
Persistent Interests in Named Data Networking
Philipp Moll

Institute of Information Technology
Alpen-Adria-Universität Klagenfurt

philipp.moll@aau.at

Sebastian Theuermann
Institute of Information Technology
Alpen-Adria-Universität Klagenfurt

sebastian.theuermann@aau.at

Hermann Hellwagner
Institute of Information Technology
Alpen-Adria-Universität Klagenfurt

hermann.hellwagner@aau.at

Abstract—Recent research in the field of Information-Centric
Networking (ICN) shows the need for push-based data transfer,
which is not supported in current pull-based ICN architectures,
such as Named Data Networking (NDN). IoT deployments as well
as emergency notifications and real-time multimedia communi-
cation are well suited to be realized using the ICN principles,
but experience challenges in pull-based environments. Persistent
Interests (PIs) are a promising approach to introduce push-
like traffic in Interest-based ICN architectures such as NDN.
In this paper, we explore the characteristics of PIs and discuss
advantages and disadvantages of using them. We provide an
efficient solution for preventing so-called Data loops, which are
introduced by giving up NDN’s one-request-per-packet principle.
Furthermore, we investigate the performance of PIs compared
to classical Interests in terms of the computational complexity of
forwarding and discuss possible applications of PIs.

Index Terms—Information-centric networking, Named Data
Networking, Persistent Interests, push-based traffic

I. INTRODUCTION

In Information-Centric Networking (ICN) research, a trend
to strictly pull-based architectures is noticeable. In Named
Data Networking (NDN) [1], a promising Future Internet
architecture, clients are forced to request every single Data
packet by a so-called Interest packet. The desired Data is spec-
ified in the Interest by a system-wide unique name. Requested
Data always follows the reverse path of the requesting Interest
back to the client, enabled by the Interest laying breadcrumbs
on each forwarding network node. These breadcrumbs are
realized as entries in the Pending Interest Table (PIT), which
stores incoming and outgoing interfaces of Interest packets.

The one-request-per-packet principle used in NDN leads to
a strict pull-based architecture. When looking at current ICN
research, we see a need for push-based traffic for certain tasks,
such as for pushing sensor data from low-power IoT devices to
a gateway [2] or for sending emergency notifications in delay
tolerant networking [3]. Besides those applications, multime-
dia streaming could benefit from push-based traffic as well.
Due to low latency requirements and variable bitrate codecs,
it is challenging to use NDN for conversational services.

In the first pull-based implementation of a conversational
service over NDN [4], Interests pre-requested Data packets to
be produced in the future, in order to keep the delay between
the generation of data at the producer and playback of the data
at the client as low as possible. With modern variable-bitrate
audio and video codecs, the number of produced Data packets
varies each second, which makes pre-requesting Data packets
difficult.

NDN-RTC, a library for real-time streaming over NDN [5],
tackles this issue by estimating the number of future Data
packets. The challenge for this approach is to find the correct
number of Interests to issue. If too few Interests are issued,
additional Interests have to be sent in order to fetch missing
Data packets, which increases the latency. Too many issued
Interests increase the network overhead and may mislead
adaptive forwarding strategies which rely on metrics such as
the Interest satisfaction ratio, which is untruly decreased by
Interests which are sent due to overestimation of the number
of Data packets to be produced in the future.

Another approach is to send traffic in a push-like manner.
Amadeo et al. [6] propose methods for pushing IoT traffic
reliably, mostly considering small traffic volumes and local
area networks. In addition, the focus on fully reliable delivery
introduces overhead, which some applications such as conver-
sational services would not require. Investigations of Persistent
Interests (PIs) [7] showed that PIs are well suited to enable
push traffic for conversational services in NDN. A PI is a
modified Interest which does not only request one Data packet,
but subscribes to a stream of Data packets and enables the
producer to send as many Data packets as it produces during a
predefined time interval and thereby enables push-based traffic
in NDN. This keeps the latency low and decreases overhead.
Nevertheless, PIs bear some challenges, such as increased
forwarding complexity [8] and security issues.

This paper presents an analysis of PIs including their
advantages and shortcomings compared to the classical In-
terest emitting approach. Moreover, we present an efficient
solution to prevent Data loops which can arise when using
PIs. We introduce several ways of implementing push-like
traffic including a discussion of the pros and cons of the
variants. Beyond that, we evaluate our algorithm for Data loop
prevention by means of network simulations and we present a
comparison of the forwarding effort of PIs and the forwarding
effort of classical Interests on real hardware. Finally, we
discuss the applicability of PIs for different applications. In
addition, we contribute the implementation of PIs including
our presented Data loop prevention algorithm as open-source
software to allow other researchers to build on our work.

