new feature is macroblock partitioning. Most of the existing video codecs use only

macroblocks of a certain size. H.264 can partition its basic 16x16 macroblocks into 8x8

or 4x4 blocks in order to enable fine grained motion prediction. In addition, quarter-pixel

motion prediction increases the accuracy of the motion prediction. The low complexity

integer transform avoids the usage of floating point operations and therefore simplifies

hardware implementations. An in-loop deblocking filter reduces block artifacts and enhances

motion prediction. Two new types of context adaptive entropy encoding lead to further

improvements in compression efficiency.

Another interesting feature is the new network abstraction layer (NAL), which encapsu-

lates each H.264 syntax structure into a logical data packet called NAL unit. In general, the

NAL units can be grouped into NAL units belonging to the video coding layer (VCL) and

NAL units needed to steer the decoding process (non-VCL NAL units). The 1-byte header

of the NAL unit consists of the NAL unit type and the NRI (NAL Reference Identification)

field, which indicates if the NAL unit is used to reconstruct reference pictures or not. The

NAL simplifies the handling of H.264 video data in the transport layer significantly, because

there is usually no need to parse the content of the NAL unit again.

H.264 offers high compression efficiency at reasonable computational costs. The simple

NAL layer enables easy integration into existing file formats or transport protocols. Also

the definition of profiles and levels to customize the codec’s properties led to a broad ac-

ceptance of H.264. At the time of writing, H.264 is a very successful standard used in many

applications and transmission systems.

CHAPTER 2. VIDEO CODECS AND ADAPTATION Page 15

2.1.2 H.264/SVC - Scalable Video Coding

Based on the success of H.264, a new scalable video codec featuring an H.264-compatible

base layer was proposed [88]. The main benefit of scalable video coding (SVC) is that it

provides scalability at the bit stream level. Properties like frame rate, frame resolution

or the quality of the video can be changed without having to re-encode the whole video.

Because H.264/SVC also uses the NAL layer, only NAL units have to be removed to

change the properties of the video. While former SVC codecs suffered from low coding

efficiency, H.264/SVC is the first scalable video codec to deliver a compression performance

comparable to its non-scalable counterpart.

The concept of a ’video’ can be seen as a sequence of images at a certain resolution,

which were captured at a certain point in time with a specific quality. The time between

capturing two consecutive images is usually constant. Hence, the number of images per

second (also known as the frame rate) is also constant. By dropping frames it is possible to

change the frame rate, which is also known as temporal scalability. It may be needed if, for

example, the client cannot decode as many frames as the initial frame rate specifies.

Another restriction of the client may be the maximum spatial video resolution it can

decode. In general, this is defined in profiles and levels. A client may signal that it can

only decode videos up to certain level (resolution and frame rate). To adjust the video

to the client’s requirements, the video may be scaled down to a certain resolution (spatial

scalability).

The video quality in terms of signal-to-noise-ratio (SNR) has the highest impact on the

resulting video bit rate. While with lossless compression the achieved bit rate reduction

compared to uncompressed video is very small, lossy compression in H.264 can adjust the

resulting video bit rate in that quantization parameters are adjusted. This introduces of

course more or less perceptible quality reductions in the video, depending on the video

content and the quantization parameters. The ability to change the quality of the video

(and video bit rate) without having to re-encode the video is called quality scalability.

H.264/SVC implements three scalability options. Temporal scalability is enabled by

restricting the inter-frame prediction in such a manner that frames can be dropped without

Page 16 CHAPTER 2. VIDEO CODECS AND ADAPTATION

introducing errors. This is also possible in H.264/AVC by means of the hierarchical

B-frames [87]. For spatial scalability, new prediction modes were introduced. Inter-layer

prediction enables the prediction of macroblocks from a lower resolution layer. The

prediction for spatial scalability is adaptive. It will choose either inter-frame, intra-frame or

inter-layer prediction, depending on which performs best. H.264/SVC provides two modes

of quality scalability. Coarse grained scalability (CGS) is a special case of spatial scalability.

In this case, the resolution does not change and only the quantization parameters differ.

As a result, with each CGS layer the quality of the video increases. The second option

of quality scalability is medium grained scalability (MGS). While in CGS, like in spatial

scalability, layers can only be changed on IDR- (instantaneous decoder refresh) or switching

frames, MGS is more flexible. In MGS, the quality may change for each frame. In general,

changing quality at frame level may introduce errors, because the decoder relies on

correctly decoded reference frames. In this context, correct means that the reference frames

should be reconstructed to the same reference frames, which the encoder used for motion

compensation. If the reference frames differ from the ones used in the encoder, all frames

referencing macro blocks from these frames are not decoded correctly either. This chain of

events is also called decoder drift, which leads to more or less perceptible artifacts in the

decoded frames. In MGS, special measures have been taken to avoid continuous decoder

drift. Key pictures are periodically inserted into the bit stream, for which the prediction is

restricted to the base layer [88]. With MGS, H.264/SVC is able to provide both, quality

scalability at a fine grained level and good compression efficiency, which is novel in scalable

video coding.

Listing 2.1: NALU header with SVC extension

+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+−+
|F |NRI | Type |R | I | PRID |N | DID | QID | TID |U |D|O| RR|
+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+

In order to signal the scalability options in H.264/SVC, the NAL unit concept of

H.264/AVC (NAL unit header and types) was extended [105]. The NALU header with

the SVC extension is shown in Listing 2.1.

CHAPTER 2. VIDEO CODECS AND ADAPTATION Page 17

The H.264 NALU header (see Section 2.1.1) is extended by three bytes, including param-

eters like the temporal ID (TID), dependency ID (DID), quality ID (QID), and the priority

ID (PRID). The temporal ID signals the dependencies within the inter-frame prediction.

In general, frames described by NALUs with high TID depend on frames/NALUs with

low TID. The parameter can be used to extract certain frame rates out of the H.264/SVC

bit stream. Spatial or CGS enhancement layers use the dependency ID to signal differ-

ent layers. Layers with higher DID values always depend on layers with lower DID. The

quality ID is used to signal MGS quality enhancement layers. The H.264/AVC backward-

compatible base layer has always a DID and QID of zero. Because H.264/AVC NALUs

have no SVC extension header to signal this information, a prefix NALU was introduced in

H.264/SVC, which precedes each AVC NALU. The usage of the priority ID is not defined

in the H.264/SVC standard and can be allocated based on the needs of certain applications

or use cases. The PRID may be used to define a suggested adaptation path, which specifies

in which order the NAL units should be discarded in case of adaptation. For example, the

Quality Level Assigner tool that is included in the JSVM [40] reference software uses the

PRID to create an adaptation path which is optimal w.r.t. rate-distortion.

2.2 Adaptation Constraints

In recent years, the way people consume video changed a lot. While usually videos were

watched in front of TVs or at the cinema, advances in computer technology enabled the

consumption of video on PCs or portable computers. Nowadays, videos can be watched in

any living condition, because almost all electronic devices support video playback. But all

devices usually differ in display size and computational capabilities, which calls for video

adaptation. As a result, the use case (e.g., mobile video consumption) imposes constraints

onto the video [13, 71]. The two main classes of constraints are the usage environment and

the user preferences, which will be explained in the next sections.

2.2.1 Usage Environment

Every video distribution system builds upon a specific infrastructure, consisting of video

servers hosting the video content, networks for the transmission of the video and finally

Page 18 CHAPTER 2. VIDEO CODECS AND ADAPTATION

clients or consumer end-devices for displaying the content. This infrastructure is also called

usage environment.

As mentioned before, the video content has to be tailored to consumer end-devices.

For example, small mobile phones may not be able to decode HD video and also do not

supply a display with the according resolution. Even if the device may be capable of

decoding the content in real-time, for smaller display resolutions, the decoded video has to

be resized on the client accordingly. This would be a waste of network resources, because

more information than necessary would be transported to the client. Therefore, the video

should be adapted to the client characteristics. This can be done by either choosing a

suitable representation of the video from a set of pre-encoded versions or by adjusting the

video to the client characteristics.

While the restrictions of the client devices are somehow static and can be negotiated

before the video transmission, the characteristics of a network show a more dynamic be-

havior. Networks are in general a shared resource used by many applications and users in

parallel. This problem can be solved by admission control for wired networks, where the

networks are administrated to prevent network overload and thereby congestion. Currently,

deploying admission control is only possible in private networks, where a single adminis-

trator entity manages the available resources. Best effort networks like the Internet do

not feature quality of service or admission control, either because they are too complex to

implement or it is not feasible due to the network’s architecture. Wireless networks exhibit

additional characteristics, inflicted by the wireless transmission channel. Hence, the achiev-

able throughput depends not only on the number of parallel data streams, but also on the

quality of the transmission channel and the distance between the sender and the receiver.

As a result, the available bandwidth may change over time and certain packets may be lost

due to transmission errors. Additionally, congestion may occur in best effort networks when

different data flows compete over their network share.

Apart from the constraints of the networks and the user end-devices, other constraints

of the usage environment like the brightness or the noise level of the environment may have

an influence on the video adaptation [71].

CHAPTER 2. VIDEO CODECS AND ADAPTATION Page 19

2.2.2 User Preferences

While the constraints of the usage environment globally apply to all video transmissions,

this class of constraints is directly related to a specific user. Because each user is different

in, e.g., age, gender or nationality, also different legal issues or expectations may be taken

into account when adapting the video content.

For example, violent scenes may be removed from videos before they are shown to

children. But also national laws may restrict the broadcast of videos with certain con-

tent. Another example is video adaptation for handicapped people, which have specific

restrictions on their perception. E.g., deaf people may benefit from subtitles, which can be

embedded into the video stream.

Preferences of the user may also set restrictions on the video adaptation process [71].

One example is that the quality of the video is more important to the user than the time

he/she has to wait for buffering the video at the client. Someone else may be annoyed by

jerky playback of the video, but the video quality in terms of SNR may not be that much

of importance.

Looking at the use case Internet video streaming, one can identify several restric-

tions. The Internet is a best-effort network, so a streaming system has to cope with

fluctuations in the available bandwidth and with network congestion. Because bandwidth

variations usually result in jerky playback, buffers are used at the client to mitigate this

problem. In addition, a transport protocol providing TCP-friendliness should be used, in

order to avoid congestion in the Internet.

This short roundup shows that the use case influences not only the adaptation of the

video, but also effects the behavior of the streaming system.

2.3 Video Adaptation

The overall aim of video adaptation is to maximize the utility of the video. It is a complex

process, which has to consider diverse constraints (see Section 2.2). The utility is in general

a combined metric, taking the preferences of the user, the service provider and the content

provider into account [13]. Video adaptation is a broad term, comprising low-level format

Page 20 CHAPTER 2. VIDEO CODECS AND ADAPTATION

conversions, video property adjustments and structural or semantic changes. This work

focuses on the adjustment of the video properties, without changing the actual video content.

There are two main approaches for changing video properties, like resolution, frame rate

or video bit rate, which are video transcoding [101] and scalable video adaptation [13, 68].

These techniques will be briefly introduced in the following.

2.3.1 Video Transcoding

The most straight forward method to convert a video with certain properties to an output

video with different properties is called full transcoding. This simply means that first the

input video is fully decoded. After this, the resulting uncompressed video is adapted to

meet the requirements of the output video. And finally, the adapted video is re-encoded

again [101]. The goal of transcoding is to reduce either the bit rate, the spatial resolution,

the temporal resolution, or a combination of them. This process is very generic and can be

applied to all kinds of video formats. Full transcoding is often used in offline processing of

video content, but seldom in adaptive transmission systems, because it comes along with

high computational costs and introduces additional transmission delay. To overcome the

obvious flaw of full transcoding, a large number of optimizations were proposed to speed

up the transcoding process [101]. While a change in all dimensions (temporal, spatial and

SNR dimension) usually calls for full transcoding, for reductions in a single dimension,

optimizations can be made by utilizing the knowledge about the codec’s architecture.

Video Bit Rate Reduction

Reducing the bit rate of the video may be required, for example, to adjust the stream-out

rate to the available bandwidth. Figure 2.2 depicts a pixel-domain transcoding architecture

for bit-rate reduction, which is based on a hybrid video coding approach of inter-frame

prediction and transform coding. Due to motion prediction, video encoding is usually much

more expensive than video decoding. So one idea is that the effort for motion prediction

may be reduced if the motion vectors of the input video can be used in the encoding process

of the output video. Because in general the spatial resolution is not changed if only a change

in the bit rate is required, it is usually assumed that the motion vectors can be reused [101].

This simplifies the encoding process drastically, because the motion prediction accounts for

CHAPTER 2. VIDEO CODECS AND ADAPTATION Page 21

Figure 2.2: Example of a pixel-domain transcoding architecture for bit-rate reduction [101].

Figure 2.3: Simplified transcoding for bit-rate reduction suffering from decoder drift [101].

a large portion of the encoder’s complexity. As a result, in the encoding step, the motion

prediction can be omitted (compare Figures 2.1 and 2.2). Only the quantization is changed

in the encoding step to reduce the video bit rate.

If perceptual artifacts can be tolerated, even more efficient optimizations can be made.

Figure 2.3 illustrates an efficient transcoding architecture for bit rate reduction. Unlike the

architecture shown in Figure 2.2, this architecture omits the motion compensation and the

transform to the pixel domain. Only the transform coefficients of the residual signal are re-

quantized. While this approach speeds up the transcoding process significantly, it does not

consider that the motion compensation relies on correctly reconstructed reference frames.

Because each decoded frame is a potential reference frame, the errors may propagate, leading

to decoder drift (see Section 2.1.2). As a results, more or less perceptible artifacts are

Page 22 CHAPTER 2. VIDEO CODECS AND ADAPTATION

Figure 2.4: Examples of motion vector mapping for four 16x16 MBs [101].

introduced into the decoded frames. The amount of artifacts primarily depends on the

video’s content and the motion prediction structures used in the encoder.

Spatial Resolution Reduction

Transcoding architectures for spatial resolution reduction also reuse motion vectors to de-

crease the transcoder complexity. For example, a technique called motion vector mapping

combines the motion vectors of adjoined macro blocks to a single motion vector for the new

macro block [101]. Another type of mapping utilizes differing macro block sizes. As de-

picted in Figure 2.4, the motions vectors may be reused directly in macro blocks of smaller

size.

The transform to the frequency domain results in low and high frequency components

of the image data. Retaining only the low frequency parts of the transform coefficients can

be used to change the amount of detail, which can also be interpreted as a reduction of

the spatial resolution. The low frequency parts can be packed into smaller macro blocks,

resulting in a smaller spatial resolution of the video [101]. This transcoding architecture

works similar to the re-quantization approach for bit rate reduction. For that reason, also

decoder drift may occur if motion prediction is used in the encoding process.

Temporal Resolution Reduction

A temporal resolution reduction can be achieved by removing frames from the video. But

removing reference frames from the video stream usually leads to errors in the decoding

process. In contrast to this, frames not used for motion compensation can be removed

CHAPTER 2. VIDEO CODECS AND ADAPTATION Page 23

without creating visual artifacts. Because this usually restricts the temporal resolution

reduction in too many ways, special methods to speed up the transcoding process were

proposed. References frames may be removed if the reference frames can be replaced by

other frames. To identify possible candidates, the motion vectors are traced throughout the

video stream [101].

A temporal resolution reduction can also be achieved by restricting the prediction

structure in the encoding process of the video [87]. Because this topic is more related to

the temporal scalability of scalable video, it is discussed in Section 2.1.2.

The transcoding optimizations are usually very codec-specific. While it is possible

to reuse motion vectors of different codecs, this may not be possible for transformed

coefficients. The reason for that is the different nature of the transforms used in the

different codecs (e.g., integer vs. discrete cosine transform). As a result, video transcoding

usually comes at high computational costs. Nevertheless, transcoding is a very important

technique to handle legacy video data. In recent years, a lot of effort was put into research

on transcoding, because of the upcoming transition from MPEG-2 video to H.264/AVC

[41, 14, 93].

2.3.2 Scalable Video Adaptation

The idea of scalable video is to provide means for video adaptation at the bit stream

level. SVC enables changing basic video properties (like frame rate, spatial resolution and

video bit rate) without having to transcode the video content. By simply removing parts

of the video bit stream, different representations of the video content can be extracted.

Figure 2.5 illustrates possible operation points of a scalable video configuration consisting

of three temporal (T), three spatial (D) and three quality/bit rate (Q) layers. The scalable

video configuration shown enables the extraction of 27 different representations out of the

scalable video bit stream, where each representation has a different temporal resolution,

spatial resolution and/or quality (bit rate). In the following, a codec-specific adaptation

approach based on H.264/SVC will be presented. A more generic way to handle scalable

video will be presented later.

Page 24 CHAPTER 2. VIDEO CODECS AND ADAPTATION

Figure 2.5: Possible operation points of a scalable video with three temporal (T), three
spatial (D) and three quality/bit rate (Q) layers.

H.264/SVC Adaptation

H.264/SVC does not only extend the H.264 video coding layer but also extends the NAL

(see Section 2.1.2). The scalability options are signaled in the SVC extension header, which

was designed to be easily parsable. As a result, the adaptation process for H.264/SVC is

reduced to the parsing of the NALUs’ SVC extension header and the decision whether the

NALU should be kept in the bit stream or not [105].

For example, a simple adaptation decision compares the temporal ID, dependency ID,

quality ID, and the priority ID to a given set of fixed values. Another method may use

only the priority ID value, which may in this case be initialized in a rate-distortion optimal

manner (see Section 2.1.2). Using this knowledge, an adaptive algorithm can filter out

NALUs based on the PRID to achieve a specific video bit rate.

The basic principle of video adaptation is the same for transcoding and scalable video.

Both approaches use the chosen frame rate, spatial resolution and/or video bit rate as

input for the adaptation process. While SVC offers only a discrete number of adaptation

possibilities due to the limited number of enhancement layers, the adaptation process of

SVC itself is very simple and computationally inexpensive.

CHAPTER 2. VIDEO CODECS AND ADAPTATION Page 25

Format-independent Adaptation based on MPEG-21 DIA

In this subsection, a brief introduction to MPEG-21 based, description driven adaptation

will be given. For more information on this topic, the reader is referred to [12, 72, 102, 103].

MPEG-21 Digital Item Adaptation [98] provides different normative description formats,

among others, the so called generic Bitstream Syntax Description (gBSD). A gBSD is an

XML-based description of a scalable media bitstream. In general, only high-level bitstream

structures are described, like packets, headers, or layers. The level of detail of this descrip-

tion depends on the characteristics of the bitstream (syntax elements, scalability, etc.) and

the application requirements.

Listing 2.2: generic Bitstream Syntax Description example

<gBSDUnit

xmlns :d ia=”urn:mpeg:mpeg21:2003:01−DIA−NS”

xmlns=”urn:mpeg:mpeg21:2003:01−DIA−gBSD−NS”

xmlns:bs1=”urn:mpeg:mpeg21:2003:01−DIA−BSDL1−NS”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”

xmln s : s i=”urn:mpeg:mpeg21:2003:01−DIA−XSI−NS”

xmlns:msi=”urn:mpeg:mpeg21:2003:01−DIA−MSI−NS”

addressUnit=”byte ” addressMode=”Absolute ” bs1:bitstreamURI=”v .264 ”

ms i : t imeSca l e=”90000” ms i :d t sDe l ta=”3000” s i : t im e S c a l e=”90000”>

<gBSDUnit s t a r t=”2435” l ength=”14590” marker=”Frame” s i : p t s=”24000”>

<gBSDUnit l ength=”9” marker=”T0D0Q0”/>

<gBSDUnit l ength=”846” marker=”T0D0Q0”/>

<gBSDUnit l ength=”669” marker=”T0D1Q0”/>

<gBSDUnit l ength=”442” marker=”T0D2Q0”/>

<gBSDUnit l ength=”1839” marker=”T0D3Q0”/>

<gBSDUnit l ength=”1265” marker=”T0D4Q0”/>

<gBSDUnit l ength=”2997” marker=”T0D5Q0”/>

<gBSDUnit l ength=”1442” marker=”T0D6Q0”/>

<gBSDUnit l ength=”5081” marker=”T0D7Q0”/>

</gBSDUnit>

</gBSDUnit>

An example of an gBSD for an H.264/SVC frame is shown in Listing 2.2. Each NAL

unit of the SVC bitstream is described by a gBSDUnit. The NALU’s length in bytes and

the marker attribute are mandatory fields to enable adaptation. The marker attribute, for

example, can be used to indicate the layer membership of the NAL unit (TID, DID, QID

and/or PRID). Usually, the addressing of the NAL units is done consecutively, starting

Page 26 CHAPTER 2. VIDEO CODECS AND ADAPTATION

from the start position of the frame. This gBSD contains all data needed in the adaptation

process, which are the parameters of the SVC extension header. But the description is not

codec-specific anymore and enables therefore adaptation in a codec agnostic way.

In the MPEG-21 DIA adaptation process, the gBSD of a media bitstream is transformed

first, followed by the generation of the adapted bitstream from the original one (guided

by the transformed gBSD). The adaptation process mainly comprises simple remove

operations of gBSDUnits (bitstream syntax elements) as well as update operations of

addresses to keep the adapted bitstream standard compliant. An XSLT style sheet [111]

can be used to perform the gBSD transformation, which is usually provided beforehand.

Thus, the adaptation process is reduced to transformations of the gBSD XML document,

which enables independence from the coding format.

To transmit video data over networks like the Internet, special transmission proto-

cols are required. In the following chapter, the main transmission protocols for video

delivery in the Internet will be briefly reviewed.

CHAPTER

3 Video Transmission in IP

Networks

The introduction of IP networks led to a new paradigm in video transmission systems. IP

networks enable the transmission of specifically tailored videos for single users (unicast),

which was not possible in broadcasting [7]. As a result, new services like video-on-demand

(VoD) or interactive applications emerged. With the help of multicasting [18] also broadcast-

like structures can be implemented, which usually introduce less network traffic compared

to unicast video transmissions.

On the other hand, IP networks usually do not implement admission control, which

can guarantee a specific quality of service [7]. While it is possible to implement admission

control in private networks on the application layer (all network traffic is known and ad-

ministrated), in public networks like the Internet this cannot be put into practice. The

lack of admission control leads to new problems like highly varying network bandwidth and

network congestion. In the following, several existing transmission protocols are reviewed.

A discussion of their application scope and performance in Internet video streaming will

show the merit of each protocol.

3.1 Internet Protocol Suite

Network protocols define how blocks of data should be transmitted over a network. Unlike

in classical broadcasting, packet switched networks enable an end-to-end transmission of

data packets by routing them through the network. For that reason network protocols use

unique addresses to identify the network participants. Before the transmission, a protocol

specific header is added to the data block, resulting in a new network packet.

Page 28 CHAPTER 3. VIDEO TRANSMISSION IN IP NETWORKS

Figure 3.1: Layers defined in the Internet Protocol Suite and the encapsulation of the data
(example for the transport protocol UDP).

The Internet Protocol Suite defines four protocol layers [11], as shown in Figure 3.1.

The Application Layer is the top layer of the Internet Protocol Suite. Each application is

responsible for the organization and management of the transmitted data. For that reason

each application defines a specifically tailored protocol for the transmission of its data.

Examples are the well known HTTP protocol [23] or the Simple Mail Transfer Protocol

(SMTP) [44]. End-to-end communication is provided by the Transport Layer, e.g., by the

connection-less User Datagram Protocol (UDP) or the connection-oriented Transmission

Control Protocol (TCP). The Internet Layer is responsible for the delivery of the data

packets from the source host to the destination host. In general, the IP layer does not

provide any quality-of-service (QoS), so packet corruption or loss may occur along the

network path. If reliable transmission of the data is required, the layers above IP have to

implement it (like TCP does). The direct communication with the network is done via the

Link Layer. Because it represents the interface to the networking hardware it is also called

media-access layer protocol. In the following, the main protocols used in video streaming

are briefly introduced.

Internet Protocol (IP)

The communication within the Internet Layer is specified by the Internet Protocol (IP). A

unique IP address is assigned to each network interface of a host in the network. Currently

there are two addressing schemes for IP. IP Version 4 [75] defines 32-bit IP addresses to

identify the hosts. Because of the growing number of Internet hosts, the available IP

CHAPTER 3. VIDEO TRANSMISSION IN IP NETWORKS Page 29

addresses in the Version 4 schema are running low. The newer IP Version 6 [17] allows for

128-bit IP addresses to resolve this issue. IP is used for routing packets from the source

host to the destination host via the Internet, but it cannot distinguish between different

data flows. For that reason, raw IP data streams are not suited for video streaming.

User Datagram Protocol (UDP)

To enable end-to-end communication, transport layer protocols like UDP [74] were put into

place. In addition to the destination IP address, a destination port is used to address a

specific application on the destination host. With the destination IP address and port,

the source IP address and the optional source port, an end-to-end system can be defined.

The idea of UDP is to provide an end-to-end communication mechanism while keeping

the protocol overhead at a minimum (UDP is connection-less and state-less). Therefore it

inherits all problems of raw IP, which are potential packet loss, out-of-order transmission and

the lack of congestion control. The deployment of UDP in the Internet is seen problematic,

because excessive UDP traffic may lead to a congestion collapse. But UDP is deployed in

private networks, where congestion can be avoided by using admission control [10]. UDP is

best suited for low latency applications due to its low protocol overhead, low packet delay

and jitter, because UDP simply transmits the packets via the networks as they are sent by

the application.

Transmission Control Protocol (TCP)

While the goal of UDP is to provide a simple protocol for the efficient and fast transmission

of data, TCP [76] focuses on reliable, in-order transmission of data. TCP is much more

complex than UDP, because it is connection-oriented and features congestion and flow con-

trol. The flow control of TCP limits the transmission rate of the sender such that no buffer

overflow will happen at the receiver. In the worst case, the transmission is stalled till the

receiver empties its buffers. To detect packet loss - introduced by either the transmission

channel or network congestion - each endpoint of the TCP connection sends an acknowl-

edgement (ACK) when receiving a TCP data packet. If the sender does not receive the

ACK within a given time frame, it is assumed that the packet was lost and the packet

is queued for retransmission. TCP’s congestion control is based on the additive-increase

Page 30 CHAPTER 3. VIDEO TRANSMISSION IN IP NETWORKS

multiplicative-decrease (AIMD) algorithm, which assumes that packet loss is triggered by

overflowing queues in the routers. While this is in general true for wired networks, in wire-

less networks packet loss is a common characteristic of the transmission channel. There are

several flavors of TCP with different congestion control algorithms [57]. The main issue is

the prevention of congestion, while maximizing the network link utilization. The usage of

TCP for video streaming is seen controversial [49, 104], because TCP’s congestion control

introduces a lot of variance in the throughput. Nevertheless, TCP gained a lot of attention

in the recent years, because in Internet video streaming easy deployment and the ability

to adapt to the available bandwidth are important [104, 50, 114, 4]. In Section 6.1, the

behavior of TCP and its performance in the context of video streaming will be reviewed.

Datagram Congestion Control Protocol (DCCP)

A rather new transport layer protocol is the congestion-aware DCCP [48], which tries to

combine the low latency of UDP with the congestion-awareness of TCP. DCCP provides end-

to-end connections of congestion-controlled unreliable datagrams by introducing congestion

control at the sender. While it is possible to implement congestion control on the application

layer with TCP Friendly Rate Control (TFRC) [26, 29], DCCP is a transport layer protocol

which is usually integrated into the operating system. Due to this fact, DCCP is able to

react faster to changing network conditions, features increased performance and reduced

latency. Within DCCP, it is not defined how applications should cope with packet loss.

In general, there are two generic methods for handling packet loss [7]. First, one can use

retransmissions to transmit the lost packets once again (like in TCP). The second option is

Forward Error Correction (FEC) [67, 7, 10], which inserts redundant information into the

packet stream to make up for the lost packets. While retransmissions are clearly unwanted

in DCCP (because in this case DCCP would act like TCP), FEC needs a maximum packet

loss rate as input to determine how much redundancy to insert. Because the Internet is

a best effort network, the available bandwidth, the packet delay, the packet jitter and the

packet loss are in general unknown [7]. For that reason, the use of FEC and therefore the

use of DCCP in the Internet is difficult, because FEC needs to know the packet loss rate. In

addition, a new transport layer protocol has to be supported by a broad range of operating

systems and the network infrastructure (proxies, NAT, etc.), which is currently not the case

CHAPTER 3. VIDEO TRANSMISSION IN IP NETWORKS Page 31

for DCCP.

