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Abstract. This paper compares handhelds based on the iPhone and An-
droid operating systems in multimedia streaming scenarios. We simulate
typical Internet network impairments, i.e. packet delay and packet loss,
and evaluate their effects on the end devices. Additional evaluations in-
clude bandwidth overhead inflicted by the different streaming approaches
and traffic shape and fairness when both handhelds consume media si-
multaneously. Based on the quantitative evaluation, both approaches
show weaknesses and strengths. A final qualitative discussion points out
additional advantages for the streaming approach implemented in the
iPhone operating system.
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1 Introduction

In this work we compare the iPhone 3.0 to the Android 1.6 operating system (OS)
in multimedia streaming scenarios. For the iPhone OS a second generation Apple
iPod Touch was chosen as a platform and for the Android OS the HTC Magic
served as a platform. Both operating systems support the codecs H.264/AVC
(AVC) [1] for video and MPEG-4 AAC (AAC) [2] for audio and are able to receive
streamed multimedia content but they use different approaches to enable this.
While the Android OS relies on the well known RTP protocol for AVC [3] and
AAC [4], the iPhone OS facilitates a new approach called HTTP Live streaming.
Other than RTP, HTTP Live streaming is a pull-based protocol which relies on
breaking the overall stream into a sequence of small HTTP-based file downloads,
which are referenced by an extended M3U playlist. Further information on HTTP
Live streaming can be found in [5]. Our goal in this work is to evaluate which of
the two streaming mechanisms is more suitable for streaming multimedia content
to mobile end devices.

The remainder of this paper is organized as follows. In Section 2 we present
our evaluation environment, i.e. the test data, test methodology and an overview
of our testbed. Subsequently, we first evaluate the influences of packet delay and
packet loss on the startup delay and playback in Sections 3 and 4, respectively.
The bandwidth overhead which is caused by the two alternative streaming ap-
proaches is evaluated in Section 5. Next, we look at traffic shape and fairness in
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Section 6, by serving both handhelds simultaneously over the same channel and
analyzing the traffic. Finally, Section 7 concludes our evaluation and provides
an outlook to future work.

2 Evaluation environment

2.1 Test data and methodology

As source content 100 seconds from a teaser from the movie Ice Age 3 were
chosen and encoded in AVC for video and AAC for audio, which are the standard
codecs supported by both operating systems. Since both operating systems only
support the AVC baseline profile, B-frames, the CABAC filter and the Trellis
algorithm were disabled during encoding. Audio was encoded with 96 kbps and
two channels. For video we created variations differing in the temporal, spatial
and quality domain. Table 1 shows the different encoding characteristics for the
test sequences, based on common usage and on the end device capabilities, i.e.
the highest resolution which is supported by both handhelds is 480x320 pixels
and the highest bit rate is 500 kbps.

Resolution [px] 480x320 320x240 240x160 160x120

Frame rate [fps] 30 25 24 20 12.5

Bit rate [kbps] 500 400 200 100

Table 1. Encoding characteristics for test sequences

In the case of the iPhone OS two extra steps need to be performed, in order to
prepare the content for HTTP Live streaming. First, the content is multiplexed
into a MPEG-2 transport stream and second, it needs to be fragmented into
segments. We used a minimum length of 10 s for each segment, as suggested in
[5]. However, not all segments are of equal length, since the segmentation can
only be performed at Instantaneous Decoder Refresh (IDR) frames within the
video sequence. Therefore, the segmenter has to wait for the next IDR-frame
to appear, before a new segment can be started. In our case, we used an IDR-
frame interval of 250. This is the default for MEncoder1, which we used for
encoding the contents. In the worst case this means that an IDR-frame may
occur shortly before the specified segment duration in which case the specific
segments duration may almost double. Additionally, this encoder may decide to
introduce additional IDR-frames in case of scene cuts.