II. PERSISTENT INTERESTS

The strict pull-based nature of NDN is not perfectly suited
for all types of applications. Tsilopoulos et al. [9] first asserted
that different traffic types need to be supported in order to

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



fulfill the demands of all types of applications. Therefore,
the idea of Persistent Interests (PIs) was proposed. This
concept was implemented and investigated in [7]. In this
implementation, PIs carry a type field, which can be used
to distinguish PIs from classical Interests, which is required
because a PI must not be deleted from the PIT when a single
Data packet is received. It stays active in the PIT until its PI-
defined lifetime times out. In order to prevent a PI from timing
out, the PIT entries have to be refreshed in regular intervals.
This is achieved by periodically sending a new PI carrying the
same name as the old one to the producer; this is referred to
as a refresh PI. Analyses in [7] showed the suitability of PIs
for conversational services over NDN. Besides increasing the
estimated user satisfaction, PIs lead to a significant decrease
of traffic due to the reduced number of sent Interests.

The authors of [7] further discovered that forwarding strate-
gies intended for classical Interests are not applicable for PIs,
because metrics such as the Interest satisfaction ratio can not
be calculated when using PIs. Therefore, an adapted version of
the best route forwarding strategy [10] was developed. A first
adaptive forwarding strategy for push-based traffic in NDN
was published in [8], which uses probing results in order to
rate the quality of different paths through the network.

In the following, we present a deeper analysis of PIs in order
to assess whether they are promising for delivering data of
multi-party real-time communication, produced during video
conferencing or in multi-player on-line games, in large scale
networks.

A. Mitigating Data Loops

Flow balance, which means that each emitted Interest ex-
pects exactly one returning Data packet, is one characteristic
of NDN. This balance is disrupted when using PIs because PIT
entries, which are linked to a PI, do not only stay valid for
one Data packet, but for all Data packets which are produced
during the lifetime of the PI. In classical NDN where flow
balance is active, each Data packet should arrive only once
at a node. If it arrives twice, which is possible when Interests
are sent redundantly on multiple faces, the redundantly arrived
Data packet is dropped as an unsolicited packet, because the
corresponding PIT entry is already satisfied.

PIT entries of PIs behave differently. A PI-PIT entry is not
satisfied when a matching Data packet is received. Because of
this, a duplicated received Data packet is not recognized as
such and is forwarded redundantly towards the client.

Another related, but more severe problem arises when using
adaptive forwarding strategies. When a forwarding strategy
decides to redirect the data flow of a PI to a new path because
the current path’s performance is too low, the strategy can only
do this by redirecting refresh PIs to the new path. The lifetimes
of two consecutive refresh PIs have to overlap in order to
prevent timeouts. When redirecting the refresh PI, this fact
leads to a short timespan with multiple active PIs for the same
data on different paths. This can cause so-called Data loops
in certain scenarios, such as in the demonstration topology
visualized in Figure 1. The client first sends PI 1 (blue) over

the upper link. A later sent refresh PI (PI 2, green) for the same
data is redirected to the lower link. The lifetimes of the two PIs
are overlapping. As visualized, we assume that the forwarding
strategy duplicates the PIs in the network. When looking at
all active PIs between the center nodes, we recognize that
they form a loop in the shape of an ”8”. Incoming Data
packets always follow the reverse path of the PIs, which leads
to looping Data packets because the forwarded PIs already
collectively form a loop. We now call the loop of Data packets
a Data loop, which is visualized in Figure 1 by means of
red arrows. Once a Data loop is established, more and more
Data packets start looping until all links are congested. Even
if this scenario seems to be artificially created, Data loops
could be observed in simulations of larger randomly generated
networks, such as used for evaluation in Section III-A.