In the next section, application layer protocols used for video transmission are intro-

duced, which are - in contrast to transport layer protocols - usually media-aware.

3.2 Application Layer Protocols for Video Streaming

On top of a transport layer protocol, application layer protocols specify the communication

between applications. In the context of streaming digital media, different protocols based

on UDP or TCP were defined. Some protocols are responsible for the session initialisation

and signaling of the available video content, while the encapsulation and transport of the

video data over the network is handled by others. In this section, the main protocols used

for video streaming in IP networks and the Internet will be briefly introduced.

Session Description Protocol (SDP)

The description of the media details, transport addresses, and other metadata of a multi-

media session is defined within the Session Description Protocol [34]. SDP does not cover

the transport of the media data nor the negotiation of session content. A session may

contain multiple media descriptions (e.g., audio and video) and for each media description

the used transport protocol and port is given. Additional attributes may further specify

which media codecs were used in the encoding process of the media content. To signal the

media decoding dependencies, an extension to SDP was defined [83]. which is required when

transmitting a single media content over multiple media streams. In case of H.264/SVC

video, the base layer and the enhancement layers can be transmitted over multiple streams.

In general, the base layer is needed to decode the enhancement layers. This dependency

can be signaled in the media decoding dependencies.

Real Time Streaming Protocol (RTSP)

The negotiation of the session content, the media encodings and the delivery channels are

defined in RTSP [86]. While the description of the available media streams can be provided

by means of SDP, RTSP can control multiple time-synchronized media streams such as audio

and video. For each media session, RTSP manages a state (created via the SETUP method),

Page 32 CHAPTER 3. VIDEO TRANSMISSION IN IP NETWORKS

which includes information on the media content to stream, the media encoding used and

the transport protocol chosen for the delivery of the media content. Once the session is

started via the PLAY method, the media is streamed to the client. The PAUSE method

causes the streaming of the media to be interrupted temporarily, while the TEARDOWN

method is used for the termination of the multimedia session. RTSP can also be seen as a

remote control interface to the streaming system.

Real-Time Transport Protocol (RTP)

The transport of real-time media data (like audio and video) is specified in the Real-Time

Transport Protocol (RTP) [85]. The media data is packetized into RTP packets before

it is transmitted over multicast or unicast networks. The RTP packet header includes a

payload type which is used to identify the payload content and a sequence number to detect

out-of-order delivery of packets. The timestamp in the RTP packet header provides timing

information of video data contained in the packet and is also used for the synchronization

of multiple media streams, like audio and video. The semantics of the marker bit is defined

by the used RTP profile. An RTP profile for the transmission of audio and video content

is specified in the RTP/AVP profile [84]. In this profile, the marker bit denotes the end of

a media frame, signaling that the decoding of the frame can be started on the client. The

synchronization source (SSRC) field of the RTP packet header identifies the media stream

the RTP packet belongs to. For that reason, each RTP stream should have a unique SSRC.

In general, RTP is tightly coupled with SDP or other protocols describing the media

session, because the definition of the used RTP profile (and therefore payload types), the

media codec and the RTP clock rate is not signaled in the RTP header. The RTP profile

is signaled in SDP (e.g., the RTP/AVP profile [84]) and can be used to resolve the payload

type. In general, two different payload types are defined, static and dynamic payload types.

A static payload type can be used to directly identify the media codec, RTP clock rate

and other parameters, while the dynamic payload types have to be described in more detail

in the SDP. SDP’s rtpmap attribute is responsible for mapping a dynamic RTP payload

type to the used media codec, the RTP clock rate and additional parameters needed for

decoding the media stream. RTP payload formats for specific video codecs (apart from the

ones defined in the RTP profile) have to be specified in separate documents (e.g., the RTP

CHAPTER 3. VIDEO TRANSMISSION IN IP NETWORKS Page 33

payload format for H.264 video [106]). The idea behind using specific payload formats is

that the packeting of the media data can be steered in such a manner that for example the

latency of the transmission or the influence of packet loss can be minimized.

The RTP specification also defines the RTP Control Protocol (RTCP) [85]. RTCP

provides information about the media transport and simple control and identification func-

tionality by periodically transmitting control packets from the server to the client and vice

versa. The RTCP sender reports (SR) are used to map the timestamps of the RTP packets

to the Network Time Protocol (NTP) time [62]. SRs also allow for inter-media synchro-

nization, by normalizing RTP timestamps of the different media streams to the NTP time.

The RTCP receiver reports (RR) feed information on the quality of the data transmission

of a specific SSRC back to the sender. The RRs include the number of packets lost dur-

ing transmission, the highest sequence number received, the inter-arrival jitter of the RTP

packets and the last SR received from the SSRC. This information can be used to detect

problems in the media transport, like network congestion.

To modify media streams in the network, RTP also defines intermediate network nodes

(called RTP Translator and RTP Mixer), which operate at RTP level. An RTP Translator

is able to do simple modification of parts of a media stream without having to change the

synchronization source identifier (SSRC). For that reason, an RTP translator is in general

transparent to the RTP client. Such an RTP translator can for example be used to adjust

the media bit rate to the available bandwidth or to change the encoding of the media.

The concept of an RTP Mixer is more powerful than the RTP translator. An RTP Mixer

generates a new RTP stream out of a single or multiple media streams. Therefore, it has

to generate a new SSRC and also provides new RTCP sender reports for the new SSRC.

In multi-party voice over IP (VoIP) for example, an RTP mixer can be used to mix each

voice stream into a single response voice stream, which will be sent back to all participants.

Another usage scenario is an RTP mixer acting as a multicast to unicast gateway for layered

video. Each video layer is transported in a separate RTP stream. If the client cannot handle

multicast streams, such a gateway can be used to generate a single unicast stream out of

the layered streams [108].

RTP is very popular for streaming audio and video in private networks, because it

features low latency. But RTP was not designed to be congestion-aware. Nevertheless,

Page 34 CHAPTER 3. VIDEO TRANSMISSION IN IP NETWORKS

several methods were proposed to handle network congestion when streaming with RTP.

To enable congestion-aware RTP-based video streaming for the Internet, RTP packets can

be embedded into a TCP-based RTSP connection [86]. Another way to handle network

congestion is the use of RTP/UDP in combination with TCP friendly rate control (TFRC)

[26], which adapts the stream-out bit rate in case of congestion to the fair share. In [29] the

usage of RTP/UDP with TFRC was proposed, where the congestion control is implemented

on the application layer. In contrast to this, DCCP implements the congestion control on the

network transport layer. Therefore DCCP features better performance and less overhead.

The usage of DCCP with RTP is defined in [73].

If robustness to packet loss is mandatory, it usually has to be provided in the application

layer by means of forward error correction (FEC). While FEC in general assumes that packet

loss is a channel characteristic, packet loss is also introduced by network congestion. More

details on this topic can be found in Section 3.1 in the description of the DCCP protocol,

where the usage of FEC in best-effort networks (like the Internet) was discussed.

HTTP-based Video Streaming

The Hypertext Transfer Protocol (HTTP) [23] is an application layer protocol working on

top of TCP. Basically one can request a resource from an HTTP server, which creates a

response accordingly. HTTP gained a lot of attention in the field of Internet video streaming,

because of the existing infrastructure such as HTTP servers, proxies and network support.

There are several ways to transmit video data via HTTP. One can fully download and

play the video file (also know as the download-and-play paradigm) [59], but this has a major

disadvantage when playing large video files. The start-up delay increases accordingly with

the video file size. Progressive download tries to overcome this problem by downloading

only the parts of the video file needed in the near future [114, 59]. As a result, the client

can decode and display the first part of the video, while downloading the remaining part.

This significantly reduces the start-up delay. Seeking within the video can be implemented

via HTTP byte range requests. Progressive download is a very popular form of video

distribution in the Internet (e.g., YouTube [30]). Because incremental consumption has to

be provided by the video file format, not all video file formats are suited for progressive

download.

CHAPTER 3. VIDEO TRANSMISSION IN IP NETWORKS Page 35

Usually, the video data is obtained from a single file. A new type of HTTP streaming

operates on video fragments instead of a single video representation. The idea is to use

multiple small progressive downloads to get rid of the stateful transmission scheme, which is

usually used in streaming systems. Therefore, no special streaming servers or infrastructure

is needed, only an HTTP compliant infrastructure. HTTP streaming also enables another

key technology for Internet video streaming: adaptive streaming can be used to adjust the

streaming bit rate to changed network conditions. Thus, it directly improves the viewing

experience of the user, by reducing the start-up delay and jerky playback.

Because this thesis focuses on adaptive streaming with video fragments, the most

prominent related work, commercial products and standards using HTTP streaming for

video delivery are reviewed in the related work in Section 4.5.

While adaptive video streaming is based on video adaptation and transmission pro-

tocols, it additionally requires mechanisms to cope with changing network conditions. In

the next chapter, methods for adaptive video streaming in networks with time-varying

bandwidth and adaptive streaming architectures will be presented.

Page 36 CHAPTER 3. VIDEO TRANSMISSION IN IP NETWORKS

CHAPTER

4 Adaptive Video Streaming in

Networks with Time-Varying

Bandwidth

The lack of admission control and quality of service (QoS) mechanisms in the Internet im-

poses new challenges to video streaming. The Internet offers only a best-effort service, which

results in quite drastic throughput fluctuations. Although the Internet does not provide ad-

mission control, some mechanisms were invented to avoid network congestion. Congestion-

aware transport protocols avoid congestion by continuously adjusting the transmission rate

at the sender based on feedback from the client. The review of protocols for video trans-

mission in the previous chapter revealed that TCP, RTP/DCCP and RTP/UDP-TFRC are

the main protocols suited for Internet video transmission, because they provide congestion

control.

In classical video streaming, TCP is often seen as unsuited for real-time applications.

TCP is no real-time protocol and hence cannot give any guarantees on the timeliness of the

data delivery. The main reason for this is TCP’s congestion control algorithm and its reli-

ability, which may lead to transmission stalls or reduced throughput. Therefore, the use of

TCP for multimedia applications is considered controversial in the literature [49, 25]. But

there are also good arguments for TCP. TCP’s reliable end-to-end transport mechanism

makes additional provisions like forward error correction unnecessary, which are manda-

tory for RTP/DCCP and RTP/UDP-TFRC. Additionally, TCP is connection-oriented and

therefore allows for easy traversal of firewalls and NAT devices that may exist along the

network path [7]. Because streaming applications can rely on TCP’s inherent capabilities,

Page 38
CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH

TIME-VARYING BANDWIDTH

they turn out to be much less complex than approaches based on the connectionless and

unreliable protocol UDP. Finally and maybe most importantly, TCP also offers congestion

control. TCP’s congestion control assures that only the fair share of the network’s band-

width is consumed by a single TCP connection, which is considered crucial for the stability

of the Internet [24].

This thesis focuses on congestion-aware video streaming based on TCP, because it is

well supported and can deliver good results for the envisioned use case (see Section 1.1).

Consequently, only video streaming based on TCP is discussed in detail in the remainder

of the thesis.

Because the achievable throughput in best-effort networks like the Internet can vary

significantly over time, disruptions of the video playback or jerky playback may occur if

the throughput falls below the required bit rate. Adaptive video streaming [7] tackles this

problem by adjusting the stream-out rate to the available network bandwidth. The three

main approaches to adaptive video streaming are [7, 100, 22]:

• Rate-Control for Adaptive Video Streaming. Based on an estimate of the available

bandwidth, the stream-out bit rate is continuously adjusted in a fine-grained manner

(e.g., per video frame). The goal is to prevent the buffers at the receiver to drain and

therefore to avoid jerky playback.

• Stream Switching. The video stream can be switched between a certain number of

representations with different bit rates to match the available bandwidth. In this

sense, this technique works similar to rate-control, but the time between switching

points is far greater than in rate-control (multiples of seconds) and the number of

different representations is usually small.

• Priority Streaming. Unlike the other approaches, priority streaming is not based on

bandwidth estimation. Priority streaming utilizes scalable video to provide a graceful

degradation of the video content in case of bandwidth shortages. A scalable video

bit stream is reordered and transmitted in priority order. Truncating a reordered

bit stream only reduces the quality of the video, resulting in a very simple adaptive

CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH
TIME-VARYING BANDWIDTH Page 39

Figure 4.1: Behavior of a rate-control algorithm in presence of bandwidth variations.

transmission scheme.

In the following, the principles and methods of the three existing approaches are intro-

duced. A special section on adaptive streaming architectures will review the most commonly

used architectures for adaptive Internet video streaming. After introducing the possible op-

tions for adaptive Internet video streaming, the most prominent work, commercial products

and standards related to HTTP/TCP streaming are reviewed.

4.1 Rate-Control for Adaptive Video Streaming

The goal of adaptive video streaming is to enable continuous video playback and to provide

a good video quality. Rate-control [7] continuously adapts the bit rate of the streamed video

(e.g., per frame) in such a manner that it matches the available network bandwidth. If the

rate can be aligned closely to the available network bandwidth, the buffer drainage at the

receiver should be limited to a minimum. Figure 4.1 shows the behavior of a rate-control

algorithm. The video bit rate is continuously adjusted to the available bandwidth in a

fine-grained manner.

In general, the available bandwidth or the possible throughput in best-effort networks

are not known. For that reason, the network’s characteristic has to be estimated. In RTP

for example, receiver reports give feedback on certain network characteristics, like the packet

loss and inter-arrival jitter [85]. RTP/RTCP with UDP in combination with TCP-friendly

rate control (TFRC) [26, 29, 115] can be used to determine a stream-out rate which would

Page 40
CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH

TIME-VARYING BANDWIDTH

not be unfair to concurrent TCP connections. Also TCP can be used to estimate the

available bandwidth. The throughput history [77] or information obtained from the TCP

stack [9] can be used to estimate the future TCP throughput [51].

The main input parameter of a rate-control algorithm is the estimated available band-

width. Additionally, the receiver buffer level has to be taken into account, because the

buffer is used to compensate transmission problems. The buffer level should be kept above

a certain value. A draining buffer can be filled again if the video is streamed out faster

than real-time, which is usually only possible with pre-encoded video. To fill the buffer,

the rate-control chooses a video bit rate which is smaller than the available bandwidth, but

streams the video at the rate of the available bandwidth [51]. On the other hand, if the

buffer level is getting too high, the buffer can be drained by using a video bit rate which is

larger than the available bandwidth. The part of rate-control maintaining the buffer level

is also called buffer control.

This example of a rate-control algorithm is very simple, but illustrates the main issues

all rate-control algorithms are coping with. The result of the rate-control is a video bit

rate and a proposed stream-out rate. The video bit rate is used in the adaptation process,

whereas the stream-out rate is used for streaming the adapted video. The video bit rate

can be either changed directly in the encoding process or the encoded video can be adapted

to a different video bit rate (see Section 2.3). If scalable video is used, the video bit rate

can be changed by dropping parts of the video bit stream [7]. After the adaptation, the

video is streamed out to the client.

Live transmission of video content is a special case of adaptive video streaming, because

it allows only small buffer sizes. One of the characteristics of live video is that the stream-

out rate cannot be faster than real-time. For that reason the receiver buffer can only be

filled at the beginning. A prominent example of live video streaming is video conferencing,

for which it is recommend to use end-to-end delays smaller than 300 ms and audio-video

synchronization delays not larger than 200 ms [39, 38].

While rate-control-based video streaming systems can react fast to changing network

conditions, the main problem of this approach is that it heavily relies on the accuracy of the

estimated available bandwidth. Because a continuous mismatch would drain the receiver

buffer, information about the buffer level has to be fed back to the rate-control algorithm

CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH
TIME-VARYING BANDWIDTH Page 41

[51], thus enabling the algorithm to correct this problem.

Because of the high complexity (bandwidth estimation, receiver buffer feedback, video

adaptation) and scalability issues (on the server one rate-control instance per stream is

needed), rate-control-based video streaming systems are not widely deployed. The only

exception is video conferencing, which uses sophisticated rate-control algorithms to keep

the buffer requirements low. In the next section, an approach similar to rate-control is

presented, which trades flexibility for simplicity.

4.2 Stream Switching

Currently, a popular way of watching videos in the Internet is representation selection.

For each video several representations with different resolution or quality properties are

presented. The user chooses a representation before the streaming begins, based on his/her

personal knowledge or preferences. Usually, the video representations have a constant bit

rate for the whole play-out duration. The main problem is that the user has to decide if

the available bandwidth will be sufficient for a continuous play-back of the selected video

representation. Even more problematic are changing network conditions, which are very

common in best-effort networks. In case of stalls or jerky playback, always user interaction

is needed. The user decides how to cope with the situation and can either wait for the

re-buffering of the video content or the user can switch to another quality level, which has

to be buffered once again. To avoid these problems, users can choose the lowest quality or

wait till the whole video is buffered.

While complete buffering may be possible for short video clips, this is not feasible

for high definition movies lasting on the order of hours. Stream switching makes things

easier for the user, by simply choosing the appropriate video quality based on the current

network conditions. Like rate-control, it estimates the available bandwidth and monitors

the receiver buffer level, but reduces the complexity by allowing to switch only between a

set of pre-encoded representations of the video content [7, 92]. Because the switching is

usually only possible when certain conditions are met (e.g., end of GOP), the time between

the switches is usually high (several seconds). In stream switching, a part of the video

which is transmitted as a whole is usually called video fragment. Figure 4.2 illustrates the

behavior of stream switching. While rate-control can continuously adjust the video bit rate

Page 42
CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH

TIME-VARYING BANDWIDTH

Figure 4.2: Stream-switching in presence of bandwidth variations.

to the available bandwidth (see Figure 4.1), stream switching chooses from a discrete set of

pre-encoded video representations. In addition, the time between changes in the video bit

rate is much larger. It can also be noticed that the time to transmit a video fragment is

usually not constant, because it depends on the video bit rate and the available bandwidth.

If they do not match, the transmission of a video fragment may be delayed or may be too

fast. Like in rate-control, this problem is handled by buffer control (see previous section),

which manages the client’s buffer level by adjusting the video bit rate.

To enable stream switching, the video content has to be encoded in different qualities.

While this additional effort can be neglected for VoD (the content can be encoded offline),

it is rather challenging for streaming live video content. In this case, multiple encoders have

to be deployed to encode the video content in parallel. The encoding of the video has to

be steered in such a manner that it allows for switching between the qualities at specific

points in the video. H.264 defines switching and IDR frames for that purpose [92].

In addition to the computational overhead, also the storage demand is increased because

of multiple video representations. Hence, stream-switching solutions offer usually only a

handful of different video qualities for economical reasons. In Section 2.1.2, the concept of

scalable video was presented, which allows to have a significantly higher number of different

bit rate representations of the same content. Another advantage over non-scalable video is

that the video can be stored in a single bit stream at the server and only a single encoder

is required in the case of live content.

Stream switching is one of first deployed techniques for adaptive streaming. Current

CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH
TIME-VARYING BANDWIDTH Page 43

standards recommend to use well established video codecs and network protocols, like the

non-scalable video codec H.264 and HTTP [4, 5, 37, 70], to maximize interoperability and

ease the deployment in existing network infrastructures. In the related work section (see

Section 4.5), an overview on the current standards and applications utilizing stream switch-

ing is given.

Stream switching is a widely deployed adaptation technique for VoD and video broad-

casting in the Internet, because of its easy deployment and good scalability (in terms of

number of clients served). Usually, several seconds of content are buffered in advance

to mitigate possible variations in the available bandwidth. Like rate-control-based video

streaming, stream switching heavily relies on the bandwidth estimation and the information

on the client buffer level. Because stream switching uses a rather low number of different

qualities, it cannot adjust smoothly to the available bandwidth. As a result, the client

buffer level fluctuates a lot (details on that will be shown in Chapter 5). In the following, a

different approach to adaptive video streaming is presented, which does not rely on band-

width estimation or the information on the client buffer level and is therefore in general

more robust.

4.3 Priority Streaming

Classical approaches to adaptive video streaming rely on the estimation of the available

bandwidth. While measuring the channel bandwidth of an empty network link is quite easy

[20], things get complicated with concurrent infinite-source TCP streams. This is because

TCP tries to fully utilize the network link by constantly increasing its congestion window.

Once TCP reaches the limit of the link, network packets get lost and TCP starts to throttle

the stream-out rate by adjusting the congestion window. As a result, in case of congestion,

only the fair share of the network bandwidth can be considered as available bandwidth.

In addition to the rather difficult estimation of the available bandwidth, changing network

conditions may lead to delayed video data packets. Classical approaches cope with these

problems by using buffering at the receiver.

Priority streaming [22, 50] follows a different paradigm to overcome temporary

bandwidth shortages. Instead of the traditional buffering at the receiver, the video quality

Page 44
CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH

TIME-VARYING BANDWIDTH

Figure 4.3: Behavior of priority streaming in presence of bandwidth variations.

decreases with the available bandwidth gracefully. The idea is to download the video in

such a manner that the quality of the video increases with the amount of data downloaded.

Hence, in priority streaming, a truncated video is not truncated in time (this is what

usually happens), but truncated in terms of video quality.

With this approach it is possible to efficiently utilize the available bandwidth without

having to deploy large buffers at the client. To enable this behavior, the video is split into

video fragments. In priority streaming, the download duration of a video fragment is limited

to the play-out duration of the fragment, to guarantee continuous playback. As a result, the

video bit rate of a retrieved video fragment is simply identical to the average transmission

rate of the video fragment (see Figure 4.3).

The size (play-out duration) of the video fragments is usually kept constant, because

in this case a video fragment can be played out immediately after it is received. If the

size of the fragments differs, additional buffering may be needed. This becomes evident

when looking at an example with fragment sizes of 2 and 10 seconds. For this example, it

is assumed that after retrieving a small fragment, a consecutive large fragment is fetched.

While the large fragment is downloaded (takes up to 10 seconds), the small fragment (2

seconds) will be played out. This mismatch usually leads to jerky playback, because the

play-out will be likely over before the download is finished. In this case, at least 10 seconds

of video (instead of 2) should be buffered.

CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH
TIME-VARYING BANDWIDTH Page 45

Figure 4.4: Priority re-ordering of a video fragment (resulting in a video segment).

This also exposes the obvious drawback of priority streaming. The decoding (and play-

back) cannot be started immediately after receiving the first video frame. In general, a video

fragment is available for play-out once the download is finished or the maximum download

duration is exceeded. This delayed play-out can be interpreted as buffering. Hence, priority

streaming buffers at least one video fragment (in case of diverse fragment durations this

would be the maximum duration). This limits the use cases in which priority streaming

can be deployed to non-real-time applications.

A prerequisite for priority streaming is the usage of a video codec with supports scal-

ability at the bit stream level, because it assumes that the bit stream of a video can be

downloaded in such a manner that the video quality increases with the download progress.

In general, video codecs do not support graceful degradation of the video quality. Bit

streams of scalable video codecs can be rearranged based on the priority of their video

syntax elements (e.g., slices, frames, layers). A reordered video fragment is called a video

segment. If only temporal scalability were to be used, the I-frames would precede the

P-frames and the B-frames (see Figure 4.4). Because the I-frames are usually of most im-

portance, they are downloaded first. If no more data could be downloaded in the given time

frame, the resulting video would have a reduced frame rate. Adaptive streaming usually

tries to minimize the artifacts shown by the adaptation, so quality scalability is commonly

deployed to avoid major changes in the perception.

Because of the reordering, it is not necessary to retrieve the whole video segment. It can

be truncated at virtually any point. The amount of video data retrieved relates directly to

the video quality of the reconstructed video. In general, the changes of the video quality

should be kept at a minimum, while offering a good average quality of the video. While this

Page 46
CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH

TIME-VARYING BANDWIDTH

favors larger video fragments, also the start-up delay increases with the size of the video

fragments. The size of the video fragments is usually limited by the maximum start-up

delay. Unlike in stream switching, large fragments do not lead to bad network utilization

or large buffers, because priority streaming does not rely on single adaptation decisions.

It continuously adapts the quality during the download. More details and experimental

evidence will be shown in Chapter 5.

Priority streaming is also known as priority-progress streaming (PPS) [50] or deadline-

driven streaming [51]. In the literature, different adaptive streaming architectures were

proposed. In the following, the main architectures are presented.

4.4 Adaptive Streaming Architectures

The standard way of video delivery is streaming the video from a video source (in most cases

a server) to a video sink (client) via a network. In a lot of deployments, the server and the

client form an end-to-end system, but also intermediate nodes may be present, which cache

(e.g., proxy) or modify (adaptation node) the video content. Based on these communicating

partners, it is possible to classify video streaming architectures in many different ways.

In adaptive video streaming, the most important question is the location of streaming

and adaptation logic. Typically the logic is kept in a single place to keep the complexity of

the system low. Therefore, three types of adaptive streaming systems can be differentiated:

• Server-side Systems. The streaming and adaptation logic is placed on the server.

The client has minimal logic, only receives the video data and gives feedback on the

received quality.

• Client-driven Systems. The client requests the appropriate video representation from

the server, based on an adaptation decision made on the client. The server degenerates

to a simple streaming service.

• Systems using In-Network Adaptation. An intermediate node between the server and

the client intercepts the video stream and adapts the video to the current network

conditions.

CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH
TIME-VARYING BANDWIDTH Page 47

In the following, the commonly used architectures for adaptive video streaming are

briefly reviewed.

4.4.1 Server-side Adaptive Streaming

Classical streaming approaches broadcast the video from centralized servers to the clients.

While being built for large deployments, broadcasting is not applicable in best-effort net-

works because of the different bandwidth restrictions of the clients. In unicast streaming,

the server sends an individual video stream to each client. In this architecture, the stream-

ing and adaptation logic is on the server, resulting in a simple client implementation. The

client requests content from the server once and the server continuously sends the video to

the client (push paradigm). Control commands of the user (play, pause, etc.) can be sent to

the server, to allow the user to interactively change the video play-out. The most prominent

example for unicast video streaming is RTP/RTCP in combination with the control proto-

col RTSP. RTP’s main advantage is the low latency introduced in video transmission. For

that reason, RTP can be used for almost any application, ranging from video conferencing

to video-on-demand.

Server-side adaptive streaming extends unicast streaming by taking also the changing

network conditions into account. By adapting the bit rate of the streamed video to the

available bandwidth, the client buffer level can be stabilized. While the adaptation of the

video is identical in all architectures, the estimation of the available bandwidth and of the

client buffer level is different. In the following, two approaches using server-side adaptation

are presented.

Server-side Adaptation based on Client Feedback

In this approach, the clients feed information on packet loss, packet jitter and the receiver

buffer level back to the server. The server uses this information to model the network link

between the server and the client. In addition, the server monitors the round-trip-time of

the network connection and estimates the available bandwidth. Like depicted in Figure 4.5,

this architecture adds the network to the control loop, which leads to high response times

to changing network conditions.

In best-effort networks like the Internet, it is important to deploy a congestion-aware

Page 48
CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH

TIME-VARYING BANDWIDTH

Figure 4.5: RTP-based architecture of a server-side adaptation system based on client
feedback.

rate-control algorithm to avoid a congestion collapse of the network. A well known example

is RTP/RTCP with UDP in combination with TCP-friendly rate control (TFRC) [115].

The RTCP messages give feedback on the network characteristics, which are used in the

calculation of the TFRC transmit rate. This rate is an estimate of the available bandwidth

and is used to steer the streaming process.

The main problem of server-side adaptive streaming is the information on the client

status. In general, information has to be fed back to update the server about the client

state. This information may be delayed or lost on the way to the server, because it has to be

sent over a potentially error-prone network. For that reason, the behavior of the adaptation

control loop is directly influenced by the network conditions, leading in general to increased

adaptation delays.

Server-side Adaptation based on Estimation of Client Status

The previous approach usually implements congestion control on the application layer (e.g.,

on top of RTP/UDP). An inherent congestion-aware transport protocol (like DCCP or TCP)

can react much faster to changing network conditions. In addition, it allows to determine

CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH
TIME-VARYING BANDWIDTH Page 49

the possible throughput by observing the data transmitted [77, 51].

In case of TCP, which also features reliable data transmission, it is possible to estimate

the client buffer level on the server [51]. The buffer estimation is based on the end-to-

end paradigm of TCP. It assumes that a TCP connection works like a FIFO buffer, which

introduces only a comparatively small delay between the buffer level maintained at the

server and the client buffer level. By exploiting this knowledge, a very fast control loop

can be constructed, which keeps the changes to the client buffer level to a minimum. More

details on this approach will be presented in Section 5.

