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Abstract—The popularity of computer games is enormously
high and is still growing every year. Despite the popularity of
gaming, the networking part of computer games relies on decade
old technologies, which have never been intended to be used for
low latency communication and are often the cause for overloaded
and crashing game servers during peak hours. In order to
improve the current state-of-the-art technologies, research in the
networking field has to be conducted, but is challenging due to
the low availability of up-to-date datasets and network traces.
Modern networking solutions of computer games try to take the
players’ activities as well as geographical closeness of different
players in the virtual world into account, in order to achieve a
high user satisfaction while keeping the network activity as low as
possible. In this paper, we analyze the Battle Royale game mode of
Fortnite as an example for a popular online game with demanding
technical requirements with respect to networking. Based on the
results of our analysis, we extrapolate player movement patterns
as well as network traces, which can be used to study how to
improve our current networking technology for online gaming,
and to investigate possibilites to replace it by novel networking
solutions, such as information-centric networking.

I. MOTIVATION

Computer games are a huge market and especially e-sports
is on the rise. Esport charts (ESC) reported a peak in e-sports
viewers of over 125 million in Oct. 20171. The broad impact of
gaming is also reflected by the progress that has been made
in hardware and software. Real-time rendering hardware is
affordable for many people and a broad range of tools and
middleware like game engines allow game developers to focus
on creating games rather than solving technical problems.
However, regarding networking aspects, games still rely on
decades-old techniques. Most games transmit their time critical
information, like player location or world updates, via UDP
and use TCP for matchmaking and information presented in
context of the game itself [1]. Neither of these protocols was
designed for games. That shows at every big game launch,
where servers are crashing under the pressure of hundreds of
thousands of players and network nodes struggle to keep up.

Novel information-centric networking (ICN) architectures
utilize features such as inherent multicast support and name-
based information retrieval, that seem to offer interesting
support for multiplayer online games. In accordance with other
authors (e.g. [2]–[4]), we hypothesize that ICN architectures

1https://esc.watch/, last visited 2018-02-26

may be better suited to fulfill the requirements of multiplayer
online gaming. The motivation for this paper is to provide the
basis for research on using the characteristics of Named Data
Networking (NDN) [5] for multiplayer online games. NDN is
one implementation of an ICN and will be investigated w.r.t.
redundancy and network latency reduction for games.

The goal of our work is to provide means to test new
networking approaches in the context of online gaming. In
this paper we focus on a the popular game Fortnite and
analyze it regarding its network traffic, game mechanics that
influence networking, and the average player behavior. Based
on our observations we extrapolate game network traffic in
combination with simulated user behavior that can be used to
simulate the progress of this game for the players involved
as well as the server. In addition, we provide the scripts for
researchers to simulate additional game rounds and adapt them
to their needs.

II. RELATED WORK

Network traffic produced by online gaming often shows the
characteristic of a thin stream, which means that the packet
sizes are far below the maximum segment size of TCP and the
interarrival time between packets is high. Petlund et al. [6]
discovered that the use of TCP for delivering thin streams
can lead to delayed data delivery due to TCP’s congestion
control mechanism and proposed modifications that allow
faster recovery from packet loss and thereby reduce network
latency.

An increased interest in the NDN architecture as an
information-centric alternative to current TCP- and UDP-based
solutions has emerged in recent years. The online multiplayer
games Matryoshka [4] and Egal Car [3] demonstrated the
possibility to use ICN architectures for online gaming. G-
COPSS [2] is a system for online gaming that is based on the
novel NDN architecture. The authors utilize an information-
centric subscription model to request game data of opponents,
which are geographically close in the virtual world. G-COPSS
outperforms IP-based approaches in terms of traffic reduction,
achieved by the inherent multicast functionality of the under-
lying NDN architecture and in terms of latency, because client
updates are sent in a peer-to-peer manner from client to client
without making a detour over a central server.

As we can see in the case of G-COPSS, not only network
traces, but also the influence of player positions can be used978-1-5386-6098-0/18/$31.00 c© 2018 IEEE



to improve state-of-the-art network solutions. However, G-
COPSS relied on randomized static player positions instead
of modeled user behavior and player movements. Existing
network traces, such as [7]–[9] are available, but do not
provide information about user behavior.