Client Producer

PI 1 PI 2 Data

Data Loop

Looping Data

Fig. 1. Looping Data packets in demonstration topology

The naive solution to overcome this issue – remember-
ing all Data packets which were forwarded on a node and
checking if an incoming packet is a duplicate – would be
effective but computationally expensive and would cause huge
performance costs for all incoming Data packets on a node.
We further assume that the number of packets which has
to be remembered, varies from application to application.
In cases where a low number of packets is sent, only a
few packets have to be remembered in order to effectively
prevent duplicate transmissions. In cases where many packets
are delivered, it is important to remember a larger number
of packets, which causes memory and processing overhead.
Furthermore, packets have to be remembered per PI-PIT entry,
because it has to still be possible to re-request a Data packet
via a regular Interest. When thinking of core routers, which
forward millions of packets each second, we quickly see that
the overhead introduced by the naive solution is too high.

The method we developed detects duplicated packets by
an algorithm which is inexpensive in terms of processing
and in terms of memory costs. The last part of each NDN
name, which uniquely identifies a Data packet, is an ascending
integer number, referred to as sequence number. In a stream
of Data packets, such as produced during Internet telephony
sessions or during video conferencing, the sequence number of
the first Data packet starts at zero and is strictly increasing until
the end of the call. The idea of our approach is to use these
sequence numbers to remember already transmitted packets
in a space-efficient manner. Our adapted PI-PIT entries store
the highest transmitted sequence number and a bitvector of



predefined length, where each entry represents a transmitted
or not transmitted packet. Algorithm 1 shows the detection of
duplicated Data packets using these data structures.

Algorithm 1: Check if Data packet is duplicate
Data: currentSeqNo, highestSeqNo, seqNoVector
Result: duplicate packet or not

1 diff = currentSeqNo - highestSeqNo;
2 if diff > 0 then

/* New packet, shift bitvector */
3 seqNoVector << diff;
4 seqNoVector[0] = True;
5 highestSeqNo = currentSeqNo;
6 return No duplicate;

7 else if -diff >= len(seqNoVector) then
/* SeqNo too old, default allow */

8 return No duplicate;

9 else if seqNoVector[-diff] == True then
10 return Duplicate;

11 else
/* Unseen packet, set bit */

12 seqNoVector[-diff] = True;
13 return No duplicate;

The currentSeqNo variable represents the sequence number
of the currently received packet, highestSeqNo represents the
highest received sequence number matching the PI-PIT entry,
seqNoVector is a bitvector which is used to remember trans-
mitted packets. When a packet with a sequence number higher
than the currently highest sequence number arrives, the packet
is new and cannot be a duplicate (lines 2-6). If currentSeqNo
is smaller than the range of the bitvector, we assume that the
packet is no duplicate (default allow policy, lines 7-8). If this
is not the case, we check if the corresponding position in the
bitvector is set to true. In this case, the packet was already seen
due to duplication or a Data loop. The packet gets dropped,
which prevents duplicates and Data loops (lines 9-10). If the
corresponding entry is set to false, the packet was not seen
before and is classified as not duplicated.

In the case that the received Data packet is no duplicate, the
packet can be transmitted according to records in the PIT entry.
When the currentSeqNo is higher than the highestSeqNumber,
the highest sequence number is set to the new value and
the bitvector is shifted by currentSeqNo − highestSeqNo
positions (lines 3-4). In the other case, the corresponding bit
in the bitvector is set to true (lines 12-13).

Performance-wise, the overhead introduced by this algo-
rithm is negligible. Checking for a duplicate requires a lookup
in a fixed size vector. Adding a sequence number to the vector
means to update one bit in a fixed size vector, or to shift the
vector for at most n positions, where n is the length of the
vector. Regarding memory overhead, an additional bitvector
of predefined size, and an integer remembering the highest
sequence number is required for each PI-PIT entry. We assume

that the size of the bitvector depends on the number of
produced packets per second. In Section III-A, we perform
a study in which we evaluate the required bitvector size for
Internet telephony.

B. Gaining Flow-Control – Modifications of PIs

In classical NDN, NDN’s flow balance allows the consum-
ing application to control what and how much Data it gets. If
the consumer senses a congestion, it can decrease the amount
of sent Interests and thereby unload the network. As already
discussed, the use of PIs disables NDN’s flow balance, which
means that the consumer loses control over the data flow. In
this section, two possible modifications of PIs are discussed,
which partially re-enable the client’s flow control ability.