4.4.2 Client-driven Adaptive Streaming

By placing the adaptation logic at the client, client-driven adaptive streaming can avoid slow

control loops. Rich clients are a common trend in multimedia communication. Hence, the

assumption that a streaming client must be kept simple, may not be true anymore. This

gave client-driven adaptive streaming a huge momentum, because it simplifies adaptive

video streaming significantly. It concentrates the adaptation logic at the client, while the

server component is reduced to a service. The server only transmits the data that the client

requests. There are two main approaches to client-driven adaptive streaming, which differ

in timeliness of delivery and adaptation granularity.

Subscription-based Adaptive Streaming

In contrast to server-side streaming, subscription-based adaptive streaming utilizes either

multiple representations of the content or scalable (layered) media [56]. The client decides

on which representation or how many layers it will subscribe to, based on the network

conditions and the buffer level (feedback-based rate allocation [56]). After subscription, the

video layers are continuously streamed from the server to the client. If the video quality

has to be changed, the client issues a further request to the server.

The most prominent example is receiver-driven layered multicast (RLM) [61, 78] based

on RTP/UDP (see Figure 4.6). In this system, the client retrieves information on the

bandwidth requirements for each layer from the server and decides based on the currently

available bandwidth which layers can be retrieved. The client subscribes to one or more

Page 50
CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH

TIME-VARYING BANDWIDTH

Figure 4.6: Architecture based on receiver-driven layered multicast.

layers by joining the specific multicast groups. The video data is delivered via multicast

networks to the client.

Multicast networks are widely used for broadcast-like video delivery in IPTV networks,

but they are usually not used for video-on-demand because of the high complexity [58].

RLM enables adaptive streaming with low switching delays, because the adaptation deci-

sion has to be propagated only to the next multicast router to initiate the subscription

change. For Internet deployments, the main problem of RLM is that it requires a multicast

infrastructure. In addition, an Internet video streaming system has to provide congestion

control. But the implementation of congestion control in multicast networks turns out to

be complicated [56].

While it is possible to use TCP or other transport protocols in subscription-based adap-

tive streaming, they introduce much more complexity and inefficiencies than RLM with

RTP/UDP. Regarding TCP, which is an end-to-end protocol (unicast), the individual layers

should be streamed out synchronously, which may be difficult because not all TCP streams

may achieve the required throughput. In addition, the adaptation delay (the change of the

subscription) is increased, because the server has to be informed of the change instead of

CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH
TIME-VARYING BANDWIDTH Page 51

the next router.

HTTP-based Request-Response Streams for Adaptive Streaming

Adaptive HTTP video streaming breaks with the traditional definition of streaming. Tra-

ditionally, streaming is seen as an active process on the server, sending continuously data

from the server to the client. HTTP-based request-response streams are different, because

the active process runs on the client. The client continuously creates requests for data

and the server answers the requests (by responses), generating a continuous data stream

to the client [52]. Compared to the previous approaches, also the streaming logic is now

implemented on the client.

The adaptation logic is similar to the one in the subscription-based approach. The

client monitors the network and its buffer level and decides which parts of the content

to request next. For that reason, the client has to know in advance about the available

parts of the content. While the HTTP-based request-response streams introduce notable

overhead compared to a single TCP connection, they also exhibit favorable characteristics

(e.g., request-response streams can cope with packet loss and connection aborts). An in-

depth analysis on request-response streams will be given in Chapter 6.

4.4.3 In-Network Adaptation

In general, video streaming can be seen as a form of communication between a streaming

server and a client. In-network adaptation is quite different from client-server adaptive

streaming, because it deploys video proxies - also called Media-Aware Network Elements

(MANEs) - in the network, instead of placing adaptation logic on the server or the client.

The MANE concept was introduced together with the RTP payload format of H.264/SVC

[107, 108]. Different types of network elements are defined in RTP, including the concept

of a mixer [85], which is the foundation of an adaptation MANE. RTSP/RTP challenges

in-network adaptation in many different ways.

An RTP mixer (see Figure 4.7) acts as an endpoint for incoming RTP streams and

creates new outbound RTP streams with a different synchronization source (SSRC). The

processing/adaptation on the RTP mixer does not lead to inconsistent RTCP sender and

Page 52
CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH

TIME-VARYING BANDWIDTH

Figure 4.7: Simple RTP mixer [54].

receiver reports for both sides (server–mixer, mixer–client), because the incoming and outgo-

ing RTP streams are decoupled. In addition, there are no gaps in the RTP packet sequence

numbers. The requirements on such an RTSP signaling-aware RTP mixer (MANE) can be

summarized as follows [108]:

• Endpoint functionality. The MANE acts as an endpoint to the server and creates new

RTP streams for the client.

• Signaling awareness. The MANE needs to listen to the RTSP communication to

identify which RTP streams contain adaptable content or metadata.

• Stateful operation. A state has to be associated with the RTSP communication/ses-

sions and is needed for the processing of the RTP streams.

• Security context. The MANE has to be in the security context, otherwise it will not

be able to listen to the RTSP signaling.

The H.264/SVC-based adaptation MANE shown in Figure 4.8 acts as an RTP mixer,

which receives and delivers the video data in a single unicast RTP stream [54, 45]. RTSP

requests from the client are handled by the MANE and converted into new RTSP requests

for the RTSP/RTP server serving the content. The server returns a description of the RTP

streams by means of the SDP protocol [34]. A new state is created on the MANE, including

the RTSP session and SDP information. The RTP mixing includes the full de-packeting of

the incoming RTP streams and the processing/adaptation on bit stream level. After the

CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH
TIME-VARYING BANDWIDTH Page 53

Figure 4.8: Adaptation-enabled MANE based on RTSP/RTP [54].

Page 54
CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH

TIME-VARYING BANDWIDTH

adaptation, the H.264/SVC bit stream is packed with a new SSRC and sequence number

and delivered to the client. The bit stream level adaptation component is exchangeable and

enables an easy replacement of the adaptation mechanism. It is steered by an adaptation

decision taking engine (ADTE), which supplies information on how to actually adapt the

media bit stream. Adaptation decision taking chooses the best video representation by tak-

ing the user preferences, network conditions, terminal capabilities and natural environment

descriptions into account [47].

A MANE can also be used for other purposes than adapting the video data to the

available bandwidth or user preferences. It makes sense to deploy a MANE to avoid NAT

and firewall traversals [107]. In addition, a MANE can aggregate one or more video streams

into a single RTP stream tailored to the client’s requirements. This is especially useful

when building multicast-to-unicast gateways [108].

4.4.4 Hybrid Systems

The different types of architectures are a result of the different requirements of the streaming

applications. For that reason, it is only natural that also hybrid systems have been deployed.

An example is Akamai’s adaptive HD video streaming service. The client reports the buffer

level back to the server, where the adaptation decision is taken [15]. While this is exactly

the way the server-side adaptation based on client feedback approach works, the system

differs in the transport of the video data. The client handles the streaming process by

pulling the video data from the server via HTTP. The reason for this somehow sub-optimal

strategy may be that the company wants to stay in control of the adaptation logic and

therefore places it on the server [16]. On other hand, they may use HTTP because it can

easily be deployed and can cope with NATs and firewalls. Hence, it can be assumed that

in real-world applications not only the technical superiority is important, but also that the

system can be administered in a centralized fashion.

4.5 Related Work

Because of the increasing popularity of Internet video streaming, TCP- and HTTP-based

adaptive video streaming gained a lot of momentum. In the following, the most prominent

CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH
TIME-VARYING BANDWIDTH Page 55

work on TCP-based adaptive streaming will be reviewed. Additionally, emerging standards

and applications for HTTP-based adaptive streaming are presented.

4.5.1 Related Work in Research

A lot of research was done in the field of TCP-based streaming. The requirements needed

to stream constant bit rate (CBR) video via the Internet were investigated in [104]. To

avoid jerky playback and high start-up delays, it is suggested that the network bandwidth

should be twice the video bit rate. While this is feasible for low resolution video content

like user generated content, problems arise when streaming HD videos in good quality.

To counter these problems, significant research on enhancing TCP’s performance was

done. New TCP flavors like TCP CUBIC [33] or Compound TCP [96] aim to improve

the TCP throughput in networks with high bandwidth-delay-products. While these im-

plementations achieve better link utilization, they are usually unfair to TCP Reno [63].

Nevertheless, all TCP variants experience similar performance problems with unanticipated

packet loss, because the congestion control usually assumes that the packet loss is due to

congestion.

A different way to cope with the shortcomings of TCP is the use of application-layer

protocols, which aggregate multiple TCP connections for a single use [97, 43, 99, 35]. If

ignored, this may hurt the concept of TCP-friendliness, which expects all concurrent data

flows to share the available bandwidth in a fair manner. Aggregating multiple TCP streams

for a single use is seen as unfair to concurrent single connections, because more bandwidth

than the fair share is utilized. While being able to improve the throughput performance,

the solutions in [99] and [97] exhibit this unfairness. The protocol described in [43] provides

TCP-friendliness to concurrent single TCP connections, by adjusting the stream-out rate

of each TCP connection such that the aggregated throughput corresponds to that of a

single TCP connection. The system described in [35] modifies the TCP implementation to

delay the ACKs. The resulting submissive TCP connections were aggregated and should

exhibit the same TCP-friendliness as a single TCP connection. The presented approaches

mainly focus on enhancing the throughput of the streaming systems, enabling a better

utilization of the available bandwidth.

Page 56
CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH

TIME-VARYING BANDWIDTH

TCP-based adaptive streaming is able to cope with congestion, by adjusting the video

bit rate to the actual TCP throughput. Different approaches to adaptive TCP streaming

can be found in the literature [31, 32, 22, 35, 49, 50, 77]. To enable low-latency applications,

modifications to the TCP implementations were proposed in [31, 32]. Low-latency appli-

cations have to react fast to changing network conditions in order to avoid delays in the

transmission. Delayed data packets are usually discarded if they do not meet the real-time

requirements of the application. The idea of [31, 32] is to keep the TCP socket buffer at

the sender as small as possible, minimizing the amount of data in the transmission pipeline.

Hence, an adaptive streaming application can react fast to changed network conditions by

adapting the content to the available bandwidth.

Early work on priority streaming [22] made use of the reliable and ordered data transfer

of TCP. By reordering the video bit stream syntax elements in terms of priority and sending

the more important parts of the video before the low-priority parts, it was possible to

adapt the video quality to the current throughput of the used TCP connection. The video

content is split into video fragments, which are reordered in terms of priority. For each

video fragment a maximum transmission time is specified. The reordered video fragment

is transmitted over a single TCP connection to the client till the accounted transmission

time is used up. This priority-based technique is based on temporal scalable video, enabling

graceful degradation of the received video.

Usually, scalability in the signal-to-noise (SNR) domain is better suited for Internet

video streaming, because it produces less perceptible artifacts. Hence, priority-progress

streaming [49, 50] extended the idea of [22], using a scalable video codec in order to deliver

a rate-distortion optimal video. Because priority streaming is based on video fragments,

also the influence of fragment sizes was investigated. Additionally, dynamic fragment sizes

were used to decrease the start-up delay, because the start-up delay is usually dictated by

the fragment size.

Adaptive video transcoding was used in [77] to adapt the video content to the current

TCP transmission rate. A delivery module feeds information on the current transmission

rate back to an adaptation module. The adaptation module uses the transmission rate as

a bandwidth estimate, which is used to steer the adaptation of the video. The transcoder

module provides adaptation capabilities in the SNR domain. By changing the quantization

CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH
TIME-VARYING BANDWIDTH Page 57

of the transform coefficients of the input video, the video bit rate can be adjusted to match

the bandwidth estimate.

4.5.2 Standards and Applications

As mentioned before, TCP has become the de facto standard protocol in the Internet.

Hence, adaptive video streaming using HTTP, which is based on TCP, has recently become

quite popular. In [114], Microsoft introduced HTTP-based adaptive streaming with their

Smooth Streaming System. Instead of a single video download, multiple small HTTP

downloads (of so-called video fragments) are performed. Each video fragment comprises

several seconds of video and is usually aligned with the GOP boundaries of the video.

To enable adaptive streaming, for each video different representations of different quality

exist. By changing representations after each finished download, it is possible to switch the

media bit rate (and hence the quality). The video fragments are consecutively transferred

to the client, where the video is decoded and displayed. The system can react to changing

network conditions by switching to different representations of the video content.

There are a lot of similar HTTP-based adaptive streaming systems, the most prominent

are Move Networks [64], Apple’s HTTP Live Streaming [70], the Akamai HD Network [15]

and Adobe’s HTTP Dynamic Streaming [36]. The adaptation system of the approaches

works in a similar manner, because they utilize stream switching [92] to adjust the

stream-out rate to the available bandwidth. While all approaches rely on a set of video

representations with different qualities, the main difference between the systems lies in

the metadata for describing the media content and in the media container format [80].

Additionally, the algorithms for adaptation decision taking are different, which decide when

to switch from one media quality to another [6, 112, 66]. The majority of the streaming

systems use stream switching to adapt to the changing network conditions, without taking

advantage of a scalable video codec (like H.264/SVC [109]) which enables fine-grained

adaptation. The video fragments are mainly transmitted via HTTP’s request-response

paradigm, because HTTP can easily be deployed in existing network infrastructures.

Adaptive HTTP streaming gained a huge momentum in the last years, because more

Page 58
CHAPTER 4. ADAPTIVE VIDEO STREAMING IN NETWORKS WITH

TIME-VARYING BANDWIDTH

and more consumer devices are connected to the Internet. To enable interoperability, it was

also necessary to standardize the interfaces between the streaming server and the client.

In HTTP-based streaming systems, the interfaces usually comprise of a description of the

video content, its different representations and its location. The 3GPP Adaptive HTTP

Streaming standard [4] additionally extends this interface by detailed video characteristics,

dependencies and application-specific metadata. The interface also includes how the video

data can be accessed and how long the resource will be available, which is useful in case of

live streaming. But the standard does not describe how to implement the adaptive streaming

process itself. 3GP-DASH (Progressive Download and Dynamic Adaptive Streaming over

HTTP) [5, 91] extends the adaptive HTTP streaming standard of 3GPP by supporting

scalable video. The MPEG Dynamic Adaptive Streaming over HTTP (DASH) standard

[37, 65] is partly identical to 3GP-DASH, but implements additional use-cases which may

be needed in large scale deployments.

CHAPTER

5 TCP-based Adaptive Video

Streaming for the Internet

TCP-based adaptive video streaming is mainly deployed for video-on-demand, allowing

several seconds of startup delay. Stream switching and priority streaming are the most

suited approaches for non-real-time adaptive video streaming, because the changes of

the video quality are kept low. Although rate-control can offer this capability too, it

performs quite different in terms of scalability and network efficiency with multiple clients

(see Section 4.1 for more details). For that reason, rate-control is not considered a good

candidate for video-on-demand.

In this chapter, an in-depth evaluation of three existing TCP-based adaptive video

streaming approaches will be presented:

• Stream Switching using Application-layer Bandwidth Estimation

• Stream Switching using TCP-Stack-based Bandwidth Estimation

• Priority Streaming

The mentioned approaches can utilize the scalability features of the H.264/SVC video

codec [109] to enable fine-grained adaptive streaming. In the evaluation, different metrics

will be used to benchmark the systems under diverse network conditions. The average

quality of the received video indicates how well an approach can make use of the available

bandwidth. The variance of the quality shows how the approaches cope with TCP’s fluctu-

ating throughput. In addition, the buffer level on the client and its variance is monitored

to assess the quality of the client status estimation. An evaluation of the TCP-friendliness

Page 60 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

will show if the adaptive approaches utilize their fair share of the network’s bandwidth.

The contribution in this chapter is an analysis of the baseline performance of TCP-based

adaptive streaming; the results represent a reference for further investigations.

In the following, TCP-based adaptive video streaming is reviewed and the an outline of

the different approaches will be presented.

5.1 TCP-based Adaptive Video Streaming

Due to the easy deployment and congestion awareness of TCP, video streaming based

on TCP has become very popular. Currently, a lot of content providers use TCP for

streaming multimedia content over the Internet [81, 49]. TCP performs very well in

networks with small round-trip times (RTTs), because it uses acknowledgements to sig-

nal a successful transmission. But TCP has performance issues in networks with high

bandwidth-delay products, like the Internet. TCP’s congestion control is based on the

additive-increase/multiplicative-decrease (AIMD) algorithm. The AI step tries to increase

the congestion window until a packet is lost. On packet loss, the MD step reduces the TCP

window (and therefore the throughput) drastically. This leads to a notable variation of the

throughput in networks with large RTTs, because the time to recover from a packet loss

is directly dependent on the RTT. In [104], an extensive analysis of TCP streaming was

conducted. The analysis shows that TCP streaming achieves good results when the avail-

able bandwidth is twice the media bit rate. While this kind of overprovisioning is feasible

for streaming media at low bit rates, high-definition media demands for significantly higher

throughput. Currently, a large number of last-mile networks offer downlink bandwidths

greater than 4 Mbps [19]. But providing twice the bit rate of an HD video stream turns out

to be difficult. Another problem of TCP-based adaptive video streaming is error recovery

on connection abort or stalls. Usually, this has to be handled on the application layer.

In addition to the systematic problems of TCP, the performance is also very dependent

on the implementation of the TCP stack and the applications using TCP. The TCP stack

is in general implemented in the kernel space of the operating system to provide high

performance and avoid security issues. To access TCP from the user space, the TCP socket

API and a socket buffer have to be used. The size of the TCP socket buffer directly

influences the TCP performance, because it limits the maximum throughput by restricting

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 61

the maximum size of the congestion window [113]. Usually, it is recommended to set the

TCP socket buffer size to twice the value of the bandwidth-delay product (BDP) [113].

In adaptive video streaming, it is not the goal to utilize the network link beyond the

maximum video bit rate. The main goal is to transmit the video data in such a manner

that jerky playback is avoided. Large TCP socket buffers usually increase the adaptation

delay, because the data in the socket buffer cannot be changed any more. Thus, it is

recommended to keep the TCP socket buffer size as small as possible for adaptive systems.

In the following, the TCP socket buffer size will not be set considering the BDP but the

maximum video bit rate (see Equation 5.1). To avoid a server overload, the stream-out rate

is restricted to be approximately the maximum video bit rate.

TcpSockBufferSize = 2 ∗ V ideoBitRate ∗RTT (5.1)

In the literature, different approaches to adaptive video streaming exist (see also Sec-

tion 4). For this evaluation, the two approaches appropriate for TCP streaming were

selected, which are stream switching and priority streaming. Both approaches only observe

the TCP channel and utilize the gathered information in the adaptive streaming process.

The streaming systems do not change the behavior of the TCP implementation or the net-

work protocol stack of the operating system. In addition, two different types of bandwidth

estimation (BE) are evaluated for stream switching. In the following, a total of three dif-

ferent approaches to adaptive TCP streaming are briefly recapitulated. The realisation by

using H.264/SVC will be further explained in Section 5.2.

Stream Switching using Application-layer Bandwidth Estimation (APP-BE):

The idea is to measure the time spent for the transmission of a specific media block and

estimate the available bandwidth from it. In [77], a system utilizing application-layer band-

width estimation is presented. A delivery module writes the media data into a blocking

TCP socket and calculates the bit rate by simply counting the bytes for a specific period

of time. One of the benefits of application-layer bandwidth estimation is that it does not

rely on any operating system specific information. The estimated value of the available

bandwidth is used in the adaptation process to configure a media transcoder. As shown in

[77], it can adapt to the available bandwidth. The application-layer bandwidth estimation

Page 62 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

works also in combination with stream switching (see Section 4.2), where it can be used for

selecting the video representations.

Stream Switching using TCP-Stack-based Bandwidth Estimation (TCP-BE):

The current congestion window and the estimated RTT of a TCP connection can be used

to estimate the available bandwidth [60]. In [9], a simple model for the expected latency of

the packets sent with TCP Reno is presented. Additionally, this model also estimates the

available channel rate and the expected distortion. The TCP parameters are used to steer

the encoding process of the video, allowing the streaming system to adapt to the available

bandwidth. But this type of bandwidth estimation can also be used in stream switching,

where it steers the adaptive selection of the video representations.

Priority Streaming: In contrast to traditional buffering at the receiver, which only

tries to overcome bandwidth shortages or bandwidth estimation errors, priority streaming

[22, 50] tries to average the video quality over a period of time (see also Section 4.3). A

video sequence is split into fragments, comprising the same play-out duration. The idea

is to rearrange the video syntax elements (e.g., slices, frames, layers) in priority order. A

reordered video fragment is called video segment. As a result, a video segment can be

truncated at virtually any point. The quality of the video segment depends only on how

much of the video segment is retrieved.

TCP-based priority streaming uses a single TCP connection for the transmission of

the video data. The video segments are sent sequentially from the server to the client.

The server maintains a timeout for each video segment, which can be considered as the

maximum download duration of the segment. When reaching the timeout, the server

stops transmitting the segment and switches to the next one. At the client, the video is

reconstructed from the received (and possibly truncated) video segments and displayed to

the user.

The next section will show how these three approaches can be combined with H.264/SVC,

followed by the implementations used in the evaluation.

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 63

Figure 5.1: Server-side adaptive streaming system [51].

5.2 TCP-based Adaptive Streaming of H.264/SVC

For the evaluation, the adaptive streaming approaches mentioned above were adapted for

use with H.264/SVC. To asses the capabilities of the different approaches, an architecture

using server-side adaptation based on estimation of the client status was chosen [51]. The

rationale behind this choice is an easier comparison of the adaptive streaming solutions,

because the adaptation logic and the streaming logic are placed on the server. It is also

aligned with the classical view of streaming, where the server pushes the media data to the

client. Because the number of quality changes should be comparable for all approaches,

the video fragments are restricted to comprise exactly one GOP. Hence, the transmission

of the video is performed on a per-GOP basis. The common architecture for all server-side

streaming solutions is shown in Figure 5.1.

At the server, the video is stored as a scalable H.264/SVC bit stream. The adaptive

streaming component adjusts each video fragment/GOP based on the adaptation decision,

before it is transmitted to the client. At the client, the GOP is received, buffered and

decoded for playback. All three approaches do not use client feedback (like buffer level,

etc.) to steer the adaptive streaming process. Only the implicit feedback of the TCP

connection is used as an indicator of the transmission progress. For instance, blocking write

Page 64 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

operations on the TCP socket indicate the connection status.

Unlike in progressive download, where the client steers the download rate by changing

its advertised window (TCP’s flow control), in server-side adaptive streaming the timely

transmission of the video is controlled at the server. On the one hand, this means that the

server streams out the content at the same speed the client consumes it. The advantage

of the real-time play-out is that a single client with a fast network connection cannot

overload the streaming server by consuming more than its fair share, which is at most the

maximum bit rate of the video. On the other hand, this server-side scheduling mechanism

is further necessary to prevent video fragments from arriving too late at the client. Since

late fragments drain the buffer at the client and cause the video playback to stop at the

player, all three approaches employ counter-measures to prevent this buffer drainage. In

the following, the implementations of the three approaches are described in detail.

5.2.1 Stream Switching using Application-layer Bandwidth Estimation

The first stream switching approach (see Section 4.2) is based on bandwidth estimation that

is done at the application layer (APP-BE). To estimate the available bandwidth, the number

of bytes sent through the TCP socket for a time interval is measured. The measurement is

performed on a per-GOP basis, because the smallest transmission unit is a single GOP. By

measuring the time that is needed to send the GOP via the socket to the client, the current

throughput of the TCP connection can be calculated. For future GOP transmissions, a

bandwidth estimate is computed as the average of the last five throughput measurements.

Based on that estimate, the next GOP is adapted by selecting a representation of the

H.264/SVC bit stream with a bit rate below the bandwidth estimate. Additionally, the

estimate is adjusted by the buffer control algorithm to prevent the client buffers from

draining in case of delayed GOP transmissions. Delayed GOP transmissions are partly

an effect of TCP’s reliable transmission system. In addition, changes in the network (like

congestion) may reduce the available bandwidth and thereby increase the time needed for

transmitting a GOP. If the delivery of a GOP is delayed, all GOPs sent afterwards are

delayed too. To correct this mismatch, the bit rate of the GOPs has to be adjusted in order

to enable timely delivery.

More formally, the adaptive streaming algorithm can be described as follows. Let dgop be

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 65

Figure 5.2: GOP timing [51].

the playback duration of a GOP in seconds and tschi the scheduled start time for transmitting

the i-th GOP at the server. Without loss of generality, one can define tsch0 = 0 and the

scheduled start of any other GOP i as tschi = tsch0 + dgop ∗ i. To detect a potential drift in

the start time, the actual start time of each GOP (tacti) at the moment before the first byte

of a GOP is sent via the socket API is recorded. After the successful transmission of the

GOP, the actual time is sampled again and the transmission duration (dtransi) of GOP i is

determined. The introduced timestamps and durations are illustrated in Figure 5.2. Given

the length of the GOP in bytes (lgopi), the measured throughput for the transmission of a

GOP i can be calculated as thi = lgopi /dtransi . The estimated bandwidth available for the

transmission of the next GOP i+1 is the average of the last five throughput measurements,

corrected by a multiplicative term. This correction prevents that the scheduled start times

tschedi and the actual start times tacti begin to diverge and is called buffer control in this work.

The buffer control on the server is used to prevent the client buffer from either overflowing

or draining. For that reason, the buffer control function fbctl(delta, d
gop) depends on the

difference between both timestamps and the duration of one GOP (delta = tacti + dtransi −
tschi+1). The function is illustrated in Figure 5.3 and described in more detail in the section

below. Finally, the estimated bandwidth (be) for GOP i+ 1 is defined as follows [51].

bei+1 =
1

5

i∑
j=i−4

thj · fbctl(tacti + dtransi − tschi+1, d
gop) (5.2)

The estimated bandwidth is used for selecting the quality of the next GOP. Each GOP

Page 66 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

is encoded using the H.264/SVC video codec (see Section 2.1.2 for more details) and uses

the priority id to define different representations of the content. Using this semantic,

up to 64 representations can be extracted out of an H.264/SVC bit stream. For each

representation, the resolution, bit rate and other parameters are stored in a scalability

information SEI message [109]. This bit rate information is then used for selecting the

representation of a GOP in a way that it matches the target bandwidth.

Because the stream out rate of the video is limited to the maximum bit rate of the video

(real-time), a constraint is imposed on the transmission start of each GOP. The transmission

should not start earlier than scheduled, i.e., ∀i : tacti ≥ tschedi . In addition, it is required

that the size of the GOP is larger than the TCP socket buffer on the server, to be able

to measure the throughput by means of the blocking TCP socket API. If the GOP size

is too small, the socket implementation may simply copy the video data into the TCP

socket buffer and return immediately from the sending operation, which would render the

throughput measurement useless. On the server, the TCP socket buffer should be adjusted

according to the bit rate of the video and the envisaged RTT range, to guarantee consistent

measurements (see Equation 5.1).

Buffer Control Function

Adaptive streaming based on bandwidth estimation heavily relies on the accuracy of the

estimate. If the bandwidth estimate is too much off, it may happen that the buffer on the

client drains. The buffer control function steers the buffer usage at the client by adjusting

the estimated bandwidth. Without any adjustment, the scheduled start time and the actual

start time of each GOP’s transmission usually drift apart. On the other hand, throttling

the used bandwidth too much may lead to an under-utilization of the available bandwidth

(fair share) of the network link. As a result, a TCP connection which does not participate

in the competition with possible concurrent TCP connections may suffer from starvation.