III. ANALYSIS OF GAME DATA

Due to the broad market of video games, there is no most
popular game or game genre. Instead, a lot of different genres
and game types are popular in one way or another. For our
experiment, the first obvious choice would be e-sports, where
amateurs and professionals compete in different games and
there is an organized structure of games, tournament and
ranking systems. But in e-sports game matches and tourna-
ments typically run in a controlled environment to reduce the
influence of computer networks, so it’s not a real life scenario.
Moreover, these games typically let small groups compete with
each other, like 4 vs. 4 or 5 vs. 5 players. Massive multiplayer
online games (MMOGs) feature a lot of players, but are very
hard to simulate in terms of communication behavior as they
split the game world onto multiple servers. It is thus hard to
simulate server traffic based on client observations, and there
is no clear indication of start and end of a game round, rather
a constant flow with temporary peaks. Our aim was to find a
game that is (i) currently very popular, (ii) runs on a single
server instance, (iii) has a very structured game progress with
a clearly defined start and end, and (iv) is played by a large
number of people within the same round.

A. The Battle Royale Game Genre

The Battle Royale genre is a good example satisfying
the conditions mentioned above. Up to one hundred players
compete in a king-of-the-hill like game, where players start in
a large game world and continue to eliminate each other as
the game world gets consecutively smaller and smaller. The
classical first person shooter mechanics are extended by trap
setting and multiple construction options to build fortifications
and lookouts. The game ends when there is only one player
left standing. There are also group based game modes, which
work basically the same way, but two or more players team
up to help each other and win the game together.

A game round starts in a lobby, where players are matched
to build a group of up to one hundred. As soon as the clients
are in sync the game starts with a flyover that delivers the
players’ avatars to the game map. Players decide individ-
ually when to jump, where to skydive and when to apply
the parachute, and thereby select the spot where they land.
Initially every player starts with just an axe, a hammer or a
similar tool to tear down buildings and collect raw materials.
Weapons, ammunition, traps, shields and other equipment are
scarce resources distributed over the map and the type and
strength of the weapons is randomly assigned for each round.
After gearing up, players either actively head out to find and
eliminate other players or try to hold out as long as possible
by keeping a low profile.

The progress of the game is driven by a contracting storm.
The players have to stay in the eye of the storm, otherwise
they lose health points. Based on a pre-defined schedule, the
storm contracts and leaves a smaller and smaller circular area
for players to meet. At some point the world is so small that
ultimately the remaining players have to confront each other.
After players are eliminated, they cannot participate actively
in the game, but they can be spectators seeing through the
eyes of one of the remaining players to observe the rest of the
game.

Currently, there are two major games in the battle royale
genre. PlayerUnknown’s Battlegrounds (PUBG), developed by
PUBG Corporation, was the first battle royale game with
a large audience and extensive media coverage. Fortnite,
developed by Epic Games and People Can Fly, started out
as a co-op survival game and later added the battle royale
mode after realizing general interest in the battle royale genre.
Fortnite has superseded PUBG2 in terms of popularity with up
to 3.4 M concurrent players3.

With our aim to simulate the network traffic on both server
and client sides for a game, we decided to investigate Fortnite
Battle Royale further and monitored the network traffic as
well as typical game progressions and players’ behavior.
From client-based network monitoring we could infer how
the communication from a single client to the server and back
looks like and from the game progression and player behavior
monitoring we could infer the number of players in the game
at a given time point as well as their probable position.

B. Analysis of Network Traffic

The source for our network traffic analysis was acquired by
capturing the network traffic of Fortnite on a single client using
WinDump4. WinDump is the Microsoft Windows version of
the Unix tool tcpdump5. Overall, the traffic of ten game
rounds was captured. While analyzing the captured network
traffic streams, we saw that Fortnite only uses UDP traffic for
delivering real-time game data. At the same time, we extracted
game information, such as the current game phase as well as
the number of active players from captured screencasts. The
monitored network traffic along with game information from
one game is visualized in Figure 1.