1) Next-N-Packets Approach: Instead of requesting all Data
packets which are produced in the lifetime of a PI, the Next-N-
Packets approach requests a specific number of Data packets,
which is defined in the Interest. This number can vary from
1 to N . This allows the consumer to use congestion con-
trol approaches similar to the additive-increase/multiplicative-
decrease (AIMD) algorithm used in TCP. At the beginning of a
connection, no data about the path quality is available. Thus,
clients start issuing Interest packets which only request one
Data packet. This is comparable to emitting a classical Interest.
When no congestion occurs, the number of requested Data
packets per Interest is increased by one, whereby the Interest
becomes more like a PI. When clients recognize decreasing
connection quality, which is likely due to a congestion, the
number of requested Data packets is divided by two, whereby
the clients gain more control over the data flow.

Not only clients, but also network nodes gain flow control
when using this approach. When a congestion occurs in the
network, the network node with queues prone to overflow is
the first that recognizes the congestion. In order to prevent
further congestion, the node is able to regulate the amount of
traffic requested by the clients by simply dropping Interests
which request a high number of Data packets and notifying
the clients by sending a negative acknowledgement. Thereby,
the clients get informed about the congestion in the network
and are forced to issue Interests requesting fewer Data packets.

2) Range-Interest Approach: A Range-Interest (RI) can be
seen as a large Interest. Instead of requesting only one Data
packet, a RI specifies a range of sequence numbers which are
fetched by one Interest. By allowing varying range sizes, the
consumer keeps flow control, because it can specify how many
Data packets it wants to get. Similar to the Next-N-Packets
Approach, a consumer can adapt the range size according to
the current connection quality.

As simple as this approach seems on the first sight, for-
warding RIs can be complex. Imagine the following situation:
A user requests a range from sequence number 0 to 19. For
some reason, a forwarding node has cached the Data for
sequence numbers 10 to 14 and directly sends back these five
Data packets. When forwarding the RI, the forwarding node
now has to split up the range from the original RI into two
separate ranges and forward two RIs with smaller ranges, one



requesting sequence numbers 0 to 9, the second requesting
sequence numbers 15 to 19.

III. EVALUATION

In the previous section, we introduced PIs and discussed
the possibility of Data loops. Furthermore, we introduced a
simple mechanism to overcome this issue in Section II-A. In
this section, we first evaluate the efficiency of the proposed
Data loop detection mechanism and study the bitvector length
for preventing Data loops. Then, we evaluate the performance
of PIs by comparing the maximum forwarding capacity when
using PIs and classical Interests.

A. Prevention of Data Loops
In this section, we investigate if bitvectors are capable

of preventing Data loops originating from path switching
in combination with PIs in NDN. Further, we want to find
the optimal bitvector length, in order to prevent Data loops
while keeping the possible memory overhead low. Therefore,
we simulate Internet telephony calls in randomly generated
networks using the ns-3/ndnSIM simulation environment [10].

Our network topology consists of five randomly generated,
interconnected autonomous systems (AS), each having 20
nodes acting as NDN routers. Link speeds are uniformly
distributed between 500 and 1500 kbps between nodes in one
AS, and between 3000 and 5000 kbps for links interconnect-
ing multiple ASs respectively. We decided to use such low
capacity links in order to allow congestion, which would not
occur when using higher capacities.

In the network, we simulate 20 Internet telephony calls
between randomly placed clients using the G.711 PCM audio
codec [11], which produces 100 packets per second, each
carrying 80 bytes of payload. Voice data is requested by
using PIs. In order to produce Data loops, the Multicast
Forwarding Strategy [10], which duplicates Interests to all
available interfaces, is used to forward PIs. In addition, we
simulate cross-traffic by randomly placing four client-server
pairs, each requesting 800 kbps using classical Interests.

To assess the effectivity of the bitvector mechanism, we
count a Data packet which arrives more than once, independent
of the incoming interface, as a duplicate receipt. A duplicate
transmission is a Data packet which is sent more than once
over the same interface. Duplicate receipts as well as duplicate
transmissions can both be seen as overhead and have to be
avoided.

When looking at the results in Figure 2, we can see
that even very small bitvectors effectively prevent duplicated
Data. A bitvector of size two, which means that only the
packet with the highest sequence number and its predecessor
are remembered, reduces the amount of duplicated received
packets by over 60 %.

As we can further see, an increasing bitvector length leads
to a decreasing number of duplicates. At a bitvector length
of only 100 bits, almost no duplicated transmissions occur.
This means that the bitvector recognized almost all incoming
duplicates. Doubling the length of the bitvector only leads to
minor improvements.