The buffer control function, as shown in Equation 5.3 and Figure 5.3, is designed by

considering the following situations [51]. If the difference between scheduled and actual

start time (delta) is small - less than 5 percent of the GOP play-out duration, it can be

assumed that more than sufficient bandwidth is available for the transmission of the video

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 67

−2 0 2 4 6 8

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

delta/dgop

fb
ct

l(d
el

ta
, d

go
p)

Figure 5.3: Buffer control function [51].

data. For that reason, the buffer control function increases the bandwidth estimate by 50

percent, to enable TCP to acquire the fair share of the network bandwidth. On the other

end, if delta is very large and exceeds five times the GOP duration, the actual transmission

of the GOP lags significantly behind the scheduled transmission. In that case, the rate for

video stream-out is reduced to be 1/5 of the estimated bandwidth. No adjustments will be

made if delta is exactly the half of the GOP duration (function value is 1). Using these

three operating points as a basis, a curve with the general form f(x) = a
x+b + c is fitted to

match the operating points described above. The parameters of the resulting function ψ(x)

are given in Equation 5.4.

fbctl(delta, d
gop) :=


1.5 if delta/dgop < 0.05

1/5 if delta/dgop >= 5

ψ(deltadgop) otherwise

(5.3)

ψ(x) :=
1.46

x+ 0.893
− 0.0476 (5.4)

Page 68 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

5.2.2 Stream Switching using TCP-Stack-based Bandwidth Estimation

The second approach using bandwidth estimation uses information provided by the TCP

stack (TCP-BE). The algorithm works similar to the application layer mechanism intro-

duced before. First, an estimate of the bandwidth is obtained and the representation of the

next GOP to be transmitted is selected based on that estimate. The estimate is adjusted

again by a multiplicative term in order to limit the drift between the scheduled and ac-

tual transmission time of each GOP. The main difference of the two approaches is the way

how the bandwidth estimate is calculated. While application-layer bandwidth estimation

measures the TCP throughput at the application layer, this approach obtains the infor-

mation about the TCP connection directly from the network stack. Unix-type operating

systems like Linux provide the getsockopt API call, which - in combination with the option

TCP INFO - can be used to acquire the parameters needed for the bandwidth estimation. The

throughput estimate can be calculated from the current congestion window size cWnd, the

maximum segment size MSS, and the estimate of the round trip time RTT [60]. Following

this idea, the estimated throughput can be defined for the i-th GOP as follows.

thi =
cWnd ·MSS

RTT
(5.5)

Like for the application-layer approach, the bandwidth estimate (be) for GOP i+ 1 can be

determined using Equation 5.2, which also takes the buffer control function into considera-

tion.

5.2.3 Priority-based Adaptive Streaming

While the previous approaches heavily rely on a correct estimate of the available band-

width, the priority-based adaptive streaming (PRIORITY) algorithm does not require any

estimate, because it is based on the priority streaming paradigm as introduced in Section 4.3.

The video is split up into video fragments, where one fragment comprises exactly one GOP.

Unlike the methods introduced before, priority streaming allows to truncate video frag-

ments at virtually any point. The reason for that is the priority reordering process, which

precedes the data transmission. As a consequence, the maximum transmission time for

the rearranged GOP can be fixed to a certain value - usually the GOP play-out duration.

During that time interval, the server pushes as much video data as possible to the client.

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 69

Figure 5.4: PRID-based NAL unit reordering [51].

After the reserved time for the GOP has passed, the server starts transmitting the next

GOP.

In contrast to stream switching, which can also make use of non-scalable media without

performance penalties, a prerequisite for priority streaming is the usage of scalable media. In

case of H.264/SVC, each GOP of the scalable bit stream consists of H.264/AVC-compliant

NAL units that form the base layer and H.264/SVC-specific NAL units that represent the

enhancement layers. Usually, the bit stream is organized in decoding order which means that

both kinds of NAL units are interleaved. To enable priority streaming, the NAL units have

to be rearranged such that the NAL units are transmitted in order of their priority (usually

indicated by the application-specific priority id). NAL units with identical priority ids

are arranged in decoding order. In the context of video transmission, a lower value of

the priority id signals a higher priority of the NAL unit [108]. The basic principles of the

reordering process are illustrated in Figure 5.4. For the sake of simplicity, the figure shows a

video bit stream consisting of only four pictures (I, P, B, B). Each picture has three different

representations, which are represented by one NAL unit carrying the base layer (BL) and

two NAL units representing enhancement layers (EL1, EL2). The numerical values in the

boxes represent the priority id of each NAL unit. Because the bit stream cannot be decoded

without the base layer, all NAL units of the base layer have the highest priority. The NAL

units are ordered according to their priority to enable priority streaming. As a result of

the scalable property of H.264/SVC, the quality of the decoded bit stream monotonically

increases with the number of NAL units received by the client. Since the client requires the

NAL units to be in decoding order, this transmission-specific reordering has to be reversed

Page 70 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

before decoding. To enable fast reordering, proprietary reordering information is embedded

into the transmitted bit stream. Although the reordering process can also be implemented

using standard-compliant methods [46], for the sake of simplicity a proprietary approach

was used.

The transmission schedule for priority streaming is similar to the one already defined

for the previous two approaches. The scheduled start time for the transmission of the

i-th GOP is denoted as tschedi . In general, the end of the transmission of the i-th GOP is the

start time of the next GOP tschedi+1 . During the time period [tschedi , tschedi+1), the server sends

all NAL units via the TCP socket individually. After each send operation, the server checks

if the time limit for the current GOP has been reached. However, each send operation

itself is never preempted. In case of an overprovisioned network link, the transmission of

a GOP will be usually finished before the time limit has been reached. However, the start

of the next GOP’s transmission will be delayed until the scheduled start time of the next

GOP, to prevent excessive stream-out rates (similar to the stream switching approaches).

If the available bandwidth is insufficient to transmit the whole GOP in the given time

interval, the server will skip the remaining NAL units and proceed with the next GOP.

It should be noted that priority streaming does not make use of an explicit H.264/SVC

adaptation process. The actual adaptation is performed by truncating the priority-ordered

GOPs implicitly upon stream-out.

All approaches presented in this section rely on H.264/SVC adaptation based on the

priority id mechanism. The Quality Level Assigner tool (QLA) of the JSVM software [40]

was used to acquire information about the importance of each MGS NAL unit. The tool

determines the priority for each NAL unit based on the rate-distortion of the reconstructed

video. After assigning the priorities, the representations of the video can be extracted in a

rate-distortion optimal way.

However, the tool defines the semantic of the priority id such that high priority id

indicates a high priority of the NAL unit, which differs from the one specified in [108] (a low

value of the priority id signals a high priority of the NAL unit). For that reason, in a second

step, the priority id values of the output of the Quality Level Assigner have to be translated.

Because only the QLA tool is used for assigning the priority ids, the evaluation is limited

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 71

Figure 5.5: Use case for TCP-based Adaptive Streaming [51].

to adaptation in the SNR domain. Nevertheless, the adaptive streaming approaches can

handle also spatial and temporal scalability. Sticking to SNR adaptation also enables easy

comparison of the results in terms of PSNR, unlike in temporal or spatial adaptation where

the direct comparison in terms of PSNR is seen controversial. MGS scalability is considered

as most suitable in the context of Internet streaming, because it offers a wide range of bit

rates. In contrast to temporal adaptation, MGS scalability enables smooth playback at the

client and avoids severe quality changes that would arise when switching between different

spatial resolutions. If continuous playback is of utmost importance, temporal and spatial

scalability can be used as a fall-back solution to avoid jerky playback. This may be necessary

in heavily congested networks, when the possibilities of SNR scalability get exhausted.

5.3 Evaluation of TCP-based Adaptive Video Streaming

Adaptive streaming based on TCP has to cope with various problems, like the significantly

varying throughput and packet loss. The variance of the throughput of a TCP connection

depends on both, the network link characteristics and the amount of congestion. TCP’s

performance deteriorates with unanticipated packet loss, because the congestion control

assumes that the packet loss is due to congestion. To show the performance of the different

adaptive approaches and not TCP’s behavior in the presence of packet loss, packet loss

is not considered in this evaluation. A typical use case for Internet video streaming is

illustrated in Figure 5.5. It slightly differs from the main use case described in Section 1.1,

which also takes packet loss into account. Several computers or consumer electronic devices

in a home network are connected to the Internet via a DSL or cable-based access network.

Page 72 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

In this deployment, the bottleneck link is assumed to be the access network (last mile).

Concurrent TCP connections may cause congestion because of network link saturation or

competition over the available bandwidth. This competition also influences the performance

of an adaptive video streaming application.

The behavior and performance of the proposed adaptive streaming approaches will be

evaluated under conditions typical for Internet streaming. These include under-provisioned

network links and congested links due to competing TCP traffic. The average quality of

the received video will show how well an approach can utilize the available bandwidth. The

variation of the quality will indicate how well an approach can cope with the fluctuating

throughput of TCP. To check the accuracy of the client status estimation, the buffer level on

the client will be monitored. A further criterion for the evaluation is the TCP friendliness

of the approaches, which is seen as crucial for applications intended to be deployed in the

Internet. The stability of the Internet is based on the rationale that an application/protocol

does not consume more than its fair bandwidth share. Since all presented approaches only

make use of a single TCP connection, TCP-friendliness can be assumed.

5.3.1 Test Setup

The evaluation setup consists of six computers representing two servers, two routers and

two clients as illustrated in Figure 5.6. Each node in the network runs the Ubuntu Linux

operating system (kernel 2.6.27) and all client and server computers are configured to use

the TCP Reno implementation. The routers use the Linux kernel module Netem [28] to

perform the emulation of the network characteristics like delay, jitter and packet loss. The

symmetric end-to-end delay of the Internet and the access network is emulated by Router

1. The packet delay is normally distributed with 10% standard deviation and is applied

to all packets. Router 2 emulates the access network and limits the up- and downstream

bandwidth (BW) between the Internet and the clients, allowing a maximum queuing delay

of 200 ms. The asymmetric access network was emulated by setting the upstream bandwidth

to 1/8 of the downstream bandwidth, which is common practice for DSL/cable networks.

While the test setup is also able to generate packet loss in the access network, no packet loss

will be emulated for this evaluation. The three TCP-based adaptive streaming approaches

were implemented using the Python programming language. In this test setup, the adaptive

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 73

Figure 5.6: Test setup for TCP-based Adaptive Streaming [51].

streaming server is deployed on Server 1 while the client is located at Client 1. For the

emulation of network congestion, Client 2 issues parallel infinite-source HTTP downloads

from Server 2, which compete over their network share with the adaptive streaming traffic.

The Apache HTTP Server [27] is used for serving the HTTP downloads.

5.3.2 Network Scenarios

For the envisioned use case, Internet video streaming, three different network scenarios are

considered to be important because of the best-effort characteristics of the Internet. In the

first scenario, an overprovisioned network link is used for the transmission of the video data,

in which the available bandwidth substantially exceeds the video bit rate. The scenario is

used to evaluate the ability of an approach to fully utilize the bandwidth for video trans-

mission and the ability to cope with throughput variations. These throughput variations

may occur in networks with high bandwidth-delay products, because of TCP’s AIMD-based

congestion control. At the other extreme, the adaptation ability of the approaches is an-

alyzed in a scenario of an underprovisioned network link. This should demonstrate how

well an approach can adapt to a specific network bottleneck bandwidth. In the third sce-

nario, cross traffic congests the access network (last mile). To emulate the congestion, one,

two and three concurrent infinite-source HTTP downloads are started in parallel to the

video stream. On such a congested network link, an adaptive streaming system has to cope

with high bandwidth fluctuations, because of the competition between the concurrent TCP

streams. Further, the approaches should make good use of their fair share of the network

bandwidth and provide a TCP-friendly behavior.

Because TCP cannot cope with channel-related packet loss, an evaluation of the per-

formance of TCP-based adaptive streaming in presence of packet loss was omitted. An

Page 74 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

Bitrate [kbit/s]

A
ve

ra
g
e

 P
S

N
R

 [
d
B

]

32

33

34

35

36

750 1000 1250 1500 1750 2000

 GOP soccer (4CIF)

65 frames

129 frames

257 frames

Figure 5.7: Rate-distortion curves of the test sequences [51].

in-depth evaluation on this topic will be given in Section 6.1.

5.3.3 Test Content

For the evaluation, the test sequences were created by means of the H.264/SVC codec

provided by the Joint Scalable Video Model (JSVM) [40] 9.15 software. The video soccer

in 4CIF resolution was encoded using three different GOP sizes. The first 65, 129 and 257

frames of the video content form a test sequence, comprising 2.16, 4.30 and 8.57 seconds of

video (dgop) at 30 fps, respectively. Because of the dyadic prediction structures (hierarchical

B-frames [87]) of the JSVM software, uneven GOP sizes were chosen. Dyadic GOP sizes

generate B-frames at the end of each GOP, which results in missing P-frames for inter-frame

prediction. Because the quantization parameters for B-frames are usually fixed to a specific

value, the quality of the last B-frame would be bad. For that reason, the GOP size was

incremented from 2n to 2n+1 to enable the encoder to add an additional P-frame at the end

of each GOP. By doing this, the prediction structure is closed once again and the quality

of the last B-frame is good.

In addition, the test videos crew and foreman were evaluated. But they are omitted from

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 75

the presentation in this work, because they did not reveal any new findings. This is mainly

because the adaptive streaming algorithms do not use any content-specific information. In

case of stream switching, the bandwidth estimation suggests only a transmission bit rate,

which can be used by the adaptation process to deliver a distortion-optimal video. The

transmission system in priority streaming only relies on the priority-ordered bit stream of

the scalable video. Hence, it is not content-aware at all.

Each test sequence consists of an H.264/AVC backward compatible base layer and one

MGS quality enhancement layer (H.264/SVC). The 16 transform coefficients of the MGS

quality enhancement layer are uniformly partitioned into four NAL units (4x4), resulting

in five different quality representations for each video frame (base layer plus four quality

enhancement layers). Because in MGS the quality can be changed on frame level, it is

possible to extract more than five quality representations out of the scalable video bit stream

(theoretically up to 1 + nframes ∗ nenhlayers). The Quality Level Assigner tool (JSVM) was

used to assign 64 different priority ids to the NAL units based on rate-distortion values.

Figure 5.7 shows the rate-distortion values of the test sequences, ranging from the lowest bit

rate (highest priority) to the maximum bit rate (lowest priority). It can be observed that

the sequences with smaller GOP sizes exhibit a slightly worse rate-distortion performance,

because the prediction structures are limited by the GOP size. Although each test sequence

comprises a different number of frames, it can be observed that the average PSNR values of

the sequences are similar (see Figure 5.7). This simplifies the interpretation of the evaluation

results, because it allows for a direct comparison of the results for different GOP sizes.

5.3.4 Evaluation Methodology

A typical application of TCP-based adaptive video streaming is video-on-demand. For

that reason, the evaluation focuses on rather long stream-out durations and analyzes the

received video quality and variation. The soccer65 sequence is streamed 400 times in a loop,

resulting in approx. 900 seconds stream-out duration. Because each test sequence has a

different play-out duration and the approaches aim for real-time stream-out, the soccer129

and soccer257 sequences are streamed 200 and 100 times in a loop, respectively. As a result,

the stream-out durations of all test sequences are similar, which enables a fair comparison

of the evaluation results for the different GOP sizes.

Page 76 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

The three network scenarios only consider different network conditions in the access

network. To show the effects of different server locations also the RTT is varied, ranging

from 50 ms to 200 ms. Each experiment is repeated three times and the values are averaged

to reduce the influence of the run-time environment on the results. In the evaluation runs,

no frames or GOPs were lost, because the adaptive streaming systems are based on the

reliable transmission of TCP.

The size of the TCP socket buffer should be set based on the maximum throughput

envisioned (see Section 5.1). When using overprovisioning, streaming systems should be

able to utilize the additional bandwidth to enhance their streaming performance. For that

reason, the maximum allowed TCP throughput is set to be 50 % higher than the video

bit rate. Therefore, the TCP socket buffer size lsock is determined using the maximum

bit rate of the video brmax (≈ 2048 kbps) and the maximum round trip time RTTmax

(200 ms), resulting in lsock = 1.5 · 2 · brmax · RTTmax = 153600 bytes (see Equation 5.1).

Although automatic TCP buffer tuning algorithms exist in modern operating systems [89],

the effect of such an algorithm is very implementation specific. To be able to provide results

independent of this buffer tuning implementation, a fixed buffer size was chosen. Hence, in

the evaluation the TCP buffer size was set to lsock for all network scenarios and RTTs.

The metrics used for comparing the adaptive streaming approaches are the reconstructed

video quality in terms of PSNR, the deviation between the scheduled and the actual arrival

time of a GOP on the client deltaC = tacti − tschedi and the variance of them. The value

of deltaC corresponds to the buffer level in seconds on the client and will be monitored

to check the accuracy of the client status estimation. For priority streaming, the absolute

values of deltaC have to be interpreted with care. Priority streaming buffers at least one

video fragment (see Section 4.3), because it needs to rearrange the received GOP into

decoding order. In contrast to this, the APP-BE and TCP-BE approaches are able to start

the decoding of a GOP immediately after the first frame of the GOP is received. A further

criterion for the evaluation is the TCP friendliness of the approaches. All approaches should

only make use of their fair share of the network’s bandwidth.

The evaluation focuses on the dependability of the adaptation algorithms in terms of

timeliness of delivery. To get a good starting point for the bandwidth estimation, the first

GOP is transmitted in full quality.

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 77

5.4 Results

The performance of TCP-based adaptive streaming is directly linked to the performance

of TCP, which again is very dependent on the network conditions (see Section 5.1).

For the assessment with respect to adaptive Internet video streaming, different network

scenarios were introduced and the RTT was varied ranging from 50 to 200 ms. Because

TCP performs best at low RTTs, the evaluation results are shown for the minimal RTT

(in our use case 50 ms). Additionally, the results are shown for an RTT of 200 ms.

In case of TCP-based adaptive streaming, this would represent the worst case scenario.

In the following, a discussion of the evaluation results for each network scenario is presented.

The performance of the adaptive streaming approaches in an overprovisioned network

is shown in Figures 5.8 and 5.9. Stream switching and priority streaming perform very well

and maximize the video quality by utilizing the additional bandwidth. This is supported

by an investigation on constant bit rate streaming with TCP [104], which states that good

streaming performance can be achieved if the available bandwidth is about twice the media

bit rate. The small differences in the absolute PSNR values for the different GOP sizes

are not transmission related, but caused by the better rate-distortion performance of larger

GOPs (see Figure 5.7). The variation of the emulated packet delay and the dynamic be-

havior of TCP are leading to throughput variations, which result in the adaptation of some

GOPs even in the case of overprovisioning. But of course this is only happening in the

worst case with an RTT of 200 ms.

The timeliness of delivery of each GOP is monitored by means of the arrival time

deviation of each GOP on the client (deltaC) for the different algorithms and GOP sizes.

If the available bandwidth exceeds the bit rate of the adapted video, the delivery of a single

GOP usually takes less time than the GOP play-out duration, resulting in deltaC values of

zero. This is also supported by the results, as Figures 5.8(b) and 5.9(b) show arrival time

deviations near zero. Because all GOPs arrive in time, only little buffering will be needed

at the client. The standard deviation of the PSNR and the arrival time deviation is shown

as error bars in the plots.

The ability of the streaming systems to adapt to a static bottleneck link with 1536 kbps

Page 78 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

APP−BE TCP−BE PRIORITY

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

(a) PSNR

APP−BE TCP−BE PRIORITY

A
rr

iv
al

 ti
m

e
de

vi
at

io
n

(d
el

ta
C

)
[s

ec
]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

(b) Arrival time deviation deltaC

Figure 5.8: Overprovisioned network: BW = 4096 kbps. PSNR and arrival time deviation
on the client (deltaC) for the different algorithms and GOP sizes at 50 ms RTT.

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 79

APP−BE TCP−BE PRIORITY

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

(a) PSNR

APP−BE TCP−BE PRIORITY

A
rr

iv
al

 ti
m

e
de

vi
at

io
n

(d
el

ta
C

)
[s

ec
]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

(b) Arrival time deviation deltaC

Figure 5.9: Overprovisioned network: BW = 4096 kbps. PSNR and arrival time deviation
on the client (deltaC) for the different algorithms and GOP sizes at 200 ms RTT.

Page 80 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

APP−BE TCP−BE PRIORITY

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

(a) PSNR

APP−BE TCP−BE PRIORITY

A
rr

iv
al

 ti
m

e
de

vi
at

io
n

(d
el

ta
C

)
[s

ec
]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

(b) Arrival time deviation deltaC

Figure 5.10: Underprovisioned network: BW = 1536 kbps. PSNR and arrival time deviation
on the client (deltaC) for the different algorithms and GOP sizes at 50 ms RTT.

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 81

APP−BE TCP−BE PRIORITY

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

(a) PSNR

APP−BE TCP−BE PRIORITY

A
rr

iv
al

 ti
m

e
de

vi
at

io
n

(d
el

ta
C

)
[s

ec
]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

(b) Arrival time deviation deltaC

Figure 5.11: Underprovisioned network: BW = 1536 kbps. PSNR and arrival time deviation
on the client (deltaC) for the different algorithms and GOP sizes at 200 ms RTT.

Page 82 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

bandwidth (underprovisioned network) is shown in Figures 5.11 and 5.10. The average

PSNR values at RTTs of 50 ms and 200 ms (see Figures 5.10(a) and 5.11(a)) are ap-

prox. 35 dB, which corresponds to a video bit rate of ≈ 1400 kbps (see Figure 5.7). This

indicates that all streaming approaches can adjust their stream-out rate to the available

bandwidth. But it can also be noticed that a higher RTT leads to a decreased average

quality (PSNR) and increases the fluctuations of the quality. Larger GOP sizes tend to

stabilize the PSNR values, because one of TCP’s characteristics is that TCP features a

stable throughput only in the long term [69]. When transmitting GOPs within small time

windows, also the dynamic behavior of TCP will be noticeable, leading to high standard

deviation values of the PSNR.

The results of APP-BE and TCP-BE in Figures 5.10(b) and 5.11(b) show that the

arrival time deviation for GOP sizes 65, 129, 257 is limited to approx. 1, 2 and 4 seconds,

respectively. This corresponds to about the half of the GOP’s play-out duration dgop/2

(see Section 5.3.3). The reason for that is the buffer control function, which starts reducing

the stream-out rate if delta on the server exceeds half of the GOP’s play-out duration (see

Section 5.2.1 and Figure 5.3). The results indicate that the client buffer estimation on

the server works well and can limit the buffer usage on the client to a predefined value

(currently dgop/2). In contrast to that, priority streaming does not rely on bandwidth

estimation, so a timely delivery can be achieved independent of the GOP size. Like for the

average PSNR, higher RTTs also lead to an increased variation of the arrival time deviation.

The influence of congestion on the adaptive streaming approaches is shown for an RTT

of 50 ms in Figures 5.12, 5.14 and 5.16 and for an RTT of 200 ms in Figures 5.13, 5.15

and 5.17. It can be noticed that the achievable throughput and, consequently, the video

quality decreases the more congestion on the network link occurs. The PSNR values in

Figures 5.12(a), 5.14(a) and 5.16(a) are approx. 36, 34.5 and 33.5 dB, respectively. Like

in the underprovisioned network scenario, the values of the PSNR are a little bit lower for

higher RTTs (see Figures 5.13(a), 5.15(a) and 5.17(a)). In addition, the quality variation of

the received video increases (standard deviation) with the congestion level, because of the

increasing competition on the network link. The PSNR values correspond to bit rates of

1800, 1250, and 1000 kbps, respectively (see Figure 5.7). Thus, in all congestion scenarios

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 83

APP−BE TCP−BE PRIORITY

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

(a) PSNR

APP−BE TCP−BE PRIORITY

A
rr

iv
al

 ti
m

e
de

vi
at

io
n

(d
el

ta
C

)
[s

ec
]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

(b) Arrival time deviation deltaC

Figure 5.12: Congested network: BW = 4096 kbps and one concurrent TCP stream. PSNR
and arrival time deviation on the client (deltaC) for the different algorithms and GOP sizes
at 50 ms RTT.

Page 84 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

APP−BE TCP−BE PRIORITY

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

(a) PSNR

APP−BE TCP−BE PRIORITY

A
rr

iv
al

 ti
m

e
de

vi
at

io
n

(d
el

ta
C

)
[s

ec
]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

(b) Arrival time deviation deltaC

Figure 5.13: Congested network: BW = 4096 kbps and one concurrent TCP stream. PSNR
and arrival time deviation on the client (deltaC) for the different algorithms and GOP sizes
at 200 ms RTT.

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 85

APP−BE TCP−BE PRIORITY

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

(a) PSNR

APP−BE TCP−BE PRIORITY

A
rr

iv
al

 ti
m

e
de

vi
at

io
n

(d
el

ta
C

)
[s

ec
]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

(b) Arrival time deviation deltaC

Figure 5.14: Congested network: BW = 4096 kbps and two concurrent TCP streams.
PSNR and arrival time deviation on the client (deltaC) for the different algorithms and
GOP sizes at 50 ms RTT.

Page 86 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

APP−BE TCP−BE PRIORITY

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

(a) PSNR

APP−BE TCP−BE PRIORITY

A
rr

iv
al

 ti
m

e
de

vi
at

io
n

(d
el

ta
C

)
[s

ec
]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

(b) Arrival time deviation deltaC

Figure 5.15: Congested network: BW = 4096 kbps and two concurrent TCP streams.
PSNR and arrival time deviation on the client (deltaC) for the different algorithms and
GOP sizes at 200 ms RTT.

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 87

APP−BE TCP−BE PRIORITY

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

(a) PSNR

APP−BE TCP−BE PRIORITY

A
rr

iv
al

 ti
m

e
de

vi
at

io
n

(d
el

ta
C

)
[s

ec
]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

(b) Arrival time deviation deltaC

Figure 5.16: Congested network: BW = 4096 kbps and three concurrent TCP streams.
PSNR and arrival time deviation on the client (deltaC) for the different algorithms and
GOP sizes at 50 ms RTT.

Page 88 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

APP−BE TCP−BE PRIORITY

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

(a) PSNR

APP−BE TCP−BE PRIORITY

A
rr

iv
al

 ti
m

e
de

vi
at

io
n

(d
el

ta
C

)
[s

ec
]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

(b) Arrival time deviation deltaC

Figure 5.17: Congested network: BW = 4096 kbps and three concurrent TCP streams.
PSNR and arrival time deviation on the client (deltaC) for the different algorithms and
GOP sizes at 200 ms RTT.

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 89

only the fair share of the available link bandwidth is used by the approaches. While all

approaches are able to adapt to the available/fair bandwidth, it can be observed that priority

streaming can make use of larger GOPs to stabilize the overall quality of the video.

The performance in terms of video quality is similar to the results in the underprovi-

sioned network scenario. In contrast to this, the behavior of the arrival time deviation

(deltaC) is quite different. Because of the congestion on the network link, the achievable

throughput varies significantly, leading to large errors in the bandwidth estimation and

therefore to high standard deviations of deltaC. For APP-BE and TCP-BE, the variation

of deltaC increases with the amount of congestion and the GOP size, while priority

streaming can achieve a stable performance for all GOP sizes. This is mainly because

for larger GOP sizes a bad bandwidth estimate leads to a larger deviation of the delivery

duration, which directly influences deltaC. Nevertheless, the arrival time deviation for

APP-BE and TCP-BE does not drift away because of the buffer control at the server.

The evaluation results indicate that of the three GOP sizes used, GOP size 65 is likely

to be the best choice for APP-BE and TCP-BE in this configuration. This is because errors

in the bandwidth estimate have a greater impact on the performance when larger GOP

sizes are used. On the other hand, small GOP sizes usually lead to a higher variation of

the video quality (PSNR), because the quality changes happen more frequently.

In contrast to these approaches, priority streaming is much more robust regarding

changes in available bandwidth. In addition, priority streaming is able to enhance the

performance with larger GOP sizes, so a GOP size of 257 frames is considered to be the

best choice in this setup. Figures 5.18, 5.19, and 5.20 show the average PSNR of the adap-

tive streaming systems with respect to the RTT. In absence of congestion, it can be observed

that the quality is near constant. In the congested network scenarios, higher RTTs lead to

lower PSNR values, which is mainly because of the tough competition on the network link.

5.5 Limitations of TCP-based Adaptive Video Streaming

The evaluation of adaptive TCP-based streaming in an Internet-like setting showed that,

despite the simplicity of the adaptive approaches, they can effectively cope with bandwidth

limitations and congestion, even at high RTTs. The use of scalable video allows the bit rate

Page 90 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

50 100 150 200

31

32

33

34

35

36

37

RTT [ms]

P
S

N
R

 [d
B

]

Bandwidth

1536 kbps
4096 kbps
4096 kbps − 1 TCP
4096 kbps − 2 TCP
4096 kbps − 3 TCP

Figure 5.18: Average PSNR for APP-BE with GOP size 65 with respect to the RTT.

50 100 150 200

31

32

33

34

35

36

37

RTT [ms]

P
S

N
R

 [d
B

]

Bandwidth

1536 kbps
4096 kbps
4096 kbps − 1 TCP
4096 kbps − 2 TCP
4096 kbps − 3 TCP

Figure 5.19: Average PSNR for TCP-BE with GOP size 65 with respect to the RTT.

CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING Page 91

50 100 150 200

31

32

33

34

35

36

37

RTT [ms]

P
S

N
R

 [d
B

]

Bandwidth

1536 kbps
4096 kbps
4096 kbps − 1 TCP
4096 kbps − 2 TCP
4096 kbps − 3 TCP

Figure 5.20: Average PSNR for Priority Streaming with GOP size 257 with respect to the
RTT.

and quality of the delivered video to be adapted in a fine-grained manner. Because TCP

only features a stable throughput in the long term, the adaptive streaming approaches

utilize rather large GOPs to minimize fluctuations in the video quality. However, the

approaches using bandwidth estimation suffer from large GOP sizes, since inaccurate band-

width estimates may impact the quality of the video and increase the variation of the arrival

time deviation. Thus, determining the optimal size of the client buffers may become diffi-

cult. Priority streaming reorders and transfers the video data according to their importance

(e.g., rate-distortion). Large GOPs help to improve the performance, by averaging TCP’s

throughput and, consequently, the video quality over a longer period of time. For priority

streaming, the variance of the arrival time deviation is more predictable, because it does

not rely on bandwidth estimation. This also simplifies the dimensioning of the client buffers.

TCP-based adaptive streaming performs robustly in terms of video quality and timely

delivery, both on under-provisioned links and in case of congestion. It is suited for Internet

streaming, because it adapts to the available bandwidth and is congestion-aware. The TCP

Page 92 CHAPTER 5. TCP-BASED ADAPTIVE INTERNET VIDEO STREAMING

connection and its specific characteristics, like the AIMD algorithm, are the main limiting

factors of the streaming performance. In the presence of packet loss, TCP’s performance

deteriorates rapidly, rendering video streaming impossible (see Section 6.1).

Additionally, using TCP in adaptive streaming leads to several scalability issues. While

client state estimation on the server helps to increase the responsiveness of the adaptive

control loop (all logic is placed on the server), the server has also to cope with the client

states, adapt the video according to the network conditions and manage stream-out of the

video data. This is considered to be computationally expensive compared to non-adaptive

stream-out of the video data and usually reduces the number of clients a server may serve,

leading to poor scalability. In the network, TCP’s end-to-end transmission paradigm and

the adaptation to the specific client requirements prevent caching or proxying from being

deployed.

To overcome these restrictions, HTTP-based video streaming was introduced, which

uses CDNs and HTTP caching to enhance the scalability in terms of network efficiency.

Because existing infrastructure can be reused, low deployment costs can be achieved. The

client-driven paradigm of HTTP also allows for new approaches to adaptive streaming. One

of these will be presented in the following chapter.

CHAPTER

6 Parallel HTTP-based

Request-Response Streams

Congestion awareness is considered as most important in the Internet. For that reason,

TCP/HTTP-based adaptive video streaming gained a lot of momentum. In the envisioned

use case, Internet video streaming (see Section 1.1 and Figure 1.1), it is assumed that the

access network forms the bottleneck link. In addition, network packets may be lost due to

transmission errors in wireless networks.

In the following, TCP-based video streaming will be analyzed in detail for this use case.

To complement the shortcomings of TCP-based video streaming, in this thesis, multiple

parallel HTTP-based request-response streams [52, 53] will be introduced and investigated

for the use in video streaming. An analytical model for the achievable throughput of a

request-response streaming system will give more insights into the behavior of the request-

response streams. Additionally, the system parameters of a request-response streaming

system will be investigated regarding their influence on the system performance under

diverse network conditions.

6.1 TCP-based Video Streaming in Error-Prone Networks

TCP and especially HTTP over TCP gained a lot of attention in the area of Internet video

streaming due to its reliable end-to-end transport, the ability to adapt to changing network

conditions, and easy deployment. While there are dedicated protocols for video streaming

in IPTV networks (like RTP/UDP [85]), TCP-based video streaming is able to replace

more and more of the established streaming protocols in the Internet. For a long time,

TCP was considered a bad match for video transmission [49]. The reason for that is TCP’s

Page 94 CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMS

dependency on the network conditions, because TCP’s reliability and adaptive behavior are

based on acknowledgments and retransmissions. In general, dynamically changing RTTs or

packet loss rates lead to a degradation of TCP’s performance [57].

The throughput rate of TCP depends on the maximum segment size (MSS) and the

round trip time (RTT). Considering a packet loss pattern such that after the successful

transmission of 1/p packets (of size MSS) one packet is lost, the estimated TCP throughput

rate rtcp for TCP Reno would be [60]:

rtcp =
MSS
√
p
· 1

RTT
(6.1)

From Equation 6.1 it becomes evident that for a given RTT, the maximum throughput

of TCP is only limited by the packet loss rate p. While the equation only estimates the

long-term mean value of the TCP throughput, the additive-increase/multiplicative-decrease

(AIMD) algorithm of TCP’s congestion control introduces also a variation of the through-

put. Thus, TCP has been considered unsuitable for video streaming for many years. The

performance of TCP for streaming constant-bit-rate content was investigated in [104]. As a

result, it was stated that the achievable TCP throughput should be at least twice the video

bit rate in order to avoid jerky playback, leading to a very bad utilization of the network

link. Even if it is possible to provide this kind of overprovisioning at the start of the play-

out, adapting the video content may be required to be able to cope with changing network

conditions during the play-out. The results presented in Chapter 5 showed that TCP-based

adaptive video streaming can adapt to the available bandwidth quite well and is able to

handle bandwidth fluctuations without introducing too much start-up delay (buffering).

The disadvantages of TCP-based adaptive streaming are mainly inherited from the single

TCP connection used for the transmission of the video data. The high computational costs

to serve the video to a client and the high network load (each client receives a unique video

stream even if the same content is streamed to multiple clients), makes TCP-based adaptive

video streaming an undesirable choice for large scale deployments. In addition, packet loss

or transmission stalls of the TCP connection may lead to disruptions in the video playback.

Adaptive HTTP video streaming (see also Section 4.5.2) tries to overcome these prob-

lems, by exploiting HTTP’s request-response paradigm. The idea is to download a lot of

small so-called video fragments instead of the whole video at once, where each fragment

comprises several seconds of video. The video fragments are downloaded consecutively by

CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMS Page 95

Figure 6.1: Utilization of a network link for an infinite-source TCP stream and a request-
response stream.

the client and the video can be decoded and displayed to the user. Like in stream switch-

ing (see Section 4.2), the content is available in several qualities on the server. After each

fragment download, the quality of the next fragment to fetch is determined based on the

current network conditions and the client buffer level. Because HTTP streaming is usually

client-driven and based on video fragments, a good scalability in terms of clients served and

network usage can be achieved.

In the following, a single HTTP connection transporting video fragments is called an

HTTP-based request-response stream. While the streaming systems introduced in Sec-

tion 4.5.2 are mainly based on a single request-response stream, this work focuses on the

behavior of multiple concurrent HTTP request-response streams. In the next section, the

HTTP-based request-response streams will be described in detail.

6.2 Modelling HTTP-based Request-Response Streams

TCP-based video streaming usually uses server-side mechanisms to deliver the media data.

The server continuously streams audio and video to the client using a long-lived TCP

connection. HTTP streaming behaves differently from classical TCP streaming, because

it is based on the request-response (rr) paradigm. HTTP-based request-response streams

have to request the media data to initiate their transmission. In addition, request-response

streams use responses that are in general small chunks of media data. When using very

large junk sizes, request-response streams become similar to long-lived TCP connections,

which is usually unfavourable because also the advantages diminish. In any case, small

chunk sizes lead to short responses, which may experience unfairness in congested networks

[57]. The reason for this behavior is that between the end of the response and the next

Page 96 CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMS

Figure 6.2: Network packet schedule for an infinite-source TCP stream and three request-
response streams under packet loss (X).

request there is usually a short idle time where the network link is not used by the request-

response stream (see Figure 6.1). This idle time comprises the processing time on the client

to create the new response, the time needed to transmit the request to the server (network

delay) and the processing time on the server to create the request. In this idle time, other

concurrent TCP connections may increase their congestion windows and request-response

streams may struggle to reclaim their fair share of the network’s bandwidth.

Because TCP connections usually share the available bandwidth in a fair manner [57],

aggregating multiple TCP streams for a single use is regarded unfair to concurrent single

connections. The fact that idle times in the TCP transmission change the TCP friendliness,

led to the idea to control the TCP-friendliness of request-response streams by introducing

temporal gaps between requests (inter-request gap tgap). These inter-request gaps increase

the idle time between the requests of the request-response streams [52, 53]. When consid-

ering rather small chunks, which may fit into a single congestion window, the inter-request

gap can also be interpreted as an increased RTT. In general, TCP features no throughput

fairness between connections with different RTTs [57]. For that reason, it should be pos-

sible to aggregate multiple submissive request-response streams for a single purpose, while

still providing TCP-friendliness. In addition, multiple request-response streams are not

as prone to packet losses as a single TCP connection, because a lost packet only reduces

the throughput of a single request-response stream [99, 52, 53]. While the probability to

lose a packet is the same for all request-response streams, the number of packets a single

stream carries is reduced. As shown in Figure 6.2, the packets are distributed over multiple

CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMS Page 97

streams. For that reason, the time between packet loss events for a single request-response

stream is higher compared to a single TCP connection, resulting in a better performance

of the aggregated request-request streams.

Because the transmission scheme of the request-response streams is based on video seg-

ments and multiple connections are used to fetch the video, the proposed transmission

scheme is related to P2P [21] and multi-source streaming [82]. In contrast to these systems,

an HTTP-based request-response streaming system is fully client-driven, which enables fast

recovery in case of connection aborts and features session roaming. The computational com-

plexity of the request-response streams is lower than in P2P systems, because the number

of parallel connections is rather small. For that reason, also the behavior of the request-

response streams is easier to estimate (compared to P2P systems), especially if all streams

connect to the same server. Finally, request-response streams are able to feature TCP-

friendliness, which is seen crucial for Internet deployments. Providing TCP-friendliness is

still problematic in P2P and multi-source streaming environments.

6.2.1 Simple Model

To estimate the achievable throughput of the request-response streams, a simple model

describing the upper bound of the throughput was created. Assuming that a chunk of size

lch is transferred within a single RTT and nc concurrent request-response streams are used

for the transmission of the data, the upper bound for the throughput without packet loss

rrrsimple can be calculated as follows [52]:

rrrsimple = nc

(
lch

RTT + tgap

)
(6.2)

To model the influence of packet loss, it is important to know how many packets are in

flight. For the data transmission, nc request-response streams are used and each data block

sent is fragmented into nch packets of size MSS (lch ≈ nch ∗MSS). As a result, a total of

np = nc ∗ nch packets are transmitted per RTT. Assuming the same packet loss pattern as

described in Section 6.1, the maximum number of lost packets nl is defined as:

nl =

⌈
np

1 + 1/p

⌉
(6.3)

To keep the complexity of the model low, the packet loss is assumed to be distributed

equally over all request-response streams. In addition, the model relies on the assumption

Page 98 CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMS

50 100 150 200

0

2000

4000

6000

8000

RTT [ms]

th
ro

ug
hp

ut
 [k

bp
s]

TCP

p=0.1%
p=0.5%
p=1%
p=2%

Request−Response

p=0.1%
p=0.5%
p=1%
p=2%

Figure 6.3: Theoretical upper bounds for throughput of a single TCP connection (TCP)
rmax and request-response streams rrrmax (MSS = 1460 bytes, lch = 20480 bytes, nc = 10,
tgap = 350 ms) under packet loss p. [52]

that each TCP connection does not experience more than one lost packet per transported

data block (which is transmitted within one RTT). As a consequence, the number of lost

packets per RTT should not exceed the number of TCP connections (nl ≤ nc). Thus, the

upper bound for the throughput under packet loss rrrmax of the request-response streams can

be estimated as [52]:

rrrmax = (nc − nl)
(

lch
RTT + tgap

)
+ nl

(
lch

2 ∗RTT + tgap

)
(6.4)

From Equation 6.4 it becomes evident that the throughput can be controlled by means

of nc, lch and tgap. While the number of concurrent streams nc and the chunk size lch

are responsible for enhancing the throughput, the inter-request gap tgap can be used to

tune the TCP-friendliness. The goal is to stabilize and enhance the overall throughput

and to increase the robustness to changing network conditions compared to a single TCP

connection. On the other hand, its also important to be fair to other concurrent TCP

connections in case of competition on the network link.

This simple model was evaluated in [52] with a network bandwidth (BW) of 8192 kbps,

CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMS Page 99

50 100 150 200

0

2000

4000

6000

8000

RTT [ms]

th
ro

ug
hp

ut
 [k

bp
s]

TCP

p=0.1%
p=0.5%
p=1%
p=2%

Request−Response

p=0.1%
p=0.5%
p=1%
p=2%

Figure 6.4: Measured throughput of a single TCP connection (TCP) and request-response
streams (BW = 8192 kbps, MSS = 1460 bytes, lch = 20480 bytes, nc = 10, tgap = 350 ms)
under packet loss p. [52]

which should not limit the maximum throughput. In Figure 6.4, the average throughput for

a single TCP connection and the request-response streams are shown. For small RTTs, the

request-response streams and the single TCP connection are able to cope with packet loss

via retransmissions. With increasing RTT and packet loss, the throughput of the single TCP

approach deteriorates rapidly, while the impact on the request-response streams is limited.

The estimated throughput of the simple model (see Figure 6.3) shows a good correlation to

the measured results in Figure 6.4. Although lower, the measured throughput is similarly

shaped and behaves according to the assumptions.

In this simplified model, the upper bound for the throughput of the request-response

streams is defined very optimistically, because the model assumes that each data block is

transmitted within a single RTT and no processing on the server is done. When considering

real world conditions (e.g., a limited network bandwidth or congestion), multiple RTTs may

be needed for the transmission, depending on the used configuration (lch, nc and tgap). Even

if each data block can be transmitted in a single RTT, the processing of the request on the

server may increase the effective RTT.

Page 100CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMS

In the envisioned use case, network congestion is very likely to occur. For that reason,

an extended model will be presented in the following section, which is aware of the network’s

characteristics.

6.2.2 Enhanced Model utilizing Network Characteristics

The assumption of the simple model, i.e., that a chunk can be transferred within a single

RTT, may not be valid for large chunk sizes. For example, transferring a large chunk

of 10 Mbytes over a network with a bandwidth of 1 Mbps takes at least 80 seconds (t =

lch/BW). But RTTs larger than 500 ms are not realistic for the envisioned use case. Hence,

such a chunk cannot be transferred within one RTT. To be able to estimate the amount

of RTTs needed for the transmission of a chunk, the model was extended to take also the

network’s characteristics into account.

This extra knowledge can be used to explore the limitation of the request-response

streams under certain network conditions [53]. For that reason, it is assumed that the

bottleneck bandwidth BW and the maximum queueing delay tq of the bottleneck router

are known. By using BW and tq, the maximum bottleneck queue size lq can be calculated

as follows, lq = BW ∗ tq. Because the single request-response streams are competing on

the network links against each other, it is assumed that the bottleneck router queue is

shared between all nc concurrent TCP connections. Therefore, each request-response stream

occupies lrr = lq/nc bytes of the bottleneck router queue. Assuming that each request-

response stream can transfer at most lrr bytes per RTT, the number of round trips needed

to transmit a chunk is defined as nrt = lch/lrr.

Each request-response stream uses its own TCP connection for the transmission of the

data. Because the TCP connections try to maximize the throughput, it is assumed that the

router queue will be fully utilized. Looking at a single request-response stream, the AIMD

algorithm of TCP leads to a saw tooth shaped queue utilization (see Figure 6.5). When the

network link is fully utilized, the router queue level increases constantly to the maximum.

If no more packets can be stored in the queue, a packet has to be dropped. TCP reacts to

this packet loss by reducing its congestion window and sends no new packets till the number

of non-acknowledged packets is less than the new congestion window size. Because no new

packets are sent to the router, the router queue is drained with the serialization rate of the

CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMSPage 101

0 100 200 300 400 500

0

50

100

150

200

250

300

T
C

P
 w

in
do

w
 [p

kt
s]

0 100 200 300 400 500

0
50

100
150

number of RTTs

qu
eu

e
[p

kt
s]

Figure 6.5: TCP window size and router queue utilization for a TCP flow through a router
with a queue size equal to the bandwidth-delay product (lq = BW ∗ MAXRTT) [8].

network link. As a result, the queue utilization follows a saw tooth shape and the queuing

delay of a network packet will be on average tq/2. Because multiple TCP streams tend to

self-synchronize [8], it is assumed that the average queuing delay is also valid for multiple

TCP streams.

Of course, the average queuing delay will only be effective if all TCP streams fully utilize

the network bandwidth. But request-response streams cannot fully utilize the network

queue, if the chunk size is too small or the number of concurrent streams is too low. In this

case, a data block can be transmitted in less than an RTT (nrt < 1), leading to a under-

utilized queue and reduced queuing delay. For that reason, the estimated queuing delay is

reduced, if nrt is below one. The average queuing delay of a request-response stream tqav is

estimated as [53]:

tqav = min(nrt, 1) · tq/2 (6.5)

Using this knowledge the estimated transfer duration of one chunk tch can be defined as:

tch = dnrte(RTT + tqav) (6.6)

Following the idea of Equation 6.4, the average achieved throughput without packet loss rrr

Page 102CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMS

of the request-response streams can be defined as:

rrr = nc

(
lch

tch + tgap

)
(6.7)

Equation 6.7 shows that, like in the initial simple model (Equation 6.4), it is possible

to tune the throughput by means of nc, lch, and tgap. The main difference is now that

this model takes the queue size of the bottleneck router and the bottleneck bandwidth

into account, resulting in a more realistic model for the transmission time of a chunk (the

simple model took only the RTT into account).

A direct result of Equation 6.1 is that the amount of data which TCP can transport

within a single RTT is limited by the packet loss rate. Because request-response streams

are based on TCP, lrrloss is defined as the average amount of data which can be transported

within one RTT. The amount of data is now either restricted by the bottleneck router queue

size or the limitations of TCP in case of packet loss. Note that the same packet loss pattern

as in the TCP throughput estimation (see Equation 6.1) is used.

lrrloss = min(lrr,
MSS
√
p

) (6.8)

The number of round trips needed to successfully deliver a chunk is not only dependent

on the bottleneck router’s bandwidth and queue size, it is also affected by the packet loss.

As a result, the number of transmissions is redefined as nrtloss = lch/lrrloss. Consequently,

also the queuing delay is affected by the packet loss, because the packet loss restricts TCP’s

window size and therefore the router queue utilization. In general, the queuing delay is

directly related to queue utilization. For that reason, the proposed model defines a simple

relation between the utilized queue size and the queuing delay. As a consequence, the

queuing delay begins to decrease, if the queue size in the router sinks below a certain level.

The average queuing delay under packet loss tqavloss is estimated as follows [53]:

tqavloss =


lrrloss
lrr
· tq/2 if lrrloss <

lrr
2

min(nrtloss, 1) · tq/2 otherwise
(6.9)

The estimated transfer duration of one chunk under packet loss tchloss can be calculated as

follows:

tchloss = dnrtlosse(RTT + tqavloss) (6.10)

CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMSPage 103

50 100 150 200

0

2000

4000

6000

8000

10000

RTT [ms]

th
ro

ug
hp

ut
 [k

bp
s]

packet loss

0%
0.1%

0.5%
1%

2%
TCP
Request−Response

Figure 6.6: Modeled throughput performance of a single TCP connection (TCP) rtcp and the
request-response streams rrr (MSS = 1460 bytes, lch = 160 kB, nc = 5, tgap = 210 ms)
at a fixed bottleneck bandwidth BW = 8192 kbps and packet loss rate p [53].

Finally, the throughput under packet loss for the request-response streaming system rrrloss

can be estimated as:

rrrloss = nc

(
lch

tchloss + tgap

)
(6.11)

This enhanced model makes use of the throughput estimation for TCP (see Section 6.1)

and the knowledge about the bottleneck router to estimate the performance of the request-

response streams. Packet loss and queuing delay on the bottleneck router are the main

factors responsible for limiting the throughput performance. While the number of request-

response streams and the chunk size can be used to increase the throughput, also the

influence of the used system configuration on the TCP fairness and the computational

effort needed to manage the multiple streams have to be considered.

Figure 6.6 shows the upper bounds for a single TCP connection and the request-response

streams according to Equations 6.1 and 6.11, respectively. Similar to the simple model (see

Figure 6.4), the decline of the throughput of the request-response streams with increasing

RTT and packet loss is significantly reduced, while the performance of the single TCP

connection highly depends on the packet loss and the RTT. The major difference of the

Page 104CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMS

50 100 150 200

0

5

10

15

20

25

30

RTT [ms]

th
ro

ug
hp

ut
 [M

bp
s]

packet loss

0%
0.1%

0.5%
1%

2%
simple
enhanced

Figure 6.7: Throughput estimate of the simple and the enhanced model for the request-
response streams rrr (MSS = 1460 bytes, lch = 160 kB, nc = 5, tgap = 210 ms) at a
fixed bottleneck bandwidth BW = 8192 kbps and packet loss rate p.

simple and the enhanced model can be noticed in Figure 6.7. Because the enhanced model

is aware of the network’s characteristics, using more parallel streams than necessary will

not enhance the estimated throughput. The maximum throughput is limited by the router

queue size, which is split between the single streams. Although larger queues would allow for

larger TCP windows of the request-response streams, they would also increase the queuing

delay because of the fixed bandwidth. For that reason, the estimated throughput is limited

to the maximum bandwidth, which also reflects the real-world behavior. On the other hand,

the simple model is not aware of network congestion and estimates the throughput beyond

the maximum network bandwidth.

In Chapter 7, the pros and cons of the request-response system will be discussed in detail

and a comparison of the enhanced model with real measurements will be presented. In the

next section, an HTTP-based request-response streaming system will be presented. It is

based on priority streaming and H.264/SVC (see Section 4.3 and 5.2.3) and uses multiple

request-response streams to transport the video data. This streaming system will also be

used for the evaluation.

CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMSPage 105

Figure 6.8: Request-response-based client-driven streaming system [53].

6.3 Adaptive Video Streaming with Parallel HTTP-based

Request-Response Streams

The request-response streams’ ability to avoid transmission stalls and therefore jerky

playback makes them a good choice for video streaming. Parallel request-response streams

can be used to stabilize the throughput and therefore reduce quality fluctuations, while

still providing TCP-friendliness. Priority streaming can be used to improve the timeliness

of delivery, because the priority-reordered data can be truncated any time (see Section 4.3).

A combination of both will be used as a basis for the presented architecture.

The HTTP-based request-response streaming system is based on the client-driven adap-

tive streaming principle described in Section 4.4.2. The architecture of such a system is

depicted in Figure 6.8. Since the system is based on HTTP, easy deployment, reuse of

existing infrastructure (HTTP server, client, encryption, etc.) and application-layer mul-

ticast through HTTP proxies is enabled. In order to minimize the overhead of the TCP

connection setup, HTTP’s persistent connections (as defined in HTTP/1.1 [23]) are used

for establishing the TCP connections.

As a prerequisite of priority streaming, the video is split into video fragments, comprising

the same play-out duration tfrag. Each video fragment is rearranged according to the

priority of its video syntax elements (see Section 4.3). The rearranged video fragment is

Page 106CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMS

Figure 6.9: Three HTTP-based request-response streams/queues on the client with priority
management [53].

called a video segment.

The streaming system can be configured using three different system parameters, namely

the chunk size lch, the number of concurrent streams nc and the inter-request gap tgap.

Each video segment is split into chunks of size lch, which are served by a standard HTTP

server. The download of the video chunks is coordinated by the client, which manages nc

HTTP-based request-response streams. The client schedules the downloads of the different

chunks by using separate queues for each stream (see Figure 6.9). Each chunk is retrieved

according to the order within the queue. In order to avoid self-congestion and to provide

TCP-friendliness, each stream inserts an inter-request gap tgap between consecutive chunk

downloads.

Priority streaming usually accounts for a fixed amount of time for the transmission of

a video segment. Usually, the play-out duration of the video fragment is used as time limit

(see also Section 4.3). In this time frame, as many video chunks as possible are transferred

via the request-response streams. For that reason, the time used for downloading a

segment is monitored. If the time limit is reached, the client stops downloading chunks of

the current segment and switches to chunks of the next segment. All chunks belonging to

the same segment are aggregated to a possibly truncated video segment and the video is

reconstructed.

For priority streaming, in-order transmission is of most importance, because it heavily

relies on the priority order within the video segments. However, transmitting video chunks

over multiple request-response streams usually breaks the in-order transmission, if only

CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMSPage 107

standard multiplexing techniques are applied. For that reason, the presented streaming

system uses timeout and priority management to optimize the in-order throughput and to

prevent transmission stalls.

Listing 6.1: Timeout calculation (pseudo code).

durat i ons = []

t imeout min = 1000

timeout max = 5000

timeout = 3000

WHILE r e c e i v i n g :

FOR EACH su c t r a n s f e r IN s u c c e s s f u l t r a n s f e r s :

durat i ons . append (s u c t r a n s f e r . durat ion)

FOR EACH exp t r an s f e r IN e x p i r e d t r a n s f e r s :

durat i ons . append (1 . 5∗ timeout max)

IF durat ions . s i z e > 20 :

t imeout = 1.3∗ durat i ons . moving average (20)

IF timeout > t imeout max: timeout = timeout max

IF timeout < t imeout min: t imeout = timeout min

Timeout Management: A chunk is considered stalled, if its transmission time exceeds

a certain timeout duration, which can vary between 1000 ms and 5000 ms. Assuming that

the maximum RTT is about 200 ms (a common value for Internet video streaming [81]),

at most 25 round trips (25 ∗ 200 ms ≈ 5000 ms) should be needed to transmit the video

chunk. Very large chunks may exceed this limit, but using such chunk sizes is regarded

as unreasonable for adaptive video streaming, because they will lead to an unreasonable

increase of the buffer needed on the client. The lower bound of the timeout duration is set to

1000 ms, to account for retransmissions and momentary stalls in congested networks. The

initial value of the timeout duration is 3000 ms. The transfer duration is the time needed

for downloading a chunk and is monitored for each chunk. To detect transmission stalls,

the timeout duration is constantly updated with a moving average over the last 20 transfer

durations plus a tolerance of 30%. Expired transfers are considered with an additional

penalty in the moving average as well. In Listing 6.1, the pseudo code for the calculation

of the timeout duration is shown.

Page 108CHAPTER 6. PARALLEL HTTP-BASED REQUEST-RESPONSE STREAMS

Priority Management: The client coordinates the in-order transmission of the chunks

based on the priority of the chunks (order within the video segment). Priority management

improves the timeliness of the delivery by prioritizing video chunks required in the near

future. For priority streaming, the chunks need to arrive in priority order (as shown in

Figure 6.9). If the transmission of a chunk is stalled (see original chunk 4 in Figure 6.9), it

will be requested twice again (see hatched chunks). The idea is based on the assumption

that the probability of a successful download increases by using two concurrent streams. An

important aspect of priority management is that it does not change the TCP-friendliness

of the streaming system because the number of concurrent request-response streams is

kept constant. Only the queues used for managing the download order of the chunks are

updated, while the congestion control is ensured by the underlying TCP implementation

of each request-response stream.

In the following chapter, an in-depth analysis of the request-response streaming system

will be presented. The influence of the system parameters on the throughput performance

and the ability to provide TCP-friendliness in congested networks will be evaluated.

CHAPTER

7 Performance of Paral-

lel HTTP-based Request-

Response Streams

Request-response streams are seen as a good choice for Internet video streaming, because

they can recover fast from connection aborts and show a favorable behavior in presence

of packet loss [52, 53]. The HTTP-based streaming process can be configured by several

system parameters, which change the behavior of the request-response streams in terms

of throughput performance and TCP-friendliness. The contribution of this chapter is an

in-depth analysis of the streaming performance of the HTTP-based request-response video

streaming system. The system is based on the architecture presented in Section 6.3. The

streaming performance will be evaluated regarding the achievable throughput and the TCP-

friendliness in different congestion scenarios.

7.1 Evaluation Methodology

To validate the enhanced model of the request-response streams (see Section 6.2.2) for the

Internet video streaming use case, several factors have to be taken into account. Because the

model is not only based on the intrinsic parameters of the request-response streams, but also

considers the network’s characteristics, different network scenarios were defined. In addition,

the range of the test content’s bit rates has to match the bandwidth of the bottleneck link to

enable adaptive streaming. In the following, the choice of system parameters and network

scenarios will be explained in detail.