We define outgoing traffic as traffic which is produced on
the client and sent to the server. The number of outgoing
packets/second is visualized by the red line; the average
outgoing payload/packet is visualized by the yellow line. The
number of outgoing packets stays relatively stable during the
whole game. The average payload size depends on the player’s
game state and is about 43.9 bytes/packet during active play
and lower while spectating another player. We further observed
large outgoing payload directly after the death of the avatar,

2More than 2.7 M concurrent players peak on PC according to http://store.
steampowered.com/stats/, last visited 2018-02-26

3https://www.epicgames.com/fortnite/en-US/news/
postmortem-of-service-outage-at-3-4m-ccu, last visited 2018-02-26

4https://www.winpcap.org/windump/, last visited 2018-02-26
5https://www.tcpdump.org/, last visited 2018-03-13
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Fig. 1. Recorded network traffic of one game round on a single client, visualized together with the number of active players and game phases. The vertical
dashed line shows the transition from active play to spectation of other players.

which may contain information about the player’s items which
are dropped into the game world immediately following the
avatar’s death. Another interesting observation is that even if
the client acts as spectator, with no possibility to influence the
game further, the average number of packets sent by the client
stays the same as during the active play.

Incoming traffic is defined as traffic which is sent from
the server to the client. The average number of incoming
packets/second is visualized by the green line in Figure 1;
the average payload size by the violet line. We noticed that
the number of incoming packets/second is influenced by the
number of active players. In the beginning of the game, only
about 10 packets/second arrive. The number of packets is
increasing until only 50 active players remain in the game,
when an upper bound of 19.7 packets/second is reached. The
average incoming payload size is dependent on the game
activity. During the flyover phase, where players jump out of
the flying bus, a lot of activity is concentrated on a relatively
small area in the game world. This results in large packets
in the beginning of the game, which get much smaller when
more and more players have landed on the island, and stays
relatively stable without encounter. During an encounter of
two players, the average payload size increases significantly.
Whether the player is actively playing or spectating another
player makes no difference with respect to the characteristics
of incoming traffic. If the spectated player encounters other
players, the average incoming payload size increases in the
same fashion as it does during active play. Details on the
packet level network characteristics are given in Table I.

C. Analysis of Player Movements

Currently the gaming culture is obsessed with live streaming
of games. There are people, called streamers, who play games,
comment on their play and interact with the audience by
reading chat messages and verbally responding to them. These
live game streams can reach thousands of viewers and popular
streamers make their living through sponsorship contracts and

TABLE I
OBSERVED PACKET LEVEL NETWORK CHARACTERISTICS OF FORTNITE

Payload Size [bytes] Packets/Second
avg. (std. dev.) avg. (std. dev.)

Outgoing Normal Play 43.9 (7.97) 35.9 (4.27)
Spectation 19.4 (2.65) 35.9 (4.27)

Incoming Low Activity 81.57 (34.47) 19.7 (1.6)
Encounter 267.65 (57.96) 19.7 (1.6)

Fig. 2. Heat map from player movements in Fortnite Battle Royale generated
automatically from more than 36 hours of game streams.

advertisements in the streams. Due to the high availability of
live stream recordings, it was easy to obtain more than 36
hours of material to analyze the game progression and player
behavior.

As in many first person shooter games, Fortnite offers a mini



map in a corner of the screen for orientation of the player.
The mini map is just a small portion of the overall game
map centered on the player’s position. The player’s viewing
direction and position are indicated by a triangle in the center
of the mini map. By using local contrast enhancement and
template matching algorithms, we can match the cutout of the
mini map from game videos to an image of the overall game
map and thereby find the current position of the player in
the game world. We sampled the positions of players every
second. With the positions of players we were able to create
a heat map of player positions over different players and
different game rounds. It can be seen from the heat map in
Fig. 2 that players concentrate around special points of interest,
e.g., locations called Tilted Towers or Retail Row, and that they
are focusing rather on the center of the map than on the edges.
This behavior comes from the paradigm of the contracting
storm, as even with a random center of the storm the path to
the center of the storm is more likely to be short if you are in
the center of the map.

The storm itself follows the same pattern in every game. Af-
ter an initial phase of jumping (around 30 seconds, depending
on the route the bus takes), in which players are allowed to
jump from the flying bus, the storm is forming for 60 seconds,
where players are not influenced by the storm at all. After
that the game is alternating between storm and contraction
phases, which both get shorter as the game progresses. Within
a storm phase, the players can see the next eye of the storm.
Within a contraction phase, the storm is shrinking and players
eventually have to move to stay ahead of the storm. In our
observations the storm and contraction phases for the games
were constant with the sequence of phases being in seconds:
200, 180, 150, 90, 120, 90, 120, 60, 90, 40, 90, 30, 60, 25,
60 and 25 (contraction phases indicated as underlined text).