1 2 3 5 10 20 30 50 100 200

Bitvector length [bit]

0

200000

400000

600000

800000

1000000

N
o
. 
o
f 

D
a
ta

 p
a
c
k
e
ts

Duplicated received/transmitted voice Data packets

Duplicated Received

Duplicated Transmitted

Fig. 2. Total number of duplicated received voice Data packets in the network
(received twice or more often on a node) and total number of duplicated
transmissions (transmitted twice or more often via the same face). Error bars
depict 95 % confidence intervals.

B. Performance of Persistent Interests

After evaluating bitvectors for Data loop prevention, we now
compare the performance of PIs to that of classical Interests
with respect to the achievable throughput. To be more precise,
we investigate how many parallel Internet telephony calls can
be forwarded on low-performance network nodes, such as
the nodes from the low-cost NDN testbed [12], without a
significant decrease in transmission quality. Therefore, we set
up a simple network, consisting of a BananaPi router (BPI-
R1), which is connecting two more powerful machines that
produce the actual voice traffic. One of the more powerful
machines hosts the producer applications, while the other
one hosts an equal number of consumer applications. The
router’s only task is to forward the produced Interest and
Data packets. This way, we can observe how many packets the
router can forward without negative influence on the quality
of the voice streams. The emulated voice streams show the
same characteristics as in the previous evaluation. The size
of the bitvector for Data loop prevention is set to 200 bits.
One emulation run takes 1 minute, the number of requested
voice streams stays stable during a run and is step-wise
increased in subsequent runs. In order to reduce the processing
overhead introduced by content store lookups, the content store
is disabled in all emulations. When evaluating the PI approach,
we configure a PI lifetime of 5 seconds; refresh PIs are sent
every 2 seconds.

0 10 20 30 40 50 60 70 80 90
Number of parallel forwarded voice streams

0.0

0.2

0.4

0.6

0.8

1.0

E
x
p
e
ct

e
d
/D

e
liv

e
re

d
 D

a
ta

 P
a
ck

e
t 

R
a
ti

o Delivery Rate vs. CPU Usage

0.0

0.2

0.4

0.6

0.8

1.0

C
P
U

 u
sa

g
e
 o

f 
N

F
D

Delivery Rate Push

Delivery Rate Pull

CPU Utilization Push

CPU Utilization Pull

Fig. 3. Comparison of the forwarding performance when using PIs (Push)
and classical Interests (Pull) on a low-performance network node.

Figure 3 visualizes the ratio between expected and delivered
voice data packets on the client node, as well as the CPU
usage of the NDN Forwarding Daemon (NFD) on the low-



performance router. These results indicate that our initial
assumption that the forwarding effort when using PIs is lower
compared to issuing classical Interests holds true. When using
classical Interests, the CPU usage is already over 80 % when
10 parallel voice calls are requested. At the same time, the
expected/delivered ratio is drastically decreasing when the
number of parallel streams goes beyond 10. When using PIs,
the expected/delivered ratio stays stable until 40 parallel voice
streams, where the CPU usage hits 80 %. From this point on,
the expected/delivered ratio is decreasing. We presume that the
good performance of PI forwarding results from the fact that
fewer Interests are sent when using PIs. The total number of
sent packets is reduced by 50 %, which is why a performance
increase by the factor of 2 is obvious. In fact, when switching
to PIs, we can quadruple the number of voice streams without
increasing packet loss. This is not only because of fewer
sent Interests, but also because the processing overhead when
forwarding Interests is higher compared to the processing
overhead when forwarding Data packets. In addition, the
memory usage of the NFD on the low-performance router
was monitored. We observed a consistently lower memory
consumption when using PIs, which most likely results from
fewer, albeit longer PIT entries.

IV. CONCLUSION AND FUTURE WORK

In this paper, we investigated Persistent Interests (PIs) as
an enabler for push-like traffic in NDN. We discussed general
characteristics of PIs and introduced several implementation
alternatives. Furthermore, we discussed the most important
challenges in using PIs and introduced bitvectors as a means of
Data loop prevention. Using simulation, we showed that even
very short bitvectors (2 bits and larger) reduce the amount
of redundantly sent packets by over 50 %. In our scenario,
a 100 bit long vector almost completely eliminates duplicated
transmissions and Data loops. Because bitvectors for Data loop
detection are located in every PI-PIT entry, memory overhead
increases with increasing traffic. Nevertheless, the overhead
of 100 bits per PI-PIT entry is almost negligible, compared to
other mechanisms discussed in Section II-A.