Page 110
CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED

REQUEST-RESPONSE STREAMS

7.1.1 System Parameters

The performance of a request-response streaming system depends on the system parameters

and network’s characteristics (see Equation 6.11). To evaluate the influence of the chunk

size on the streaming performance, the size of the chunks is varied from very small to

medium. Large chunks were omitted, because it is very unlikely to transmit such large

chunks within a transfer duration of 5000 ms (see Section 6.3). Very large timeout durations

(and consequently chunk sizes) should be avoided, because in this case the request-response

streams lose their favourable characteristics (see Section 6.2). Five different chunk sizes

(lch) were used in the evaluation, namely 20, 40, 80, 160 and 320 kBytes (kB).

While the chunk size basically determines the time the request-response stream contin-

uously transmits data, the number of concurrent request-response streams nc can be used to

efficiently utilize the available bandwidth. Compared to an infinite-source TCP connection,

which always transmits data, a request-response stream has idle times, where no data is

transmitted. To be able to compete over the fair share with other TCP data flows in a

congested network, multiple concurrent request-response streams have to be used. For that

reason, the number of request-response streams nc was varied in the range of 1 to 5.

The TCP-friendliness of a request-response streaming system usually depends on the

chunk size and the number of concurrent streams. Because these two parameters cannot

be changed arbitrarily, the inter-request gap parameter tgap was introduced in [52], which

enables to steer the TCP-friendliness in a fine-grained manner. On the other hand, the

inter-request gap increases the transmission latency, therefore tgap was limited to be 220 ms

at maximum.

7.1.2 Network Scenarios

HTTP-based request-response streaming targets the Internet streaming use case. For that

reason, two different network scenarios are considered important. First, the video data is

transmitted over an uncongested network link, where the streaming system should be able

to make use of all the bandwidth. While in the absence of packet loss TCP theoretically has

no throughput limit due to its additive-increase algorithm (the congestion window can theo-

retically grow infinitely; see also Equation 6.1 with p = 0), request-response streams cannot

scale infinitely. Because the system parameters fix the maximum achievable throughput

CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED
REQUEST-RESPONSE STREAMS Page 111

(at most nc ∗ lch bytes can be transferred per RTT; see Equation 6.11), it is important to

investigate which system parameters are suited for certain network characteristics (like the

bottleneck bandwidth).

The second network scenario focuses on congested network links with different congestion

levels, which may occur due to simultaneous Internet access over the same bottleneck link. A

single request-response stream exhibits congestion control, because it works on top of a TCP

connection. Multiple request-response streams are potentially unfair to concurrent TCP

connections, because they are aggregated and used in a single application. To investigate the

TCP-friendliness of the request-response streams, different congestion levels are emulated

by 1 to 4 concurrent TCP downloads.

The performance of the request-response streams relies on the RTT and the amount of

data which can be transferred per RTT. While the RTT is usually defined by the locations

of the server and the client, the amount of data transferred in an RTT is restricted by

the chunk size and the bottleneck router configuration. Two different bottleneck network

bandwidths (4096 and 8192 kbps) were investigated and the bottleneck router is configured

to allow only a maximum queuing delay of 200 ms by setting the router queue to a fixed

size for a certain bandwidth (lq = BW ∗ tq). Queuing delays larger than 200 ms are

not considered because they render real-time applications like VoIP useless. To show the

influence of the RTT on the throughput performance and the TCP-friendliness, RTTs

ranging from 50 to 200 ms were evaluated.

Given all evaluated network and system parameters, a full evaluation run varying

all parameters consists of 8000 streaming experiments. Each streaming experiment lasted

for 500 seconds. The evaluation runs were repeated three times to cancel out variations

imposed by the test environment.

7.2 Video Content

Priority streaming requires the video content to be encoded in a scalable fashion. For that

reason, the test sequences were encoded using the H.264/SVC codec. The video codec

is provided by the Joint Scalable Video Model (JSVM) [40] 9.18 software, offering a lot

of configuration options. Because adaptive streaming based on scalable media relies on

Page 112
CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED

REQUEST-RESPONSE STREAMS

bitrate [kbit/s]

av
er

ag
e

P
S

N
R

 [d
B

]

34

35

36

37

38

1000 2000 3000 4000 5000 6000 7000 8000

soccer
intotree

Figure 7.1: Rate-distortion curves of the test sequences [53].

the inherent scalability of the video bit stream, also the network scenarios (defined in

Section 7.1.2) have to be considered in the encoding process. The range of the bit rates,

which can be extracted out of the scalable bit stream, has to be aligned with the bandwidth

of the bottleneck link.

The video sequence soccer was encoded in 4CIF resolution at 30 fps. The quantization

parameters were chosen in such a manner that the bit rates range from approximately 1 to

4 Mbps (see Figure 7.1) and therefore match the requirements of adaptive streaming on the

4 Mbps bottleneck link. To fully utilize the 8 Mbps link, the in to tree sequence was encoded

in 720p resolution at 50 fps. For this sequence, the bit rates range from approximately 1.5

to 8 Mbps. Each encoded video sequence comprises an H.264/AVC backward compatible

base layer and one MGS quality enhancement layer. Within the MGS quality enhancement

layer, the 16 transform coefficients are uniformly partitioned into four NAL units (4x4),

resulting in five different quality representations for each video frame (base layer plus four

quality enhancement layers). Because in MGS the quality can be changed on frame level,

it is possible to extract more than five quality representations out of the scalable video

CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED
REQUEST-RESPONSE STREAMS Page 113

bit stream (theoretically up to 1 + nframes ∗ nenhlayers). The Quality Level Assigner tool

(JSVM) was used to assign 64 different PRIDs to the NAL units based on rate-distortion

values. Figure 7.1 shows the rate-distortion values of the video sequences, ranging from the

lowest bit rate (highest priority) to the full bit rate (lowest priority).

Each test sequence has a play-out duration of 10 seconds, which is also considered to be

a good video fragment size. Because each streaming experiment lasts for 500 seconds, the

content is streamed 50 times in a loop.

7.3 Performance Metrics

The goal of adaptive Internet video streaming is to maximize the stream-out rate, while

still providing TCP-friendliness. This section briefly reviews the main performance metrics

used for characterizing Internet video streaming systems.

Streaming Performance: A commonly used metric for evaluating the streaming per-

formance is the average throughput. It is measured for each video fragment (in this case

every 10 seconds). In addition, the download duration of the chunks is measured. To be

able to compare the performance values of each system parameter set, the throughput and

the download duration are averaged over the different RTTs.

TCP-friendliness: The Internet is a best-effort network, the stability of which heavily

depends on the use of congestion control. TCP is the main Internet protocol featuring

congestion control. As a result, TCP-friendliness is seen as a required characteristic of

a video streaming system, because video streaming will amount for a large share of the

Internet’s traffic [55, 94].
RR

TCP
=

rrr

1
ntcp

ntcp∑
i=1

rtcpi

(7.1)

The TCP fairness ratio RR/TCP of the request-response streams and concurrent TCP

streams (see Equation 7.1) is an indicator for how good the bandwidth is shared between

concurrent data streams. In a congested network, it should give a good idea of how to choose

the system parameters to achieve TCP-friendliness for a given bottleneck bandwidth of the

last-mile link. A fairness ratio of RR/TCP = 1 indicates that the request-response streams

Page 114
CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED

REQUEST-RESPONSE STREAMS

only use their fair share of the network’s bandwidth. The request-response streams are

potentially unfair to concurrent TCP streams if the ratio is larger than one (RR/TCP > 1),

while a ratio of RR/TCP < 1 indicates that the request-response streams use less than

their fair share. Like for the throughput, the fairness ratio is averaged for the different

congestion levels (number of competing downloads), in order to get a single value for a

specific system parameter set.

Comparison with Model: The enhanced model (see Equation 6.11) will be validated

by comparing the measured results with the model with respect to the average throughput

and the download duration of the chunks.

Video Quality: Finally, the video quality will be evaluated with a parameter set pro-

viding good performance and TCP-friendliness. The network was configured to have a

fixed bottleneck bandwidth of BW = 8192kbps and a maximum queuing delay of 200 ms.

For this network characteristics a system parameter set of lch = 160 kB, nc = 5 and

tgap = 210 ms was chosen, which is considered a good choice for a real-world deployment.

To show the influence of over-provisioning on the video quality, also the test sequence soccer

(with 4 Mbps maximum rate) was evaluated in this test. When looking at Figure 7.1, it

can be observed that the maximum bit rate of the in to tree sequence is roughly twice the

maximum bit rate of the soccer sequence.

7.4 Test Setup

As depicted in the envisioned Internet video streaming use case (see Figure 1.1), the stream-

ing process on the client is pulling the video data from the server via the Internet and the

last mile network, which also is seen as the bottleneck link. The test setup is similar to the

one in Section 5.3.1. Figure 5.6 shows the network topology. The main difference of this

evaluation is that additionally packet loss is emulated in the access network.

The implementation of the request-response streaming system is based on Python and

the HTTP library libcurl [90]. In all streaming experiments, Server 1 delivers the video data

chunks requested by Client 1. The network congestion is emulated by concurrent HTTP

downloads from Server 2 initiated by Client 2. The Apache HTTP Server [27] was used on

CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED
REQUEST-RESPONSE STREAMS Page 115

the servers for delivering the video chunks and the concurrent downloads.

In the next section, the results of the evaluation are presented.

7.5 Results

The evaluation of video streaming with HTTP-based request-response streams comprises a

broad range of experiments. To rate the performance of this streaming solution, the average

throughput, the average download duration of the chunks, and the TCP-friendliness was

measured. As explained in Section 7.3, the results will be averaged over the different RTTs,

to show the findings in a concise manner.

7.5.1 System Parameters

In the first part of this section, the influence of the three system parameters on the through-

put performance will be discussed. The system parameters are the chunk size lch, the num-

ber of concurrent request-response streams nc and the inter-request gap tgap. In Figures

7.2 and 7.3, the average throughput performance and the average download duration of a

chunk are shown for the bottleneck bandwidths BW = 4096 kbps and BW = 8192 kbps,

respectively. There was no additional traffic on the test network, to allow the request-

response streams to fully utilize the available bandwidth. The results show that a single

request-response stream cannot utilize all of the available bandwidth, because of the nature

of the request-response paradigm and the inter-request gap. The influence of the system

parameters is discussed in the following.

Chunk size lch

When comparing the throughput performance for different chunk sizes, it becomes evident

that larger chunk sizes utilize the available network bandwidth more efficiently. For example,

this can be noticed in Figure 7.3, when directly comparing the chunk sizes 20 kB and

160 kB. While the 20 kB chunks only use about half of the network’s link capacity with

5 streams, the 160 kB chunks are able to utilize all of the available bandwidth even with

3 streams. A single request-response stream using large chunks behaves similarly to an

infinite-source TCP stream. While this leads to an increased throughput performance,

Page 116
CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED

REQUEST-RESPONSE STREAMS

0 50 100 150 200

0
20

00
40

00

throughput [kbps]

ch
un

k
si

ze
 =

 2
0k

B

0 50 100 150 200

0
1

2
3

4
5

download duration [s]

 number of RR streams
measurement

1
2
3
4
5

model

1
2
3
4
5

0 50 100 150 200

0
10

00
30

00
50

00

ch
un

k
si

ze
 =

 4
0k

B

0 50 100 150 200

0
1

2
3

4
5

0 50 100 150 200

0
10

00
30

00
50

00

ch
un

k
si

ze
 =

 8
0k

B

0 50 100 150 200

0
1

2
3

4
5

0 50 100 150 200

0
10

00
30

00
50

00

ch
un

k
si

ze
 =

 1
60

kB

0 50 100 150 200

0
1

2
3

4
5

0 50 100 150 200

0
20

00
40

00

tgap [ms]

ch
un

k
si

ze
 =

 3
20

kB

0 50 100 150 200

0
1

2
3

4
5

tgap [ms]

Figure 7.2: Measured and modeled throughput performance rrr and download duration of
a chunk tch for the request-response streams. The results are shown for a fixed bottleneck
bandwidth of BW = 4096 kbps, a maximum queuing delay of tq = 200 ms and averaged
over the RTTs to provide a single performance value. [53]

CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED
REQUEST-RESPONSE STREAMS Page 117

0 50 100 150 200

0
20

00
60

00

throughput [kbps]

ch
un

k
si

ze
 2

0k
B

0 50 100 150 200

0.
0

1.
0

2.
0

download duration [s]

 number of RR streams
measurement

1
2
3
4
5

model

1
2
3
4
5

0 50 100 150 200

0
20

00
60

00

ch
un

k
si

ze
 4

0k
B

0 50 100 150 200
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

0 50 100 150 200

0
20

00
60

00

ch
un

k
si

ze
 8

0k
B

0 50 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 50 100 150 200

0
20

00
60

00

ch
un

k
si

ze
 1

60
kB

0 50 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 50 100 150 200

0
20

00
60

00

tgap [ms]

ch
un

k
si

ze
 3

20
kB

0 50 100 150 200

0.
0

1.
0

2.
0

tgap [ms]

Figure 7.3: Measured and modeled throughput performance rrr and download duration of
a chunk tch for the request-response streams. The results are shown for a fixed bottleneck
bandwidth of BW = 8192 kbps, a maximum queuing delay of tq = 200 ms and averaged
over the RTTs to provide a single performance value. [53]

Page 118
CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED

REQUEST-RESPONSE STREAMS

also the congestion in case of multiple streams increases. In uncongested networks, the

download duration increases linearly with the chunk size, because the available bandwidth

BW is fixed to a certain value (e.g., with a single stream tch = lch/BW). However, if the

available bandwidth is exhausted, enlarging chunks will only increase the download duration

without any improvement of the throughput.

Number of concurrent streams nc

The performance of a request-response system can also be boosted by the number of streams

used to transmit the data. The number of streams shows a behavior similar to the chunk

size. When looking at the throughput performance of chunks with a size of 20 kB in

Figure 7.2, a higher number of streams leads to a higher throughput. In general, multiple

streams are also more error resilient (see Section 6.2), so it is good to increase the number

of streams as much as possible. On the other hand, a high number of concurrent streams

tends to generate self-congestion, because of the high number of TCP connections (basis of

each HTTP-based request-response stream), which all try to maximize their throughput. It

can be assumed that self-congestion takes place, if increasing the number of streams does

not lead to a substantial throughput increase (see chunk size 320 kB in Figure 7.2). As a

consequence, also the download duration increases with the number of streams. A finding

of this evaluation is that the number of streams can be safely increased as long as the

download duration does not increase proportionally.

Inter-request gap tgap

While the two aforementioned system parameters are used to increase the throughput and

the error resilience, the sole purpose of the inter-request gap parameter is to accomplish

TCP-friendliness. It has obviously no positive effect on the throughput or download

duration, because the artificial gap between the requests only increases the time the

request-response streams are not transporting data. As a consequence, larger inter-request

gaps lead to decreased throughput. Usually, the inter-request gap has no influence on the

download duration, because the inter-request gap is applied between the downloads of

the chunks. In case of self-congestion, large inter-request gaps may reduce the download

duration by lowering the amount of congestion. This can be noticed at large chunk

CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED
REQUEST-RESPONSE STREAMS Page 119

sizes and a high number of streams, like in Figure 7.2 with lch = 320kB and nc = 5.

Nevertheless, this effect is limited, because in this evaluation tgap is 220 ms at maximum.

In addition, Figure 7.2 reveals that the performance of small chunks is more influenced

by the inter-request gap (larger slope), because the inter-request gap is applied between

consecutive downloads of chunks and smaller chunks need less time to be transferred.

Additionally, the values of the enhanced model for the estimated throughput are

shown in Figures 7.2 and 7.3. The enhanced model shows a good correlation with the

measured values and can give a quite realistic estimation on the achievable throughput.

Large chunk sizes and heavy self-congestion usually lead to an increased amount of stalls

in the data transmission. While the error of the modeled throughput increases because

the model is not aware of these stalls, the model still predicts the upper bound of the

throughput. A similar behavior can be noticed for the download duration.

7.5.2 TCP-friendliness

For the investigation of TCP-friendliness, one to four HTTP downloads were started con-

currently to the request-response streaming system. By changing the number of concurrent

downloads, it is possible to adjust the network’s congestion to different levels. The through-

put values are recorded for both, the HTTP downloads and the streaming system, and the

TCP fairness ratio RR/TCP is calculated (see Equation 7.1). To present a single value

for the TCP-friendliness of a specific parameter set, the fairness ratios were averaged over

the different RTTs and congestion levels. In Figure 7.4, the TCP-friendliness in terms of

throughput fairness for the three system parameters is shown. The value RR/TCP = 1

is marked, because it shows under which conditions the request-response streaming system

achieves TCP-friendliness. The measurements show that all three parameters have an influ-

ence on the TCP-friendliness. While the TCP-friendliness decreases (RR/TCP increases)

with the number of concurrent streams and the chunk size, an increasing inter-request gap

is able to increase the TCP-friendliness. For system configurations which generate self-

congestion (very large chunks and low bandwidth, e.g., 320 kB at BW = 4096 kbps), it

becomes increasingly difficult to find parameter sets with multiple streams which exhibit

TCP-friendliness. This is because the inter-request gap is usually limited (in this case to

Page 120
CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED

REQUEST-RESPONSE STREAMS

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

fairness ratio RR/TCP (BW = 4096kbps)

ch
un

k
si

ze
 =

 2
0k

B

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

fairness ratio RR/TCP (BW = 8192kbps)

number of RR streams

1 2 3 4 5

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

ch
un

k
si

ze
 =

 4
0k

B

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

ch
un

k
si

ze
 =

 8
0k

B

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

ch
un

k
si

ze
 =

 1
60

kB

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

tgap [ms]

ch
un

k
si

ze
 =

 3
20

kB

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

tgap [ms]

Figure 7.4: Measured TCP fairness ratio RR/TCP of the request-response streams com-
pared to 1 . . . 4 concurrent HTTP downloads. The results are shown for two bottleneck
bandwidths (BW = 4096 kbps and 8192 kbps and maximum queuing delay of tq = 200 ms
and averaged over the RTTs and different congestion levels to provide a single performance
value. [53]

CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED
REQUEST-RESPONSE STREAMS Page 121

220 ms). Large inter-request gaps also call for large chunk sizes to compensate for the

increased idle times. But the chunk size is usually restricted to small and medium, be-

cause otherwise all favourable characteristics of the request-response streams get lost (see

Section 6.2).

Another interesting finding can be noticed when directly comparing the fairness ratio

plots for BW = 4096 kbps and BW = 8192 kbps (see Figure 7.4). The values of

the fairness ratio of a certain chunk size in BW = 4096 kbps are similar to the values

of the doubled chunk size in BW = 8192 kbps. Assuming that the time needed to

download a chunk is directly proportional to BW , it becomes quite clear that for these

two combinations the download duration tchloss should be similar (see Equation 6.10).

The TCP-friendliness is usually dependent on the ratio tchloss/tgap and the number of

concurrent streams, because this ratio defines the amount of time a request-response

stream is active (download time vs. idle time). In this case, the ratio tchloss/tgap is similar

and may be an indicator for the scalability of the request-response streaming system. If

more bandwidth is available, using larger chunk sizes may lead to a better link utilization

without changing TCP-friendliness.

The main use case for request-response streams is Internet video streaming. For that

reason, a request-response streaming system should provide TCP fairness (RR/TCP = 1).

Because usually there is more than a single system parameter set which provides TCP-

friendliness, a good trade-off between throughput performance and TCP-friendliness has

to be found. A large number of request-response streams improves the performance in

case of packet loss or transmission stalls. For that reason, medium sized chunks are seen

as a good choice, because they do not introduce too much overhead like small chunks

and inflict less damage on the in-order throughput than large chunks. Of course, the

chunk size classification should be always seen relative to the bandwidth of the bottleneck

link. The most important factor is the estimated download duration of a chunk tchloss (see

Equation 6.10), which should be similar for all chunks within a class. Therefore, a system

parameter set with a large number of streams and a download duration of tch ≈ 1second

at maximum RTT is seen as most appropriate, because also the request-response streaming

system assumes the download duration to be one second in case of no congestion (minimum

Page 122
CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED

REQUEST-RESPONSE STREAMS

timeout duration is 1000 ms; see Section 6.3).

7.5.3 Comparison with Enhanced Model

The measured throughput performance for a fixed bottleneck bandwidth of

BW = 8192 kbps is shown in Figure 7.5(b). For the transmission of the video

data, a chunk size of 160 kB was selected and 5 concurrent request-response streams with

an inter-request gap of 210 ms were used, resulting in an estimated download duration

of 1.2 seconds (RTT = 200ms). In direct comparison with the measured throughput

of a single TCP connection, the benefit of the multiple streams becomes evident. The

throughput of the single TCP connection rapidly decreases with increasing packet loss,

while the request-response streams are able to mitigate the effects. In addition, the

request-response streams are able to utilize the available bandwidth in an uncongested

network with no packet loss (p = 0 %), but of course not as good as TCP, because

of the request-response paradigm and the HTTP overhead. When comparing the values

of the enhanced model with the measurements (see Figures 7.5(a) and 7.5(b)), a good

correlation between the model and the real measured values can be observed. Currently,

also the enhanced model is a simplification of the real world problems, but it can be used

to estimate the throughput performance of the request-response streams (with and without

packet loss).

7.5.4 Video Quality

The influence of the request-response streams on the video quality is similar to the

throughput performance. The video quality in terms of PSNR for the test sequences soccer

and in to tree is shown in Figures 7.6(a) and 7.6(b), respectively. If no packet loss is

present, TCP and the request-response streams perform well, with an advantage for TCP

in terms of network utilization. In case of packet loss, this fact changes dramatically. At

high packet loss rates, the throughput of TCP falls below 1.5 Mbps. As a result, the single

TCP connection cannot even transmit the base layer of the HD video. High RTTs and

the HD video in to tree inflict difficulties on the request-response streams as well. It is

quite evident, though, that the request-response streams can better utilize the available

bandwidth, while the throughput performance of the single TCP stream is limited by the

CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED
REQUEST-RESPONSE STREAMS Page 123

50 100 150 200

0

2000

4000

6000

8000

10000

RTT [ms]

th
ro

ug
hp

ut
 [k

bp
s]

packet loss

0%
0.1%

0.5%
1%

2%
TCP
Request−Response

(a) Modeled throughput

50 100 150 200

0

2000

4000

6000

8000

10000

RTT [ms]

th
ro

ug
hp

ut
 [k

bp
s]

packet loss

0%
0.1%

0.5%
1%

2%
TCP
Request−Response

(b) Measured throughput

Figure 7.5: Measured and modeled throughput performance of a single TCP connection
(TCP) rtcp and for the request-response streams rrr using the same conditions as used in
Figure 6.6. [53]

Page 124
CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED

REQUEST-RESPONSE STREAMS

50 100 150 200

34

36

38

40

RTT [ms]

P
S

N
R

 [d
B

]

packet loss

0%
0.1%

0.5%
1%

2%
TCP
Request−Response

(a) Test sequence soccer

50 100 150 200

34

36

38

40

RTT [ms]

P
S

N
R

 [d
B

]

packet loss

0%
0.1%

0.5%
1%

2%
TCP
Request−Response

(b) Test sequence in to tree

Figure 7.6: Measured video quality of the streamed test sequences in terms of PSNR of a
single TCP connection (TCP) and for the request-response streams (MSS = 1460 bytes,
lch = 160 kB, nc = 5, tgap = 210 ms) at a fixed bottleneck bandwidth BW = 8192 kbps
and packet loss rate p. [53]

CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED
REQUEST-RESPONSE STREAMS Page 125

packet loss (see Equation 6.1). Unfortunately, the difference in terms of PSNR can only

be calculated for a packet loss rate of p = 0.1 % and the test sequence soccer, which is

2.04 dB on average. In the other network scenarios with packet loss (p > 0.1 %) and

for the whole sequence in to tree, TCP cannot deliver the video at every given RTT. So

in presence of packet loss, the main advantage of the request-response streaming system

compared to a single TCP connection is that it can deliver the video continuously, while

TCP may not be capable of delivering the video at all.

The presented results indicate that request-response streams can achieve a good

performance in wired networks. To assess the performance of the request-response streams

in a mobile video streaming scenario, an evaluation in a cellular network with high

bandwidth fluctuations will be presented in the following chapter.

Page 126
CHAPTER 7. PERFORMANCE OF PARALLEL HTTP-BASED

REQUEST-RESPONSE STREAMS

CHAPTER

8 Mobile Video Streaming

using Request-Response

Streams

In recent years, IP-based over-the-top services (e.g., services on top of an Internet connec-

tion) have become increasingly important. The reason for that is the easy deployment of

such services, because they are not tailored to certain types of networks (unlike DVB-H

[3], for example). Usually, TCP or HTTP is used for transmitting the data, because these

protocols are most likely to be supported by any IP-based network. With the advent of

3rd generation (3G) wireless networks like UMTS, also high speed data services emerged

(e.g., HSDPA), which enable over-the-top services like VoD in cellular networks. Figure 8.1

illustrates a mobile video streaming use case, where - in addition to video streaming in

wired networks - also cellular networks are considered (e.g., streaming video to a user

Figure 8.1: Mobile video streaming use case.

Page 128
CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE

STREAMS

in a moving car). Cellular networks behave quite differently compared to DSL or cable

networks. They usually exhibit high RTTs and bandwidth fluctuations. In addition,

the connectivity between the mobile device and the base station may be temporally

interrupted, resulting in times when no data can be transmitted at all.

A performance evaluation of the request-response streaming system in a cellular network

scenario will be the contribution in this chapter. The streaming system will have to cope

with high bandwidth fluctuations and RTTs. In the following, the cellular network traces

used in the evaluation and the evaluation methodology will be presented in detail.

8.1 Cellular Network Traces

To emulate the cellular network in the evaluation environment, three existing traces of

a GPRS/HSDPA network of the Austrian cellular network provider A1 were used. In

[66], three different experiments were conducted while driving on the Austrian freeway A2

on different tracks. The throughput of an infinite-source TCP download was measured,

resulting in three throughput traces of 601, 575 and 599 seconds length.

• Trace 1 (601 seconds): Driving on the freeway A2, passing by the city of Villach in

the direction to Klagenfurt.

• Trace 2 (575 seconds): From the Klagenfurt University on the freeway A2 to the

service area near Techelsberg.

• Trace 3 (599 seconds): From the service area near Techelsberg on the freeway A2 to

the exit of Klagenfurt.

Figure 8.2 depicts the recorded throughput traces. While driving along the freeway,

changes in the reception quality led to high bandwidth fluctuations in the cellular network.

A low reception quality consequently results in a low physical transmission rate. In addition,

link layer retransmissions may reduce the achievable throughput.

CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE
STREAMS Page 129

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 1

:
T

C
P

 th
ro

ug
pu

t [
kb

ps
]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 2

:
T

C
P

 th
ro

ug
pu

t [
kb

ps
]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

time [s]

T
R

A
C

E
 3

:
T

C
P

 th
ro

ug
pu

t [
kb

ps
]

Figure 8.2: Network TCP throughput traces of the cellular network.

Page 130
CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE

STREAMS

8.2 Evaluation Methodology

The evaluation setup is similar to the setup in Section 5.3.1. Figure 5.6 shows the

evaluation network topology. The main difference in this evaluation is that the bandwidth

of the access network is emulated dynamically based on throughput traces. The streaming

process on the client is pulling the video data from the server via the Internet and the access

network (cellular network), which also is seen as the bottleneck link. The request-response

streaming system is implemented in Python, using the HTTP library libcurl [90]. Server 1,

running the Apache HTTP Server, delivers the video data chunks requested by Client 1.

Three different throughput traces are used to emulate the cellular network (see Section 8.1).

In the emulation, the bandwidth of the access network is adjusted every two seconds.

For this evaluation, the video sequence big buck bunny [1] was encoded in 480p resolu-

tion using the H.264/SVC video codec. The first 600 seconds of the video sequence were

considered in the tests. Hence, the length of the test sequence is tvideo = 600 seconds.

Before encoding, the video sequence was split into video fragments of different size. To de-

termine the impact of the video fragment size on the streaming performance, three different

fragment sizes tfrag, 10, 20 and 30 seconds, were evaluated.