IV. EXTRAPOLATION OF GAME DATA

Our game data extrapolation results in various artifacts. We
extrapolate player movements and encounters, which results in
a decreasing number of active players as well as the network
traffic generated during the game. The process of extrapolating
game data can be structured in three phases. In the first phase,
we generate the game world, including the successive positions
of the eyes of the storm. Based on this information, we
extrapolate movement patterns and encounters for 100 players.
In the last phase, we use the movement patterns to extrapolate
network traffic, which follows the characteristics of the real
game traffic. In the following, each of the steps is explained in
detail. We note that we provide additional insights into the pro-
cess of extrapolation by making all our tools available as open-
source software (https://github.com/phylib/FortniteTraces).

A. Extrapolation of Game World Properties

The game world in Fortnite Battle Royale has a fixed map
with a single island in its center. In addition, the map is divided
into 10× 10 squares, which can be used for orientation. Our
observations showed that the eye of the storm, which is used
to push the game’s progress, is randomly placed on the map

Position Target

± 40°

Position‘

Position‘‘

± 40°

± 40°

Fig. 3. Illustration of periodic course recalculation towards the current target

in each game round. In the course of a game round, the eye
is subject to slight movement and shrinks according to a fixed
shrinking pattern. The initial eye of the storm is allowed to
exceed the map borders. In our observations, a maximum of
15% of the first eye’s diameter can be outside the map, which
was considered when generating the eyes of the storm. The
following diameters of the eyes of the storm were observed
and implemented as 65%, 32%, 16.9%, 7.9%, 4%, 2% of the
map size.

B. Extrapolation of Player Movements

To generate the players’ movements, we used the data
visualized in the heat map in Fig. 2. In a real game, players
are able to land anywhere on the island, which also holds true
for our extrapolated starting positions. We assume, that it is
possible to land anywhere on the island, but more likely to land
on a popular spot. The likelihood to land on a specific point on
the island is dependent on its observed popularity. For instance,
it is seven times more likely that an extrapolated player
movement starts on a spot if it counts among the most popular
one’s, than on a spot where no movement was recorded.
Furthermore, areas with high popularity were extracted as
Points of Interests (PoI). For that purpose, locations with a
popularity under a certain threshold were dropped in a first
step. In a second step, the resulting areas were eroded and
dilated in order to eliminate popular regions of insufficient
size. The resulting regions are then used as PoIs.

Basically, there are three possibilities how a player is mov-
ing in the map. If it is outside the eye of the storm, it moves
towards the eye. Otherwise it selects a geographically not too
far away PoI inside the eye of the storm and moves towards
the selected PoI. In the initial phase, where the location of
the first eye of the storm is unknown, a PoI in the vicinity is
selected. While moving towards a target, either the eye of the
storm or the selected PoI, course deviations in the range of
± 40 degrees are allowed. Despite these deviations, we can
ensure that the player reaches its destination, by periodically
recalculating the walking direction, as illustrated in Fig. 3.

Another aspect that has to be considered when extrapolating
player movements is the number of remaining players over
time. The time between the death of two players can be
modeled by means of exponentially distributed waiting times,
where the corresponding parameter λ, which represents the
expected number of events (deaths) per second, varies over
time. In the beginning, the expected waiting time is short
which results in a relatively high value for λ. The fewer players
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Fig. 4. Extrapolated network traffic for one player, including the number of active players during the game

remain, the longer the expected waiting time, which results in
decreasing λ values. We estimated the expected number of
deaths per second for different game phases based on our
observations and verified the plausibility of our model by
comparison of it’s output with real game data. The player who
dies is selected by searching the closest pair of points among
all extrapolated player positions, because we assume a strong
correlation between geographical closeness of players in the
virtual world and their deaths.

C. Extrapolation of Network Traces

As described in Section III-B, game data is only sent
between server and client, so there is no client to client
communication, and only uses the UDP protocol. These facts
ease the generation of network traces. Basically, for each client
only two data streams need to be extrapolated, an incoming
stream from the server to the client, and an outgoing stream
from the client to the server. We generate data streams for 100
players per game, beginning with the start of the game and
ending with the end of the game, which means that only one
player is remaining. To determine the times of encounters and
deaths, we use the extrapolated player movements from the
previous section. After the player, for whom the current trace
is generated, is eliminated, the player then acts as spectator
and watches the game of his superior opponent until he dies,
where the view is again switched to the view of the superior
opponent, which is repeated until the end of the game.