We did not modify the handhelds in any way and used the native media
players in order to get representative results. This means that our startup delay
measurements were done manually with an external timer which leads to higher
errors in measurement. To compensate for this factor and for unexpected be-
havior of the handhelds 10 repetitions were performed for each measurement.
1 http://www.mplayerhq.hu, SVN-r29411
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Considering all the entries in Table 1, a total of 80 different variations of the
original sequence were created by incorporating every possible permutation. Be-
cause of space limitations we will focus on a relevant subset of our results in the
following.

2.2 Testbed

Figure 1 shows our testbed, which consists of a combination of several different
Linux computers with kernel version 2.6.27, running the Ubuntu distribution.
The computers pl05 and pl06 act as content providers and are the locations
where the HTTP Web server (in our case Apache HTTP Web server2) and the
RTP streaming server (in our case Live 555 Media Server3) are located. The

Fig. 1. Testbed

machine mm08 is used to introduce additional network delay by increasing the
round trip time (RTT) of packets, whereas mm04 is used to apply traffic shaping
and packet loss. For this, the Linux traffic control mechanism and its extension
Netem4 was used. Tcpdump5 and wireshark6 were used to record the traffic at
the client side as well as the server side.

With the help of the test environment several measurements were performed,
using the presented test set. These measurements included the startup delay, the
impacts on playback, as well as the observation of traffic fairness, shape and data
overhead. In the following sections the results are presented.
2 http://www.apache.org, v2.28
3 http://www.live555.com, v0.3
4 http://www.linuxfoundation.org/en/Net:Netem, Kernel v2.6.27
5 http://www.tcpdump.org, v3.9.8 (libcap 0.9.8)
6 http://www.wireshark.org, v1.2.7
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Fig. 2. Comparison of different round trip times

3 Evaluation of startup delay

The term startup delay describes the time between the request of a sequence
and the actual start of the playback.

3.1 Effect of packet delay on startup delay

In the Internet, the RTT depends on the infrastructure, its utilization and the
geographical localization of hosts in the network. The study about round trip
time conducted by Acharya et al. [6] shows that the wide majority of investigated
hosts have shown an inherent RTT lower than 250 milliseconds. Therefore, RTT
values of 0, 100 and 250 milliseconds where chosen for the evaluation. The delay
distribution of forward and backward channel was set symmetrically.

The bar charts in Figure 2 show the startup delay for the test sequences with
a resolution of 480x320 pixels and a frame rate of 30 fps. As depicted in Figure
2(a), the startup delay is about seven seconds for Android OS and three seconds
for the iPhone OS. Without introducing packet delay, the startup times are
relatively constant. However, once packet delay is introduced, the characteristics
of the operating systems start to differ as can be seen in figures 2(b) and 2(c).
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The startup delay on the Android OS increases linearly when increasing the
RTT, on the iPhone OS however, we can observe an exponential increase of
startup delay depending on both the RTT and the bit rate.

The explanation for this difference is twofold. First, with RTP only a few
frames of a sequence need to be received (i.e. until the playback buffer is full)
before playback can be started, which is contrary to HTTP Live streaming where
the playback does not start until a whole segment is received. Second, since the
HTTP Live streaming approach is based on TCP, the amount of data it can
send out at once is constrained by the contention window, limiting the number
of packets that can be sent before receiving an ACK. Thus, the server is only
allowed to send out a small amount of a packets at once. Due to this condition
the overall delay multiplies with the amount of data and the increasing delay
in the network. This restriction does not apply to the Android OS, since UDP,
which RTP relies on, does not involve acknowledgement packets.
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Fig. 3. Impacts on startup delay considering different video resolutions

So far, the evaluation focused on variations in bit rate, leaving the parameters
for frame rate and resolution selected in the test set unchanged. Figures 3 and
4 show the impact of various resolutions and frame rates on the startup delay.
As can be seen, in both cases and for both operating systems the startup delay
increases linearly when increasing the resolution or frame rate (while keeping
the bit rate constant at 500 kbps). This can be explained by the fact that for the
transmission of a segment in HTTP Live streaming only the bit rate (and thus
segment size) is a relevant factor. In case of RTP, we assume that the startup
delay mostly depends on the size of the playback buffer. We cannot verify this,
since the playback buffer is not user-configurable on the Android OS.