The encoded video comprises an H.264/AVC backward compatible base layer and one

MGS quality enhancement layer. Within the MGS quality enhancement layer, the 16

transform coefficients are uniformly partitioned into four NAL units (4x4), resulting in

five different quality representations for each video frame (base layer plus four quality

enhancement layers). Because in MGS the quality can be changed on frame level, it

is possible to extract more than five quality representations out of the scalable video

bit stream (theoretically up to 1 + nframes ∗ nenhlayers). Finally, the Quality Level

Assigner tool (JSVM) was used to assign 64 different PRIDs to the NAL units based on

rate-distortion values. To be able to compare the performance of the request-response

streaming system with the results presented in [66], the H.264/SVC encoder was configured

to provide video bit rates ranging from 200 kbps (base layer) to 4500 kbps (highest quality).

The parameter sets were derived from Figure 7.4 for a bottleneck bandwidth of

BW = 8192 kbps, because it is assumed that the maximum bandwidth of the HSDPA

CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE
STREAMS Page 131

Table 8.1: Parameters sets for test sequences
parameter set chunk size lch number of rr streams nc inter-request gap tgap

[kb] [ms]

1 40 5 140
2 80 4 170
3 160 3 180
4 160 5 210

network is 7.2 Mbps. A suitable parameter set utilizes the available bandwidth efficiently

and provides TCP-friendliness in case of congestion. Three different chunk sizes lch (40, 80

and 160 kB) with different numbers of connections (ranging from 3 to 5) were investigated.

The request-response streaming system was configured using only fair parameter sets.

Table 8.1 shows the used system parameter sets.

In [66], several HTTP-based adaptive video streaming systems based on stream switching

were evaluated. The metrics used for comparing the measured results were the following.

• Bit rate of the streamed video brvideo: The bit rate of the video, which is reconstructed

at the client should be maximized.

• Number of quality switches nswitch: Changes in the video quality are usually recognized

by the user. As a result, they should be kept low.

• Buffer level on the client tbuf : The buffer level on the client gives insights into the

behavior of the adaptive algorithm.

• Average unsmoothness tunsmooth: The time in seconds the playback of the video is

stalled.

To be able to directly compare the results of this evaluation with the ones in [66], these

metrics will be also investigated in this evaluation.

8.3 Results

In this evaluation, the performance of the request-response streaming system is investigated

in a cellular network scenario. Three different network traces are used to emulate the cellular

Page 132
CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE

STREAMS

network, with bottleneck bandwidths ranging from 200 kbps to 5.5 Mbps. In addition, the

parameters sets and video fragment sizes are varied.

Figures 8.3, 8.4 and 8.5 show the performance in terms of video bit rate for the parame-

ter set 1 and video fragment sizes of 10, 20 and 30 seconds, respectively. Similar, the results

for the parameters sets 2, 3 and 4, are shown in Figures 8.6, 8.7 and 8.8, Figures 8.9, 8.10

and 8.11, and Figures 8.12, 8.13 and 8.14, respectively. In the following, the influence of

the video fragment size and system parameters will be discussed.

Video Fragment Size: When directly comparing the results for different video fragment

sizes, it can be noticed that larger fragment sizes can be utilized to smooth out the time-

varying bandwidth. Priority streaming can bridge times with low throughput by averaging

the video bit rate over a larger period of time (see also Section 4.3).

Larger video fragment sizes can also increase the effective throughput. Chunks which

are fetched near the end of the video fragment’s time slot are potentially lost, because they

do not arrive on time. While the number of chunks near the end of the video fragment’s time

slot is usually constant (approximately nc chunks), the overall number of fetched chunks

increases with the video fragment size. Hence, the transmission efficiency improves with

increasing video fragment sizes. As a result, the throughput and, consequently, the video

bit rate is usually higher for larger video fragments.

Because of priority streaming, large fragment sizes additionally reduce the number of

quality changes without a penalty in terms of video bit rate (see Section 5.2). But large

video fragments usually increase the startup-delay.

System Parameters: While in Section 7.5 a static bottleneck bandwidth was assumed, in

this cellular network scenario, the bottleneck bandwidth varies significantly. This has also to

be considered in the selection process of a parameter set suited for cellular networks, because

the request-response streaming system defines a maximum download duration timeoutmax

of 5000 ms. Because the download duration of a chunk depends only on the chunk size (see

Figure 7.3), it is important to know the expected minimal bottleneck bandwidth to be able

to check if a chunk can be transmitted within the maximum download duration. Assuming

a minimal bottleneck bandwidth of BW=200 kbps, the maximum chunk size which can be

transmitted would be lchmax = BW ∗ timeoutmax ≈ 120 kb. When looking at the results

CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE
STREAMS Page 133

with chunk sizes of 160 kb, it becomes clear that the performance of the system significantly

deteriorates in times with low bandwidth. In some cases not even the base layer can be

transmitted within the given time frame. As a consequence it is not recommended to use

chunk sizes larger than 80 kB for these cellular network scenarios.

Nevertheless, it can be noticed that large chunk sizes adapt better to high network band-

widths. This is because large chunk sizes have in general a better throughput performance

than small chunks with the same TCP-friendliness (see Figure 7.3 and 7.4).

Performance Metrics: Figure 8.15 summarizes the results of this evaluation by aver-

aging the performance values for the three cellular network traces. Larger chunk sizes can

slightly increase the average video bit rate, but at the cost of unsmoothness which rapidly

increases with the chunk size (see video fragments of size 10 seconds). In general, the best

performance can be achieved with large video fragments, because priority streaming aver-

ages the video bit rate over the used time slot. As a result, unsmoothness is unlikely to

happen.

The maximum number of quality switches is dependent on the play-out duration of the

video fragments tfrag and the play-out duration of the whole test sequence tvideo. When

considering equal play-out durations for all streamed video fragments within an evaluation

run, the maximum number of quality switches can be defined as nswitchmax = tvideo/tfrag,

which is for the evaluated fragment sizes 10, 20 and 30 seconds and a sequence length of

600 seconds, 60, 30 and 20, respectively. Nevertheless, the real number of quality switches

is usually even lower and can be seen in Figure 8.15. In priority streaming, the received

video fragment is buffered till the last data packet is retrieved (see Section 4.3). For that

reason, the client buffer level can be considered constant as one video fragment size, which

is 10, 20 and 30 seconds, respectively.

As mentioned before, when coping with high bandwidth fluctuations and low bandwidth,

it is recommended to stick to small chunk sizes and large video fragments. For these mobile

traces, the parameter set 1 and the video fragment size 30 seconds is most likely the best

combination. Because even video fragments of size 20 seconds feature good performance for

parameter set 1, it can be assumed that there is a sufficiently large safety margin in case of

bad network quality.

Page 134
CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE

STREAMS

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 1

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 2

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

time [s]

T
R

A
C

E
 3

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

Figure 8.3: Parameter set 1: Network bandwidth (line) and video bit rate (bars) of the
request-response streaming system (tfrag = 10s, lch = 40 kB, nc = 5, tgap = 140 ms)
at a fixed RTT of 150 ms.

CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE
STREAMS Page 135

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 1

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 2

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

time [s]

T
R

A
C

E
 3

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

Figure 8.4: Parameter set 1: Network bandwidth (line) and video bit rate (bars) of the
request-response streaming system (tfrag = 20s, lch = 40 kB, nc = 5, tgap = 140 ms)
at a fixed RTT of 150 ms.

Page 136
CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE

STREAMS

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 1

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 2

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

time [s]

T
R

A
C

E
 3

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

Figure 8.5: Parameter set 1: Network bandwidth (line) and video bit rate (bars) of the
request-response streaming system (tfrag = 30s, lch = 40 kB, nc = 5, tgap = 140 ms)
at a fixed RTT of 150 ms.

CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE
STREAMS Page 137

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 1

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 2

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

time [s]

T
R

A
C

E
 3

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

Figure 8.6: Parameter set 2: Network bandwidth (line) and video bit rate (bars) of the
request-response streaming system (tfrag = 10s, lch = 80 kB, nc = 4, tgap = 170 ms)
at a fixed RTT of 150 ms.

Page 138
CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE

STREAMS

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 1

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 2

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

time [s]

T
R

A
C

E
 3

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

Figure 8.7: Parameter set 2: Network bandwidth (line) and video bit rate (bars) of the
request-response streaming system (tfrag = 20s, lch = 80 kB, nc = 4, tgap = 170 ms)
at a fixed RTT of 150 ms.

CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE
STREAMS Page 139

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 1

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 2

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

time [s]

T
R

A
C

E
 3

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

Figure 8.8: Parameter set 2: Network bandwidth (line) and video bit rate (bars) of the
request-response streaming system (tfrag = 30s, lch = 80 kB, nc = 4, tgap = 170 ms)
at a fixed RTT of 150 ms.

Page 140
CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE

STREAMS

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 1

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 2

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

time [s]

T
R

A
C

E
 3

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

Figure 8.9: Parameter set 3: Network bandwidth (line) and video bit rate (bars) of the
request-response streaming system (tfrag = 10s, lch = 160 kB, nc = 3, tgap = 180 ms)
at a fixed RTT of 150 ms.

CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE
STREAMS Page 141

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 1

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 2

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

time [s]

T
R

A
C

E
 3

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

Figure 8.10: Parameter set 3: Network bandwidth (line) and video bit rate (bars) of the
request-response streaming system (tfrag = 20s, lch = 160 kB, nc = 3, tgap = 180 ms)
at a fixed RTT of 150 ms.

Page 142
CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE

STREAMS

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 1

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 2

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

time [s]

T
R

A
C

E
 3

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

Figure 8.11: Parameter set 3: Network bandwidth (line) and video bit rate (bars) of the
request-response streaming system (tfrag = 30s, lch = 160 kB, nc = 3, tgap = 180 ms)
at a fixed RTT of 150 ms.

CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE
STREAMS Page 143

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 1

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 2

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

time [s]

T
R

A
C

E
 3

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

Figure 8.12: Parameter set 4: Network bandwidth (line) and video bit rate (bars) of the
request-response streaming system (tfrag = 10s, lch = 160 kB, nc = 5, tgap = 210 ms)
at a fixed RTT of 150 ms.

Page 144
CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE

STREAMS

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 1

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 2

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

time [s]

T
R

A
C

E
 3

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

Figure 8.13: Parameter set 4: Network bandwidth (line) and video bit rate (bars) of the
request-response streaming system (tfrag = 20s, lch = 160 kB, nc = 5, tgap = 210 ms)
at a fixed RTT of 150 ms.

CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE
STREAMS Page 145

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 1

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

T
R

A
C

E
 2

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

0 100 200 300 400 500 600

0
10

00
20

00
30

00
40

00
50

00

time [s]

T
R

A
C

E
 3

:
ba

nd
w

id
th

 /
th

ro
ug

pu
t [

kb
ps

]

Figure 8.14: Parameter set 4: Network bandwidth (line) and video bit rate (bars) of the
request-response streaming system (tfrag = 30s, lch = 160 kB, nc = 5, tgap = 210 ms)
at a fixed RTT of 150 ms.

Page 146
CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE

STREAMS

vi
de

o
bi

t r
at

e
[k

bi
t/s

]

0
50

0
10

00
15

00
20

00

nu
m

be
r

of
 q

ua
lit

y
ch

an
ge

s

0
10

20
30

40
50

60

10 20 30

video fragment size

un
sm

oo
th

ne
ss

 [s
]

0
10

20
30

40
50

60
70 parameter set

1 2 3 4

Figure 8.15: Average video bit rate, number of quality switches and unsmooth-
ness of the request-response streaming system for different video fragment sizes
(tfrag = 10, 20 and 30 seconds) and parameter sets, averaged over all network traces.

CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE
STREAMS Page 147

vi
de

o
bi

t r
at

e
[k

bi
t/s

]

0
50

0
10

00
15

00
20

00

nu
m

be
r

of
 q

ua
lit

y
ch

an
ge

s

0
50

10
0

15
0

20
0

RR_PS1 RR_PS2 RR_PS3 RR_PS4 Microsoft Adobe Apple DASH DASH_Pipe

un
sm

oo
th

ne
ss

 [s
]

0
10

20
30

40
50

60
70

Figure 8.16: Average video bit rate, number of quality switches and unsmoothness of the
request-response (RR) streaming system (tfrag = 30 seconds) and adaptive streaming
systems evaluated in [66], averaged over all network traces.

Page 148
CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE

STREAMS

Comparison with Stream Switching: A direct comparison of a priority-based stream-

ing approach with stream switching is always difficult (see Chapter 4 and Chapter 5). While

stream switching is usually based on bandwidth estimation and client-side buffering, pri-

ority streaming averages the video quality over a period of time. As a consequence, video

fragment sizes in stream switching and priority streaming have to be selected differently.

In stream switching, the video fragment size has to be selected carefully to prevent

buffers from draining, because bandwidth estimation errors usually reduce the buffer level

(see Section 5.2). For the cellular network scenario, in [66], short video fragments (2 seconds)

were used to cope with high bandwidth fluctuations and a client buffer of approximately

30 seconds video data was used to overcome bandwidth shortages. In contrast to stream

switching, priority streaming does not use a classical client-side buffer. Nevertheless, pri-

ority streaming always buffers one video fragment, which is in this evaluation between 10

and 30 seconds. Another difference is that in case of high bandwidth fluctuations, the

performance of stream switching deteriorates with increasing video fragment size, while for

priority streaming the opposite is the case. For that reason, comparing the two adaptive

streaming approaches with the same video fragment size is not possible. Hence, in the

following comparison, a video fragment size of 30 seconds will be considered for priority

streaming, because it is similar to the 30 second client-side buffer in the stream switching

approaches.

While the test setup is similar to the one in [66], the evaluations were conducted in dif-

ferent test systems. Hence, the results should be interpreted with some caution. Figure 8.16

shows a direct comparison of the performance values of the different streaming approaches.

The request-response streaming system with parameter set 1 (RR PS1) and a video frag-

ment size of 30 seconds features an increased video bit rate of approx. 15% compared to the

stream switching approaches. In addition, the number of quality switches can be kept low,

because priority streaming can utilize large video fragments without performance penalties.

The average unsmoothness is zero, except for the parameter set 4, which utilizes large chunk

sizes and a high number of concurrent request-response streams. The detailed results of the

single tests are shown in Table 8.2.

CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE
STREAMS Page 149

Table 8.2: Averaged results over all network traces of the request-response streams (RR)
with different parameter sets (PS) and the approaches evaluated in [66].

name fragment size video bit rate quality switches unsmoothness
[s] [kbps] [s]

RR PS1 10 1559 49 10
RR PS1 20 1715 24 0
RR PS1 30 1762 16 0

RR PS2 10 1591 48 17
RR PS2 20 1791 25 7
RR PS2 30 1873 17 0

RR PS3 10 1641 50 34
RR PS3 20 1825 25 7
RR PS3 30 1878 18 0

RR PS4 10 1716 46 60
RR PS4 20 1934 24 40
RR PS4 30 1932 15 10

Microsoft 2 1522 51 0
Adobe 2 1239 97 64
Apple 2 1162 7 0
DASH 2 1045 141 0

DASH Pipelined 2 1464 166 0

Page 150
CHAPTER 8. MOBILE VIDEO STREAMING USING REQUEST-RESPONSE

STREAMS

CHAPTER

9 Conclusion

Internet video streaming has gained a lot of momentum in recent years. Social video

portals, like YouTube, became very popular and video-on-demand services emerged with

the availability of broadband last-mile networks. Because video streaming generates a

considerable amount of the Internet’s network traffic [55, 94], it needs to be congestion-

aware, to avoid a congestion collapse. TCP is currently the de facto standard protocol for

congestion-aware and reliable data transmission. But the Internet offers only a best-effort

service. As a result, the available bandwidth may change over the time and constant bit

rate video streaming based on TCP is usually only possible with high over-provisioning

[104]. Adaptive video streaming based on TCP/HTTP is certainly the key to Internet

video streaming and a lot of systems were proposed (see Section 4.5).

While the most criticized property of TCP is its lack of control of the timeliness of deliv-

ery, little precaution was taken to prevent video data from arriving too late. The standard

way to cope with large arrival time deviations is the use of large buffers, which introduce

also high start-up delays. The evaluation of TCP-based adaptive streaming revealed that

the streaming performance suffers from difficult network conditions. Usually, the client

buffer would drain rapidly, resulting in jerky playback, if no measures like buffer control

were deployed.

In contrast to classical buffering at the client, priority streaming averages the video

quality over a period of time. The evaluation showed that priority streaming has a

significant advantage to other adaptive algorithms based on bandwidth estimation. The

buffer usage is well controlled and predictable, resulting in rather low start-up delays even

Page 152 CHAPTER 9. CONCLUSION

under congestion.

In this thesis, the basic properties of HTTP streaming were analyzed. By introducing

HTTP-based request-response streams, the system parameters of HTTP-based streaming

were identified. HTTP-based request-response streams are usually more robust against

changing network conditions. This fully client-driven approach is basically state-less on the

server-side and allows for fast resume of the streaming session in case of connection resets

or stalls. In addition, request-response streams can mitigate the effects of packet loss,

which cannot be handled by a single TCP connection. The additional knowledge about the

bottleneck router led to an enhanced model for the estimated throughput of the request-

response streams. The model performance of the request-response streams indicates that

they can utilize the available bandwidth in an efficient manner.

To validate the model, an adaptive streaming system using HTTP-based request-

response streams was designed and implemented. The architecture is based on the findings

of the evaluation on TCP-based adaptive video streaming. The use of priority streaming

proved to be beneficial, resulting in low client buffer usage. Paired with timeout and

priority management, it enhances the timeliness of delivery significantly.

The performance of the request-response streams was evaluated in terms of throughput

and TCP-friendliness. The throughput can scale with the available bandwidth by increasing

the chunk size or the number of concurrent streams. However, the system parameters have

to be chosen carefully, in order to avoid congestion or under utilization of the network. The

proposed model for the throughput uses knowledge of the bottleneck router to improve the

estimation. It shows a good correlation with the experimental results for diverse system

configurations and network scenarios. The TCP-friendliness of the request-response streams

is dependent on the bottleneck bandwidth and the system parameters. The evaluation

showed that there were several combinations of system parameters which exhibit TCP-

friendliness. By means of a temporal inter-request gap, it is possible to adjust the fairness

of a certain chunk size / number of streams combination to a fair level. The video streaming

performance in terms of video quality was evaluated for such a fair system parameter set.

The impact of the network’s RTT and packet loss on the video quality was investigated. As

CHAPTER 9. CONCLUSION Page 153

expected, the single TCP connection performs better than the request-response streams, if

no packet loss is present. However, with increasing packet loss, the performance of the single

TCP connection deteriorates rapidly, while the request-response streams can still maintain

a reasonable quality.

The ability of the request-response streaming system to adapt to the bandwidth

fluctuation of a cellular network was evaluated by using traces of an HSDPA network. By

using priority streaming, which averages the available bandwidth over a period of time

(10 to 30 seconds), the system was able to cope with the high bandwidth fluctuations.

Compared to classical stream switching approaches the average video bit rate could be

increased, while still providing a low number of quality switches.

This thesis provided experimental evidence that multiple HTTP-based request-response

streams are a good alternative to classical TCP and HTTP streaming. They can efficiently

make use of the available bandwidth, while still being less prone to packet loss. Because

the request-response streams are based on HTTP, the scalability of the system and the

network utilization can be improved. Especially the reuse of existing infrastructure helps

to reduce costs, which makes the approach interesting for real world deployments. System

parameter sets can be tuned to provide both good throughput and TCP-friendliness, making

the approach viable for the use in Internet video streaming.

Future Work

The results of the evaluation indicate that the request-response streams can make use of

additional bandwidth and scale by increasing the chunk size. Because in this thesis only

bottleneck bandwidths of 4 and 8 Mbps were evaluated, further investigations beyond a

bottleneck bandwidth of 8 Mbps should confirm this hypothesis.

Another finding of this thesis was that also the TCP-friendliness seems to be kept intact

when scaling the bandwidth and the chunk size proportionally. This was a rather unexpected

result, but is somehow consistent with the assumption that the download duration should be

similar, if the bandwidth and the chunk size are increased by the same factor. Evaluating the

TCP-friendliness of the request-response streams in different congestion levels for different

bottleneck bandwidths would give more insights on this issue.

Page 154 CHAPTER 9. CONCLUSION

Currently, the TCP-friendliness of the request-response streams can only be measured.

A model of the TCP-friendliness would make measurements unnecessary and therefore be

very useful in real-world deployments.

To minimize the factors which could effect the results, this work focuses on request-

response streams using fixed parameter sets. An investigation of the performance of dynamic

parameter sets and their TCP-friendliness may enable this approach to be deployed for other

use cases than adaptive video streaming, because it would increase the possible throughput

range where it can work efficiently.

Bibliography

[1] Big Buck Bunny Movie. http://www.bigbuckbunny.org. Last accessed on 2012-04-

15.

[2] ISO/IEC 13818-2:2000 - Information technology – Generic coding of moving pictures

and associated audio information: Video, 2000.

[3] Digital Video Broadcasting (DVB);Transmission System for Handheld Terminals

(DVB-H). ETSI EN 302 304, V1.1.1, Nov 2004.

[4] Transparent End-to-end Packet-switched Streaming Service (PSS); Protocols and

codecs. ETSI TS 126 234, V9.3.0, June 2010.

[5] Transparent End-to-end Packet-switched Streaming Service (PSS); Progressive Down-

load and Dynamic Adaptive Streaming over HTTP (3GP-DASH). ETSI TS 126 247,

V10.0.0, June 2011.

[6] Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis. An Experimental Evalua-

tion of Rate-adaptation Algorithms in Adaptive Streaming over HTTP. In Proceedings

of the Second Annual ACM Conference on Multimedia Systems (MMSYS 2011), pages

157–168, 2011.

[7] John G. Apostolopoulos, Wai-Tian Tan, and Susie J. Wee. Video streaming: Con-

cepts, algorithms, and systems. Technical report, HP Laboratories, 2002.

[8] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing router buffers. In

Proceedings of the SIGCOMM ’04 Conference on Applications, Technologies, Archi-

tectures, and Protocols for Computer Communications, pages 281–292, 2004.

155

http://www.bigbuckbunny.org

Page 156 BIBLIOGRAPHY

[9] Antonios Argyriou. Real-time and Rate-distortion Optimized Video Streaming with

TCP. Elsevier Journal on Signal Processing: Image Communication, 22(4):374–388,

2007.

[10] Ali C. Begen. Error Control for IPTV over xDSL Networks. In Proceedings of the 5th

IEEE Consumer Communications and Networking Conference (CCNC 2008), pages

632–637, Jan 2008.

[11] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122

(Standard), October 1989. Updated by RFCs 1349, 4379, 5884, 6093.

[12] Ian Burnett, Rob Koenen, Fernando Pereira, and Rik Van de Walle, editors. The

MPEG-21 Book. Wiley, 2006.

[13] Shih-Fu Chang and Anthony Vetro. Video Adaptation: Concepts, Technologies, and

Open Issues. Proceedings of the IEEE, 93(1):148–158, January 2005.

[14] Gao Chen, Yong-dong Zhang, Shou-xun Lin, and Feng Dai. Efficient block size se-

lection for MPEG-2 to H.264 transcoding. In Proceedings of the 12th Annual ACM

International Conference on Multimedia (MULTIMEDIA 2004), pages 300–303, 2004.

[15] Luca De Cicco and Saverio Mascolo. An experimental investigation of the Akamai

adaptive video streaming. In Proceedings of the 6th International Conference on HCI

in Work and Learning, Life and Leisure: Workgroup Human-Computer Interaction

and Usability Engineering (USAB 2010), pages 447–464, 2010.

[16] Luca De Cicco, Saverio Mascolo, and Vittorio Palmisano. Feedback control for adap-

tive live video streaming. In Proceedings of the Second Annual ACM Conference on

Multimedia Systems (MMSYS 2011), pages 145–156, 2011.

[17] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC

2460 (Draft Standard), December 1998. Updated by RFCs 5095, 5722, 5871.

[18] S.E. Deering. Host extensions for IP multicasting. RFC 1112 (Standard), August

1989. Updated by RFC 2236.

BIBLIOGRAPHY Page 157

[19] Marcel Dischinger, Andreas Haeberlen, Krishna P. Gummadi, and Stefan Saroiu.

Characterizing Residential Broadband Networks. In Proceedings of the 7th ACM

SIGCOMM Conference on Internet Measurement (IMC 2007), pages 43–56, 2007.

[20] Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore. Packet-

dispersion techniques and a capacity-estimation methodology. IEEE/ACM Trans-

actions on Networking (TON), 12(6):963–977, 2004.

[21] Michael Eberhard, Riccardo Petrocco, Hermann Hellwagner, and Christian Timmerer.

Comparison of Piece-Picking Algorithms for Layered Video Content in Peer-to-Peer

Networks. In Proceedings of the Consumer Communication & Networking Conference

2012, pages 1–5, Jan 2012.

[22] Wu-Chi Feng, Ming Liu, Brijesh Krishnaswami, and Arvind Prabhudev. A Priority-

Based Technique for the Best-Effort Delivery of Stored Video. In Proceedings of the

ACM/SPIE Multimedia Computing and Networking Conference 1999 (MMCN 1999),

pages 286–300, Jan 1999.

[23] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June

1999.

[24] S. Floyd and K. Fall. Promoting the Use of End-to-end Congestion Control in the

Internet. IEEE/ACM Transactions on Networking, 7(4):458–472, 1999.

[25] S. Floyd, M. Handley, and E. Kohler. Problem Statement for the Datagram Conges-

tion Control Protocol (DCCP). RFC 4336 (Informational), 2006.

[26] S. Floyd, M. Handley, J. Padhye, and J. Widmer. TCP Friendly Rate Control (TFRC):

Protocol Specification. RFC 5348 (Proposed Standard), September 2008.

[27] The Apache Software Foundation. The Apache HTTP Server Project. http://httpd.

apache.org. Last accessed on 2012-04-15.

[28] The Linux Foundation. netem - Network Emulation. http://www.linuxfoundation.

org/collaborate/workgroups/networking/netem. Last accessed on 2012-04-15.

http://httpd.apache.org
http://httpd.apache.org
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

Page 158 BIBLIOGRAPHY

[29] Ladan Gharai. RTP with TCP Friendly Rate Control. Internet Draft draft-ietf-avt-

tfrc-profile-10, 2007.

[30] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. Youtube traffic

characterization: a view from the edge. In Proceedings of the 7th ACM SIGCOMM

Conference on Internet Measurement (IMC 2007), pages 15–28, 2007.

[31] Ashvin Goel, Charles Krasic, Kang Li, and Jonathan Walpole. Supporting low latency

TCP-based media streams. In Proceedings of the Tenth IEEE International Workshop

on Quality of Service, pages 193–203, Aug 2002.

[32] Ashvin Goel, Charles Krasic, and Jonathan Walpole. Low-latency adaptive stream-

ing over TCP. ACM Transactions on Multimedia Computing, Communications and

Applications (TOMCCAP 2008) , 4:20:1–20:20, September 2008.

[33] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New TCP-friendly High-speed

TCP Variant. SIGOPS Operating Systems Review, 42(5):64–74, 2008.

[34] M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol. RFC

4566, July 2006.

[35] Pai-Hsiang Hsiao, H. T. Kung, and Koan-Sin Tan. Video over TCP with receiver-

based delay control. In Proceedings of the 11th International Workshop on Network

and Operating Systems Support for Digital Audio and Video (NOSSDAV 2001), pages

199–208, 2001.

[36] Adobe Systems Incorporated. HTTP Dynamic Streaming on the Adobe

Flash Platform. http://www.adobe.com/products/httpdynamicstreaming/pdfs/

httpdynamicstreaming_wp_ue.pdf. Last accessed on 2012-04-15.

[37] ISO/IEC DIS 23009-1.2. Information Technology – Dynamic adaptive streaming over

HTTP (DASH) – Part 1: Media presentation description and segment formats. July

2011.

[38] ITU - International Telecommunication Union. ITU-R BT.1359-1: Relative Timing

of Sound and Vision for Broadcasting. Recommendation, 1998.

http://www.adobe.com/products/httpdynamicstreaming/pdfs/httpdynamicstreaming_wp_ue.pdf
http://www.adobe.com/products/httpdynamicstreaming/pdfs/httpdynamicstreaming_wp_ue.pdf

BIBLIOGRAPHY Page 159

[39] ITU - International Telecommunication Union. ITU-T G.114: One-way transmission

time. Recommendation, 2003.