The characteristics of a client’s outgoing network traffic are
modeled using normal distributions, with parameters matching
the mean payload size, average number of packets/second
and the given standard deviations of the analyzed network
traces from Section III-B. As observed, the payload size of
outgoing packets is higher during the active game. Modeling
incoming traffic is more tricky. In the beginning of the game,
the average number of incoming packets/second is low and
steadily increasing until only 50 active players are left in
the game. We modeled this ramp-up by linear interpolation,

starting with 10 packets/second in the beginning of the game.
As soon as the long term average of 19.7 packets/second is
reached, the number of packets/second stays stable, because
only a few anomalies were observed in the collected network
traces. The appearance of the anomalies is modeled using
an exponential distribution with 15 seconds as expected time
between two anomalies. The number of packets during an
anomaly is modeled using a normal distribution. For modeling
the incoming payload size, we also used a normal distribution.
We differentiated between normal play without encounter
of other players, and encounters, which are based on the
extrapolated player movements. The observed ramp-down in
the beginning of the game was modeled using a normal
distribution, with the mean payload size linearly interpolated
between 550 bytes/packet in the beginning of the game down
to the observed mean payload size for playing without en-
counters. A visualization of the extrapolated network traffic
for one player is visualized in Fig. 4.

Fig. 5 shows the calculated server traffic load obtained from
the extrapolated client network traces of a single game. Incom-
ing traffic, sent from the clients to the server is visualized in
green, outgoing traffic in red. Solid lines visualize traffic load
when assuming that players leave the game after five seconds
as spectators, i.e., after their deaths; dashed lines visualize the
traffic load when each player stays in the game until the end of
the game. The solid blue line visualizes the decreasing number
of active players.

When focusing on the outgoing traffic including spectators
(dashed red line), we can observe bandwidth peaks which get
higher the longer the game lasts. These peaks arise during
encounters of two players in the game. The longer the game
lasts, the more spectators view the game of the same active
player and basically receive the same game data, whereby
traffic peaks arise at the same time for each spectator and
sum up to bandwidth demand peaks. Efficient multicasting, as
provided by novel network architectures such as NDN, could
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Fig. 5. Extrapolated traffic on the game server during a single game round, with players spectating until the end of the game (dashed lines), and leaving the
game after five seconds as spectators/after their deaths (solid lines).

eliminate redundancies in traffic and thereby those peaks.
This would lead to lower network overhead and to a lower
server-side bandwidth demand. Bandwidth peaks of the solid
red line are smaller, because fewer spectators are observing
the game, which means that hardly any data has to be sent
redundantly. Ultimately, we hypothesize that introducing an
efficient multicasting system could eliminate the difference in
bandwidth consumption of the dashed and solid red lines.

V. CONCLUSION

In this paper, we conducted a client-side network analysis of
the online game Fortnite Battle Royale and built links to game
events, such as encounters of two players in the virtual world,
that change networking behavior. In addition, we analyzed the
playing behavior of streamers and used the insights to extra-
polate player movements for 100 players per game. Based on
the insights of the network analysis and the generated player
movements, we extrapolated network traces for all players in a
game. Scripts to extrapolate movement and network traces are
published as open source software along with sample traces
on GitHub (https://github.com/phylib/FortniteTraces) in order
to allow other researchers to use them for their research and to
extend them for their needs. A refinement of the extrapolation
by using stochastic processes instead of probability distri-
butions is planned as future work to model time-dependent
characteristics more accurately.

The game at hand, Fortnite, as well as many other games
have strong formal constraints based on the game mechanics
and game rules. We assume that many of these games can
be analyzed and models can be derived in a similar way as
we did in this contribution. Moreover, we saw that games of
the first person shooter genre have similar network packet
characteristics [1]. Thus, we believe that other games with
game mechanics and rules similar to Fortnite behave similarly
also from a general networking point of view. Our analysis
indicated once more that player encounters influence the
network traffic. While we are not able to simulate human
behavior convincingly, the effects of such encounters on the
network can be modeled. While we acknowledge that the
introduction of new network protocols is a long term venture,

we strongly believe that analyzing the use of the network in
real life cases like online gaming and research on near real
life network traffic are critical and necessary steps towards a
more robust and efficient Internet architecture.
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