3.2 Effect of packet loss on startup delay

Packet loss is typically caused by congested networks, since routers can only
buffer a finite amount of packets at a time, thus certain selected packets have to
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Fig. 4. Impacts on startup delay considering different frame rates

be dropped. Investigations performed by Wang et al. [7] have shown that about
95 % of tested Internet links have a packet loss rate lower than 2 %. Therefore, a
maximum packet loss rate of 2 % was chosen to be considered for the evaluation.
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Fig. 5. Impact of packet loss on startup delay

The Figures 5(a) and 5(b) show that packet loss does not influence startup
delay for the Android OS. For the iPhone OS however, packet loss results in an
increased startup delay, since TCP is a reliable protocol which retransmits lost
data packets. Although packet loss increases the startup delay, the impacts are
not as high as they are in the case of introduced network delay.

4 Impacts on playback

After evaluating the startup delay in the previous section, we now focus on the
playback, i.e., how will factors such as packet delay and packet loss impact the
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Fig. 6. Traffic under ideal network conditions

continuity of the playback. Figure 6 shows the traffic distribution for both op-
erating systems under ideal network conditions. The solid line shows the traffic
occurred during streaming to the Android OS handheld, whereas the dashed line
shows the traffic for the iPhone OS handheld. For HTTP Live streaming, the
markers facing downwards from the x-axis display the times when a segment is
requested. The markers facing upwards from the x-axis on the other hand show
the deadline for each segment until its download has to be completed in order
to guarantee continuous playback. The moment when the first segment is com-
pletely received, i.e. the start of playback, is also the start of the duration until
the first segment deadline expires. The times for the deadlines correspond to
the length of the segments. These segment deadlines are not applicable for RTP
streaming, since the content is not split into segments. Additionally it has to be
noted that the measurements of both handhelds were not performed simultane-
ously, rather the results where merged into one diagram in post-processing. As
can be seen from the figure, HTTP Live streaming uses the maximum amount
of bandwidth to gather the first few segments, in this case the initial four. After
downloading enough segments the request of further segments is paused until
the playback advances in time. This behavior can for example be observed at
the 20th second. On the other hand, looking at the bandwidth of the Android
OS it can be seen that the traffic is continuous.
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4.1 Effects of packet delay on playback

As shown by the results in Section 3.1, the network latency has a much higher
impact on HTTP Live streaming than it has on RTP streaming. In order to
evaluate how network latency influences the playback the same network delays
were chosen. Figure 7 shows the results of these measurements. The plot includes
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Fig. 7. Traffic considering different packet delays

three traffic lines. Two of them describe HTTP Live streaming at latencies of
100 ms and 250 ms respectively and one shows RTP streaming at a delay of
250 ms. Furthermore, the figure also shows the segment request segment deadline
markers, which hold the same semantics as the ones in Figure 6. As can be seen
from the markers, all the segment deadlines can be kept in the case of 100 ms
latency. For a latency of 250 ms, however, the download of the second segment
(third marker) does not finish until the first segment deadline, thus resulting
in non-continuous playback. Considering the other segment deadlines, only the
4th and the 5th can be kept. The cause of this problem is the same as in the
case of startup delay. The high network latency forces TCP to wait much longer
for acknowledgment packets, thus the utilized bandwidth becomes much lower
and it takes much longer to fully retrieve a segment. For comparison to the
Android OS, the solid line shows the RTP stream at 250 ms network delay. In
contrast to the optimal case, duration of the playback is only slightly longer,
caused by the initial RTSP negotiation, which builds on TCP. However, the
traffic characteristic do not show any significant changes compared to Figure 6.
The conclusion that can be drawn from this observation is that high network
delay causes HTTP Live streaming to result in non-continuous playback, whereas
RTP streaming is nearly unaffected.
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4.2 Effects of packet loss on playback