Furthermore, we investigated the computational complexity
of PI forwarding by network emulations. To this end, we
used a low-performance networking node as an NDN router
and compared its forwarding capabilities when using classical
Interests and PIs to request Data. We saw that PIs outperform
classical Interests, which most likely is caused by the reduction
of sent Interests. As the processing of incoming Interests re-
quires high computational effort, the reduction of sent Interests
frees available resources, usable to support more concurrent
voice streams. We observed that, by using PIs instead of
classical Interests, the number of concurrent forwarded voice
streams can be quadrupled from 10 to 40 without a decrease
in forwarding quality.

Besides the performance benefits of PIs, we also discussed
drawbacks in Section II. One drawback of using PIs is the
client’s reduced ability to exercise flow control. This not only
means that the client’s ability to react to congestion is reduced,

but it also allows for Denial of Service (DoS) attacks by
adversaries. Issuing a single PI could request a large data
stream, which may already cause congestion in the network.
The ability to control the volume of incoming data can be
introduced by alternative ways to implement PIs, such as
discussed in Section II-B, but it cannot be as fine-grained as in
the classical Interest approach without losing its benefits. The
alternative ways to implement PIs also can serve as a way
to mitigate the potential of misuse of PIs for DoS attacks.
Generally we identify the introduction of tried and true ways
of flow control and DoS prevention as the most pressing topics
for future work. For now, we recommend using PIs rather for
small amounts of data in controlled environments, such as for
pushing sensor data from devices with energy constraints, than
for large amounts of multimedia data on the public Internet.
Pushing data from IoT devices can increase battery lifetime
because sensors do not have to stay awake until an Interest
arrives, but can send the Data as soon as they wake up and
immediately re-enter a sleep-state afterwards. Another possible
application for PIs is sending emergency notifications. Such
notifications have to be sent as soon as they arise in order to
react as fast as possible to an alert; polling possible emergency
notifications on all possible producer devices using classical
Interests would be infeasible.

Software artifacts resulting from this paper are available on
GitHub (https://github.com/phylib/PersistentInterest).

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 66–73, July 2014.

[2] O. Hahm, E. Baccelli, T. C. Schmidt, M. Wählisch, and C. Adjih, “A
Named Data Network Approach to Energy Efficiency in IoT,” in Proc.
IEEE Globecom Workshops, 2016, pp. 1–6.

[3] S. Dynerowicz and P. Mendes, “Demo: Named-Data Networking in
Opportunistic Network,” in Proc. 4th ACM Conference on Information-
Centric Networking, 2017, pp. 220–221.

[4] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart, J. D.
Thornton, and R. L. Braynard, “VoCCN: Voice-over Content-Centric
Networks,” in Proc. ACM Workshop on Re-architecting the Internet,
2009, pp. 1–6.

[5] P. Gusev and J. Burke, “NDN-RTC: Real-time Videoconferencing over
Named Data Networking,” Proc. 2nd ACM Conference on Information-
Centric Networking, pp. 117–126, 2015.

[6] M. Amadeo, C. Campolo, and A. Molinaro, “Internet of Things via
Named Data Networking: The Support of Push Traffic,” in Proc.
Network of the Future Conference, 2014, pp. 1–5.

[7] P. Moll, D. Posch, and H. Hellwagner, “Investigation of Push-Based
Traffic for Conversational Services in Named Data Networking,” in Proc.
IEEE Int. Conference on Multimedia and Expo Workshops, 2017.

[8] P. Moll, J. Janda, and H. Hellwagner, “Adaptive Forwarding of Persistent
Interests in Named Data Networking,” in Proc. 4th ACM Conference on
Information-Centric Networking, 2017, pp. 180–181.

[9] C. Tsilopoulos and G. Xylomenos, “Supporting Diverse Traffic Types
in Information Centric Networks,” in Proc. ACM SIGCOMM Workshop
on Information-Centric Networking, 2011, pp. 13–18.

[10] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2:
An updated NDN simulator for NS-3,” NDN, Technical Report NDN-
0028, Revision 2, Nov. 2016.

[11] G.711: Pulse code modulation (PCM) of voice frequencies, International
Telecommunication Union Std. G.711, 1990.

[12] B. Rainer, D. Posch, A. Leibetseder, S. Theuermann, and H. Hellwagner,
“A Low-Cost NDN Testbed on Banana Pi Routers,” IEEE Communica-
tions Magazine, vol. 54, no. 9, pp. 105–111, Sept. 2016.