[40] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG. Joint Scalable Video

Model. Doc. JVT-X202, 2007.

[41] Hari Kalva. Issues in H.264/MPEG-2 video transcoding. In Proceedings of the First

IEEE Consumer Communications and Networking Conference (CCNC 2004), pages

657–659, Jan 2004.

[42] A.M. Kaplan and M. Haenlein. Users of the world, unite! the challenges and oppor-

tunities of social media. Business Horizons, 53(1):59–68, 2010.

[43] R. P. Karrer, J. Park, and J. Kim. TCP-ROME: Performance and fairness in parallel

downloads for Web and real-time multimedia streaming applications. Technical report,

Deutsche Telekom Labs, September 2006.

[44] J. Klensin. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard), April

2001. Obsoleted by RFC 5321, updated by RFC 5336.

[45] I. Kofler, M. Prangl, R. Kuschnig, and H. Hellwagner. An H.264/SVC-based adap-

tation proxy on a WiFi router. In Proceedings of the 18th International Workshop

on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV

2008), pages 63–68, May 2008.

[46] Ingo Kofler, Robert Kuschnig, and Hermann Hellwagner. Implications of the ISO

Base Media File Format on adaptive HTTP streaming of H.264/SVC. In Proceedings

of the 9th IEEE Consumer Communications and Networking Conference (CCNC),

page 5, jan 2012.

[47] Ingo Kofler, Christian Timmerer, Hermann Hellwagner, Andreas Hutter, and Francesc

Sanahuja. Efficient MPEG-21-based Adaptation Decision-Taking for Scalable Multi-

media Content. In Proceedings of the 14th SPIE Annual Electronic Imaging Confer-

ence – Multimedia Computing and Networking (MMCN 2007), Jan 2007.

Page 160 BIBLIOGRAPHY

[48] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol

(DCCP). RFC 4340 (Proposed Standard), March 2006. Updated by RFCs 5595,

5596.

[49] Charles Krasic, Kang Li, and Jonathan Walpole. The Case for Streaming Multimedia

with TCP. In Proceedings of the 8th International Workshop on Interactive Distributed

Multimedia Systems (IDMS 2001), pages 213–218, 2001.

[50] Charles Krasic, Jonathan Walpole, and Wu-Chi Feng. Quality-adaptive Media

Streaming by Priority Drop. In Proceedings of the 13th International Workshop on

Network and Operating Systems Support for Digital Audio and Video (NOSSDAV

2003), pages 112–121, 2003.

[51] Robert Kuschnig, Ingo Kofler, and Hermann Hellwagner. An Evaluation of TCP-

based Rate-Control Algorithms for Adaptive Internet Streaming of H.264/SVC. In

Proceedings of the First Annual ACM Conference on Multimedia Systems (MMSYS

2010), February 2010.

[52] Robert Kuschnig, Ingo Kofler, and Hermann Hellwagner. Improving Internet Video

Streaming Performance by Parallel TCP-Based Request-Response Streams. In Pro-

ceedings of the 7th IEEE Consumer Communications and Networking Conference

(CCNC 2010), page 5, Jan 2010.

[53] Robert Kuschnig, Ingo Kofler, and Hermann Hellwagner. Evaluation of HTTP-based

request-response streams for internet video streaming. In Proceedings of the Second

Annual ACM Conference on Multimedia Systems (MMSYS 2011), pages 245–256, Feb

2011.

[54] Robert Kuschnig, Ingo Kofler, Michael Ransburg, and Hermann Hellwagner. Design

options and comparison of in-network H.264/SVC adaptation. Journal of Visual

Communication and Image Representation, 19(8):529–542, December 2008.

[55] Neal Leavitt. Network-Usage Changes Push Internet Traffic to the Edge. Computer,

43:13–15, 2010.

BIBLIOGRAPHY Page 161

[56] Bo Li and Jiangchuan Liu. Multirate video multicast over the Internet: an overview.

IEEE Network, 17(1):24–29, jan 2003.

[57] M. Hassan and R. Jain, editor. High Performance TCP/IP Networking: Concepts,

Issues, and Solutions. Pearson Prentice Hall, 2004.

[58] Huadong Ma and Kang G. Shin. Multicast Video-on-Demand services. ACM SIG-

COMM - Computer Communication Review, 32(1):31–43, January 2002.

[59] Kevin J. Ma, Radim Bartos, Swapnil Bhatia, and Raj Nair. Mobile video delivery

with HTTP. Communications Magazine, IEEE, 49(4):166–175, April 2011.

[60] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The Macroscopic

Behavior of the TCP Congestion Avoidance Algorithm. ACM SIGCOMM - Computer

Communication Review, 27(3):67–82, 1997.

[61] Steven McCanne, Van Jacobson, and Martin Vetterli. Receiver-driven layered multi-

cast. In Proceedings of the ACM SIGCOMM ’96 Conference on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communication, pages 117–130,

1996.

[62] D. Mills, J. Martin, J. Burbank, and W. Kasch. Network Time Protocol Version 4:

Protocol and Algorithms Specification. RFC 5905 (Proposed Standard), June 2010.

[63] D. Miras, M. Bateman, and S. Bhatti. Fairness of High-Speed TCP Stacks. In

Proceedings of the International Conference on Advanced Information Networking and

Applications (IANA), pages 84–92, 2008.

[64] Move Networks. Move Adaptive Stream - Product Sheet. http://www.

movenetworks.com. Last accessed on 2012-04-15.

[65] Christopher Müller and Christian Timmerer. A test-bed for the Dynamic Adaptive

Streaming over HTTP featuring session mobility. In Proceedings of the Second Annual

ACM Conference on Multimedia Systems (MMSYS 2011), pages 271–276, 2011.

[66] Christopher Müller, Stefan Lederer, and Christian Timmerer. An evaluation of dy-

namic adaptive streaming over HTTP in vehicular environments. In Proceedings of the

http://www.movenetworks.com
http://www.movenetworks.com

Page 162 BIBLIOGRAPHY

Fourth Annual ACM SIGMM Workshop on Mobile Video (MoVid12), pages 37–42,

feb 2012.

[67] A. Nafaa, T. Taleb, and L. Murphy. Forward error correction strategies for media

streaming over wireless networks. IEEE Communications Magazine, 46(1):72–79, Jan

2008.

[68] Jens-Rainer Ohm. Advances in Scalable Video Coding. Proceedings of the IEEE,

93(1):42–56, Jan 2005.

[69] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP

throughput: a simple model and its empirical validation. In Proceedings of the ACM

SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and Proto-

cols for Computer Communication, pages 303–314, 1998.

[70] R. Pantos. HTTP Live Streaming. Internet Draft draft-pantos-http-live-streaming-07,

2011.

[71] F. Pereira and I. Burnett. Universal multimedia experiences for tomorrow. IEEE

Signal Processing Magazine, 20(2):63–73, March 2003.

[72] Fernando Pereira, John Smith, and Anthony Vetro. Special Section on MPEG-21.

IEEE Transactions on Multimedia, 7(3), June 2005.

[73] C. Perkins. RTP and the Datagram Congestion Control Protocol (DCCP). RFC 5762

(Proposed Standard), April 2010.

[74] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[75] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated by RFC

1349.

[76] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981.

Updated by RFCs 1122, 3168, 6093.

[77] Martin Prangl, Ingo Kofler, and Hermann Hellwagner. Towards QoS Improvements

of TCP-Based Media Delivery. In Proceedings of the Fourth International Conference

on Networking and Services (ICNS 2008), pages 188–193, 2008.

BIBLIOGRAPHY Page 163

[78] Zhang Qian, Guo Quji, Ni Qiang, Zhu Wenwu, and Zhang Ya-Qin. Sender-adaptive

and receiver-driven layered multicast for scalable video over the Internet. IEEE Trans-

actions on Circuits and Systems for Video Technology, 15(4):482–495, April 2005.

[79] Iain E. G. Richardson. Video Codec Design: Developing Image and Video Compres-

sion Systems. Wiley, 202.

[80] Haakon Riiser, Pal Halvorsen, Carsten Griwodz, and Dag Johansen. Low Overhead

Container Format for Adaptive Streaming. In Proceedings of ACM Multimedia Sys-

tems (MMSYS 2010), pages 193–198, Feb 2010.

[81] Mohit Saxena, Umang Sharan, and Sonia Fahmy. Analyzing Video Services in Web

2.0: A Global Perspective. In Proceedings of the 18th International Workshop on

Network and Operating Systems Support for Digital Audio and Video (NOSSDAV

2008), pages 39–44, 2008.

[82] T. Schierl, S. Johansen, A. Perkis, and T. Wiegand. Rateless scalable video coding for

overlay multisource streaming in MANETs. Journal of Visual Communication and

Image Representation, 19(8):500 – 507, 2008.

[83] T. Schierl and S. Wenger. Signaling Media Decoding Dependency in the Session

Description Protocol (SDP). RFC 5583 (Proposed Standard), July 2009.

[84] H. Schulzrinne and S. Casner. RTP Profile for Audio and Video Conferences with

Minimal Control. RFC 3551 (Standard), July 2003.

[85] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol

for Real-Time Applications. RFC 3550, July 2003.

[86] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol (RTSP).

RFC 2326, April 1998.

[87] H. Schwarz, D. Marpe, and T. Wiegand. Analysis of Hierarchical B Pictures and

MCTF. In Proceedings of the IEEE International Conference on Multimedia and

Expo (ICME 2006), July 2006.

Page 164 BIBLIOGRAPHY

[88] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the Scalable Video Coding

Extension of the H.264/AVC Standard. IEEE Transactions on Circuits and Systems

for Video Technology, 17(9):1103–1120, September 2007.

[89] J. Semke, J. Mahdavi, and M. Mathis. Automatic TCP buffer tuning. In ACM

SIGCOMM Computer Communication Review, volume 28, pages 315–323, 1998.

[90] Daniel Stenberg. cURL and libcurl - cURL groks URLs. http://curl.haxx.se/.

Last accessed on 2012-04-15.

[91] Thomas Stockhammer. Dynamic adaptive streaming over HTTP – standards and de-

sign principles. In Proceedings of the Second Annual ACM Conference on Multimedia

Systems (MMSYS 2011), pages 133–144, Feb 2011.

[92] Thomas Stockhammer, Guenther Liebl, and Michael Walter. Optimized H.264/AVC-

based bit stream switching for mobile video streaming. EURASIP J. Appl. Signal

Process., 2006:1–19, 2006.

[93] Yeping Su, Jun Xin, A. Vetro, and Huifang Sun. Efficient MPEG-2 to H.264/AVC

intra transcoding in transform-domain. In Proceedings of the IEEE International

Symposium on Circuits and Systems (ISCAS 2005), volume 2, pages 1234–1237, May

2005.

[94] Cisco Systems. Cisco Visual Networking Index: Forecast and Methodology,

2010-2015. http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/

ns537/ns705/ns827/white_paper_c11-481360.pdf. Last accessed on 2012-04-15.

[95] S. Takeuchi, H. Koga, K. Iida, Y. Kadobayashi, and S. Yamaguchi. Performance

evaluations of DCCP for bursty traffic in real-time applications. In Proceedings of the

Symposium on Applications and the Internet, pages 142–149, Jan 2005.

[96] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP Approach for High-

Speed and Long Distance Networks. In Proceedings of the 25th IEEE International

Conference on Computer Communications (INFOCOM 2006), pages 1–12, April 2006.

http://curl.haxx.se/
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf

BIBLIOGRAPHY Page 165

[97] S. Thulasidasan, Wu chun Feng, and M.K. Gardner. Optimizing GridFTP through

dynamic right-sizing. In Proceedings of the 12th IEEE International Symposium on

High Performance Distributed Computing, pages 14–23, June 2003.

[98] C. Timmerer, S. Devillers, and M. Ransburg, editors. ISO/IEC 21000-7:2007 Part

7: Digital Item Adaptation 2nd Edition. International Standardization Organization,

2007.

[99] Sunand Tullimas, Thinh Nguyen, Rich Edgecomb, and Sen-ching Cheung. Multimedia

streaming using multiple TCP connections. ACM Transactions on Multimedia Com-

puting, Communications, and Applications (TOMCCAP), 4:12:1–12:20, May 2008.

[100] Bobby Vandalore, Wu chi Feng, Raj Jain, and Sonia Fahmy. A Survey of Application

Layer Techniques for Adaptive Streaming of Multimedia. Real-Time Imaging, 7(3):221

– 235, 2001.

[101] A. Vetro, C. Christopoulos, and Huifang Sun. Video transcoding architectures and

techniques: an overview. IEEE Signal Processing Magazine, 20(2):18–29, March 2003.

[102] Anthony Vetro, Charilaos Christopoulos, and Touradj Ebrahimi. Special Issue on

Universal Multimedia Access. IEEE Signal Processing Magazine, 20(2), March 2003.

[103] Anthony Vetro and Christian Timmerer. Digital Item Adaptation: Overview of Stan-

dardization and Research Activities. IEEE Transactions on Multimedia, 7(3):418–426,

June 2005.

[104] Bing Wang, Jim Kurose, Prashant Shenoy, and Don Towsley. Multimedia Stream-

ing via TCP: An Analytic Performance Study. ACM Transactions on Multimedia

Computing, Communications and Applications, 4(2):16:1–16:22, 2008.

[105] Y. Wang, M.M. Hannuksela, S. Pateux, A. Eleftheriadis, and S. Wenger. System and

Transport Interface of SVC. IEEE Transactions on Circuits and Systems for Video

Technology, 17(9):1149–1163, 2007.

[106] S. Wenger, M.M. Hannuksela, T. Stockhammer, M. Westerlund, and D. Singer. RTP

Payload Format for H.264 Video. RFC 3984, February 2005.

Page 166 BIBLIOGRAPHY

[107] S. Wenger, Y. Wang, and T. Schierl. Transport and Signaling of SVC in IP Networks.

IEEE Transactions on Circuits and Systems for Video Technology, 17(9):1164–1173,

September 2007.

[108] S. Wenger, Y.-K. Wang, T. Schierl, and A. Eleftheriadis. RTP Payload Format for

Scalable Video Coding. RFC 6190 (Proposed Standard), May 2011.

[109] T. Wiegand, G. Sullivan, H. Schwarz, and M. Wien, editors. ISO/IEC 14496-

10:2005/Amd3: Scalable Video Coding. International Standardization Organization,

2007.

[110] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the H.

264/AVC video coding standard. IEEE Transactions on Circuits and Systems for

Video Technology, 13(7):560–576, 2003.

[111] XSL Transformations (XSLT) 1.0. W3C Recommendation, 16 November 1999.

URL: http://www.w3.org/TR/1999/REC-xslt-19991116.

[112] Jun Yao, Salil Kanhere, Imran Hossain, and Mahbub Hassan. Empirical Evaluation

of HTTP Adaptive Streaming under Vehicular Mobility. In Jordi Domingo-Pascual,

Pietro Manzoni, Sergio Palazzo, Ana Pont, and Caterina Scoglio, editors, Proceedings

of the 10th International IFIP TC 6 Conference on Networking (NETWORKING

2011), volume 6640 of Lecture Notes in Computer Science, pages 92–105. 2011.

[113] Esma Yildirim, Dengpan Yin, and Tevfik Kosar. Balancing TCP Buffer vs Parallel

Streams in Application Level Throughput Optimization. In Proceedings of the Second

International Workshop on Data-aware Distributed Computing (DADC 2009), pages

21–30, 2009.

[114] A. Zambelli. IIS Smooth Streaming Technical Overview. Technical report, Microsoft

Corporation, March 2009.

[115] Michael Zink, Carsten Griwodz, Jens Schmitt, and Ralf Steinmetz. Scalable TCP-

friendly Video Distribution for Heterogeneous Clients. In Ragunathan Rajkumar,

editor, Proceedings of SPIE/ACM Conference on Multimedia Computing and Net-

working (MMCN 2003), pages 102–113, 2003.

http://www.w3.org/TR/1999/REC-xslt-19991116

List of Figures

1.1 Internet video streaming scenario. 1

1.2 Example of an Adaptive Streaming Architecture. 4

2.1 Example of a hybrid video coding approach of inter-frame prediction and

transform coding. 13

2.2 Example of a pixel-domain transcoding architecture for bit-rate reduction

[101]. 21

2.3 Simplified transcoding for bit-rate reduction suffering from decoder drift [101]. 21

2.4 Examples of motion vector mapping for four 16x16 MBs [101]. 22

2.5 Possible operation points of a scalable video with three temporal (T), three

spatial (D) and three quality/bit rate (Q) layers. 24

3.1 Layers defined in the Internet Protocol Suite and the encapsulation of the

data (example for the transport protocol UDP). 28

4.1 Behavior of a rate-control algorithm in presence of bandwidth variations. . 39

4.2 Stream-switching in presence of bandwidth variations. 42

4.3 Behavior of priority streaming in presence of bandwidth variations. 44

4.4 Priority re-ordering of a video fragment (resulting in a video segment). . . . 45

4.5 RTP-based architecture of a server-side adaptation system based on client

feedback. 48

4.6 Architecture based on receiver-driven layered multicast. 50

4.7 Simple RTP mixer [54]. 52

4.8 Adaptation-enabled MANE based on RTSP/RTP [54]. 53

167

Page 168 LIST OF FIGURES

5.1 Server-side adaptive streaming system [51]. 63

5.2 GOP timing [51]. 65

5.3 Buffer control function [51]. 67

5.4 PRID-based NAL unit reordering [51]. 69

5.5 Use case for TCP-based Adaptive Streaming [51]. 71

5.6 Test setup for TCP-based Adaptive Streaming [51]. 73

5.7 Rate-distortion curves of the test sequences [51]. 74

5.8 Overprovisioned network: BW = 4096 kbps. PSNR and arrival time devi-

ation on the client (deltaC) for the different algorithms and GOP sizes at

50 ms RTT. 78

5.9 Overprovisioned network: BW = 4096 kbps. PSNR and arrival time devi-

ation on the client (deltaC) for the different algorithms and GOP sizes at

200 ms RTT. 79

5.10 Underprovisioned network: BW = 1536 kbps. PSNR and arrival time de-

viation on the client (deltaC) for the different algorithms and GOP sizes at

50 ms RTT. 80

5.11 Underprovisioned network: BW = 1536 kbps. PSNR and arrival time de-

viation on the client (deltaC) for the different algorithms and GOP sizes at

200 ms RTT. 81

5.12 Congested network: BW = 4096 kbps and one concurrent TCP stream.

PSNR and arrival time deviation on the client (deltaC) for the different

algorithms and GOP sizes at 50 ms RTT. 83

5.13 Congested network: BW = 4096 kbps and one concurrent TCP stream.

PSNR and arrival time deviation on the client (deltaC) for the different

algorithms and GOP sizes at 200 ms RTT. 84

5.14 Congested network: BW = 4096 kbps and two concurrent TCP streams.

PSNR and arrival time deviation on the client (deltaC) for the different

algorithms and GOP sizes at 50 ms RTT. 85

5.15 Congested network: BW = 4096 kbps and two concurrent TCP streams.

PSNR and arrival time deviation on the client (deltaC) for the different

algorithms and GOP sizes at 200 ms RTT. 86

LIST OF FIGURES Page 169

5.16 Congested network: BW = 4096 kbps and three concurrent TCP streams.

PSNR and arrival time deviation on the client (deltaC) for the different

algorithms and GOP sizes at 50 ms RTT. 87

5.17 Congested network: BW = 4096 kbps and three concurrent TCP streams.

PSNR and arrival time deviation on the client (deltaC) for the different

algorithms and GOP sizes at 200 ms RTT. 88

5.18 Average PSNR for APP-BE with GOP size 65 with respect to the RTT. . . 90

5.19 Average PSNR for TCP-BE with GOP size 65 with respect to the RTT. . . 90

5.20 Average PSNR for Priority Streaming with GOP size 257 with respect to the

RTT. 91

6.1 Utilization of a network link for an infinite-source TCP stream and a request-

response stream. 95

6.2 Network packet schedule for an infinite-source TCP stream and three request-

response streams under packet loss (X). 96

6.3 Theoretical upper bounds for throughput of a single TCP connection (TCP)

rmax and request-response streams rrrmax (MSS = 1460 bytes, lch =

20480 bytes, nc = 10, tgap = 350 ms) under packet loss p. [52] 98

6.4 Measured throughput of a single TCP connection (TCP) and request-

response streams (BW = 8192 kbps, MSS = 1460 bytes, lch = 20480 bytes,

nc = 10, tgap = 350 ms) under packet loss p. [52] 99

6.5 TCP window size and router queue utilization for a TCP flow through

a router with a queue size equal to the bandwidth-delay product

(lq = BW ∗ MAXRTT) [8]. 101

6.6 Modeled throughput performance of a single TCP connection (TCP) rtcp

and the request-response streams rrr (MSS = 1460 bytes, lch = 160 kB,

nc = 5, tgap = 210 ms) at a fixed bottleneck bandwidth BW = 8192 kbps

and packet loss rate p [53]. 103

6.7 Throughput estimate of the simple and the enhanced model for the request-

response streams rrr (MSS = 1460 bytes, lch = 160 kB, nc = 5,

tgap = 210 ms) at a fixed bottleneck bandwidth BW = 8192 kbps and

packet loss rate p. 104

Page 170 LIST OF FIGURES

6.8 Request-response-based client-driven streaming system [53]. 105

6.9 Three HTTP-based request-response streams/queues on the client with pri-

ority management [53]. 106

7.1 Rate-distortion curves of the test sequences [53]. 112

7.2 Measured and modeled throughput performance rrr and download duration

of a chunk tch for the request-response streams. The results are shown for a

fixed bottleneck bandwidth of BW = 4096 kbps, a maximum queuing delay

of tq = 200 ms and averaged over the RTTs to provide a single performance

value. [53] . 116

7.3 Measured and modeled throughput performance rrr and download duration

of a chunk tch for the request-response streams. The results are shown for a

fixed bottleneck bandwidth of BW = 8192 kbps, a maximum queuing delay

of tq = 200 ms and averaged over the RTTs to provide a single performance

value. [53] . 117

7.4 Measured TCP fairness ratio RR/TCP of the request-response streams com-

pared to 1 . . . 4 concurrent HTTP downloads. The results are shown for two

bottleneck bandwidths (BW = 4096 kbps and 8192 kbps and maximum

queuing delay of tq = 200 ms and averaged over the RTTs and different

congestion levels to provide a single performance value. [53] 120

7.5 Measured and modeled throughput performance of a single TCP connection

(TCP) rtcp and for the request-response streams rrr using the same conditions

as used in Figure 6.6. [53] . 123

7.6 Measured video quality of the streamed test sequences in terms of PSNR

of a single TCP connection (TCP) and for the request-response streams

(MSS = 1460 bytes, lch = 160 kB, nc = 5, tgap = 210 ms) at a

fixed bottleneck bandwidth BW = 8192 kbps and packet loss rate p. [53] . 124

8.1 Mobile video streaming use case. 127

8.2 Network TCP throughput traces of the cellular network. 129

LIST OF FIGURES Page 171

8.3 Parameter set 1: Network bandwidth (line) and video bit rate (bars) of the

request-response streaming system (tfrag = 10s, lch = 40 kB, nc = 5,

tgap = 140 ms) at a fixed RTT of 150 ms. 134

8.4 Parameter set 1: Network bandwidth (line) and video bit rate (bars) of the

request-response streaming system (tfrag = 20s, lch = 40 kB, nc = 5,

tgap = 140 ms) at a fixed RTT of 150 ms. 135

8.5 Parameter set 1: Network bandwidth (line) and video bit rate (bars) of the

request-response streaming system (tfrag = 30s, lch = 40 kB, nc = 5,

tgap = 140 ms) at a fixed RTT of 150 ms. 136

8.6 Parameter set 2: Network bandwidth (line) and video bit rate (bars) of the

request-response streaming system (tfrag = 10s, lch = 80 kB, nc = 4,

tgap = 170 ms) at a fixed RTT of 150 ms. 137

8.7 Parameter set 2: Network bandwidth (line) and video bit rate (bars) of the

request-response streaming system (tfrag = 20s, lch = 80 kB, nc = 4,

tgap = 170 ms) at a fixed RTT of 150 ms. 138

8.8 Parameter set 2: Network bandwidth (line) and video bit rate (bars) of the

request-response streaming system (tfrag = 30s, lch = 80 kB, nc = 4,

tgap = 170 ms) at a fixed RTT of 150 ms. 139

8.9 Parameter set 3: Network bandwidth (line) and video bit rate (bars) of the

request-response streaming system (tfrag = 10s, lch = 160 kB, nc = 3,

tgap = 180 ms) at a fixed RTT of 150 ms. 140

8.10 Parameter set 3: Network bandwidth (line) and video bit rate (bars) of the

request-response streaming system (tfrag = 20s, lch = 160 kB, nc = 3,

tgap = 180 ms) at a fixed RTT of 150 ms. 141

8.11 Parameter set 3: Network bandwidth (line) and video bit rate (bars) of the

request-response streaming system (tfrag = 30s, lch = 160 kB, nc = 3,

tgap = 180 ms) at a fixed RTT of 150 ms. 142

8.12 Parameter set 4: Network bandwidth (line) and video bit rate (bars) of the

request-response streaming system (tfrag = 10s, lch = 160 kB, nc = 5,

tgap = 210 ms) at a fixed RTT of 150 ms. 143

Page 172 LIST OF FIGURES

8.13 Parameter set 4: Network bandwidth (line) and video bit rate (bars) of the

request-response streaming system (tfrag = 20s, lch = 160 kB, nc = 5,

tgap = 210 ms) at a fixed RTT of 150 ms. 144

8.14 Parameter set 4: Network bandwidth (line) and video bit rate (bars) of the

request-response streaming system (tfrag = 30s, lch = 160 kB, nc = 5,

tgap = 210 ms) at a fixed RTT of 150 ms. 145

8.15 Average video bit rate, number of quality switches and unsmoothness of

the request-response streaming system for different video fragment sizes

(tfrag = 10, 20 and 30 seconds) and parameter sets, averaged over all

network traces. 146

8.16 Average video bit rate, number of quality switches and unsmoothness of the

request-response (RR) streaming system (tfrag = 30 seconds) and adaptive

streaming systems evaluated in [66], averaged over all network traces. . . . 147

	Acknowledgements
	Kurzfassung
	Abstract
	Introduction
	Motivation and Use Case
	Related Work
	Research Goals and Contributions
	Structure

	Video Codecs and Adaptation
	Video Codecs
	MPEG-4 AVC - H.264
	H.264/SVC - Scalable Video Coding

	Adaptation Constraints
	Usage Environment
	User Preferences

	Video Adaptation
	Video Transcoding
	Scalable Video Adaptation

	Video Transmission in IP Networks
	Internet Protocol Suite
	Application Layer Protocols for Video Streaming

	Adaptive Video Streaming in Networks with Time-Varying Bandwidth
	Rate-Control for Adaptive Video Streaming
	Stream Switching
	Priority Streaming
	Adaptive Streaming Architectures
	Server-side Adaptive Streaming
	Client-driven Adaptive Streaming
	In-Network Adaptation
	Hybrid Systems

	Related Work
	Related Work in Research
	Standards and Applications

	TCP-based Adaptive Internet Video Streaming
	TCP-based Adaptive Video Streaming
	TCP-based Adaptive Streaming of H.264/SVC
	Stream Switching using Application-layer Bandwidth Estimation
	Stream Switching using TCP-Stack-based Bandwidth Estimation
	Priority-based Adaptive Streaming

	Evaluation of TCP-based Adaptive Video Streaming
	Test Setup
	Network Scenarios
	Test Content
	Evaluation Methodology

	Results
	Limitations of TCP-based Adaptive Video Streaming

	Parallel HTTP-based Request-Response Streams
	TCP-based Video Streaming in Error-Prone Networks
	Modelling HTTP-based Request-Response Streams
	Simple Model
	Enhanced Model utilizing Network Characteristics

	Adaptive Video Streaming with Parallel HTTP-based Request-Response Streams

	Performance of Parallel HTTP-based Request-Response Streams
	Evaluation Methodology
	System Parameters
	Network Scenarios

	Video Content
	Performance Metrics
	Test Setup
	Results
	System Parameters
	TCP-friendliness
	Comparison with Enhanced Model
	Video Quality

	Mobile Video Streaming using Request-Response Streams
	Cellular Network Traces
	Evaluation Methodology
	Results

	Conclusion
	Bibliography