Packet loss is a common problem concerning RTP-based multimedia streaming,
since lost packets directly affect the quality of the played content, because the
decoder is missing data to restore the uncompressed state. Thus, different con-
cealing techniques exist to deal with the problem of lost packets [8]. On the other
hand, streaming content with the help of HTTP does not degrade the quality
of the content in case of packet loss, because of the reliability of TCP. However,
this does not come for free, since it involves retransmissions. In this section we
therefore investigate the impacts of several packet loss rates on the playback.
The lines in Figure 8 show the traffic characteristics for the Android OS under
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Fig. 8. Playback impacts during 2% packet loss for Android OS

the influence of 2 % of packet loss. Measurements were performed at the server
and the client simultaneously. Thus, the solid line shows the traffic at the server,
whereas the dashed line describes the client side, which is measured at the out-
going interface of machine mm04 as described in Section 2.2. For the Android OS
packet loss results in the creation of artifacts during the playback. In addition
to packet loss rates of 1 % and 2 %, we also tested 5 % packet loss, in which case
the Android OS was not able to finish playback.

The measurements for the iPhone OS can be seen in Figure 9. Only one
line is shown, since the server and the client side did not show any noticeable
difference. When comparing the traffic characteristics to those in the optimal
case in Figure 6, one can see that in case of packet loss the utilized bandwidth
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Fig. 9. Playback impacts during 2 % packet loss for iPhone OS

is much lower and consequently the segment request times are more distributed.
The explanation for this is the behavior of TCP in the case of packet loss. As
TCP detects a lost packet, it halves the maximum allowed bandwidth according
to the Additive Increase Multiple Decrease (AIMD) algorithm [9], by reducing
the size of the contention window. After receiving further packets without loss,
the contention window is increased again, but only in a linear way. Nonetheless,
the tested packet loss rates did not influence the quality of the playback in terms
of continuity. Furthermore, the content is displayed at full quality without the
creation of artifacts, due to the reliability of TCP.

5 Bandwidth overhead

When transferring content across a network additional information is needed.
The amount of additional bytes spent depends on the protocols involved during
the transmission. Therefore, the purpose of this section is to compare the amount
of overhead caused by RTP streaming and HTTP Live streaming, respectively.
As test sequence for the measurements the highest available quality was cho-
sen, i.e. 480x320 pixels at 30 fps and 500 kbps. Actually, before considering the
overhead introduced through streaming, the additional amount of data caused
by container format multiplexing needs to be considered. Since RTP enables to
stream AVC and AAC in their raw bit stream format, there is no additional
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overhead for the Android OS. On the other hand, the raw bit streams need to
be multiplexed into the MPEG-2 transport stream format to enable HTTP Live
Streaming for the iPhone OS. The selected test sequence requires 596 kbps in-
cluding audio, increasing to 706 kbps after multiplexing and segmentation, i.e.
the final bit stream includes an overhead of about 18.5 %. The reason lies in the
stuffing of transport stream packets [10]. Overhead introduced during streaming,
due to network protocols, was measured under optimal network conditions. In
the case of HTTP Live streaming about 9000 TCP packets were observed. The
additional overhead introduced by the TCP header is 32 byte, resulting in a total
amount of about 23 kbps including the additional data required for requesting
the playlist file and the single HTTP requests for each segment.

In the case of RTP streaming 10300 packets were encountered. With a packet
header of 8 byte for UDP and 16 byte for RTP, this sums up to about 19.3 kbps
overhead. Note that the 16 byte for RTP is an average number, since the RTP
payload format headers for AAC and AVC use a different number of bytes.
Streaming with RTP involves additional traffic caused by RTCP. Actually, about
230 RTCP packets were measured, resulting in about 13 kB of data, considering
the 8 byte of UDP header and 48 bytes of data of an RTCP packet. Furthermore,
also the traffic caused by RTSP needs to be considered, which was about 4 kB.
That is, both RTCP and RTSP cause only insignificant overhead. At this point
it has to be mentioned that the streaming server only used fragmentation units
A and B (FU-A and FU-B)for packetizing AVC packets [3]. An single time
packet aggregation packet (STAP) implementation would have resulted in a
minor decrease of the overhead.

To conclude, without considering multiplexing, the overhead of both ap-
proaches is similar. Thus, the main amount of additional overhead on the iPhone
OS is the result of the necessary multiplexing.

6 Traffic shape and fairness

In this section we evaluate the behavior of both devices in case of scarcity and
rivaling traffic by limiting the available bandwidth to 1 Mbps and serving both
end devices simultaneously. The traffic characteristics under these circumstances
are depicted in Figure 10. The solid line describes RTP streaming, whereas the
dashed line shows the characteristics of HTTP Live streaming. Additionally the
total amount of traffic is depicted by the bold solid line. Furthermore, also the
request segment and segment deadline markers for HTTP Live streaming are
displayed. The streaming session for RTP is started first. After about 23 seconds
HTTP Live streaming is also started. Comparing both lines to the optimal case
in Figure 6, it can be seen that the traffic characteristics for HTTP Live stream-
ing are completely different, while RTP almost equals the optimal case. After
the end of the RTP session, HTTP Live streaming utilizes the full bandwidth to
gather the next segments which already fell behind the deadline. From the obser-
vation of these traffic lines it can be seen, that the RTP traffic treats the HTTP
Live streaming in an unfair manner. Although the playback by the Android OS



12 Michael Ransburg, Mario Jonke, and Hermann Hellwagner

0 20 40 60 80 10 0 12 0 14 0 16 0

200

0

20 0

40 0

60 0

80 0

10 00

12 00

Traffic fairness
480x320px, 30fps, 500kbps

An droid  OS iPhone  OS to tal 
segment  de ad line request  segme nt  

t [s]

ba
nd

w
id

th
 [k

b]

Fig. 10. Traffic fairness under bandwidth limitation of 1Mb/s

has shown artifacts, caused by delayed packets due to network congestion, the
traffic shape did not change in a noticeable extent. In contrast, the available bit
rate for the iPhone OS adjusts to the bit rate required by the Android OS. This
is due to the congestion control mechanisms implemented in TCP but not in
UDP. A remedy to this problem could be the usage of the Datagram Congestion
Control Protocol (DCCP) [11] instead of UDP, which provides congestion con-
trol mechanisms for unreliable traffic. In fact, measurements in wireless network
environments performed by de Sales et al. [12] have shown that DCCP and TCP
behave fair to each other, as long as no UDP flow is involved.

7 Conclusions and future work

Our evaluation shows the differences of the two streaming approaches used in
iPhone OS and Android OS. We evaluated the startup delay in case of increas-
ing packet delay and packet loss. This showed that the startup delay increased
linearly for Android OS and exponentially for iPhone OS in case of increasing
packet delay. By injecting packet loss we noticed a minor increase in startup
delay for the iPhone OS, while the Android OS was not affected at all. Next,
we evaluated the playback characteristics under the same network impairments.
This showed that for high packet delay of 250ms the playback on the iPhone OS
is non-continuous, while the Android OS was nearly unaffected and showed no
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playback disruptions. Packet loss, on the other hand, caused disruptions in the
video on the Android OS, while having no impact on the video quality on the
iPhone OS. We then analyzed bandwidth overhead, where the MPEG-2 trans-
port stream format required by HTTP Live streaming mechanism of the iPhone
OS caused a substantial overhead. Finally, we evaluated traffic shape and fair-
ness, which showed the typical greedy behavior of RTP vs. HTTP.

Both approaches have their strengths and weaknesses. However, the HTTP
Live streaming mechanism comes with the advantage that there is no dedicated
streaming server needed. Additionally, the problems related to NAT traversal
[13] are avoided. Finally, the HTTP-based approach comes at the advantage
that existing Content Delivery Networks (CDNs) can be used to distribute the
content in a very scalable way. It therefore promises to be a more lightweight
and scalable solution, which will certainly help its adoption by industry.

In our future work we plan to evaluate the special characteristics of the wire-
less network more closely. Additionally, we would like to extend our evaluations
based on the just mentioned advantages of the HTTP Live streaming approach,
i.e. NAT traversal and scalability.
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