

Knapsack Problem-based Piece-Picking Algorithms for
Layered Content in Peer-to-Peer Networks

Michael Eberhard1, Tibor Szkaliczki2, Hermann Hellwagner1, László Szobonya2, and Christian Timmerer1
1ITEC, MMC – Klagenfurt University, Austria, firstname.lastname@itec.uni-klu.ac.at

2eLearning Department – Computer and Automation Research Institute of the Hungarian Academy of Sciences, Hungary,
sztibor@sztaki.hu, szobonya@sztaki.hu

ABSTRACT
The distribution of layered content over peer-to-peer networks
becomes more important today as the users are consuming the
content on terminals with various display capabilities and
different network connections. For single-layer content
distribution, the piece-picking algorithm only needs to ensure that
content pieces are downloaded in time for display. When layered
content is distributed over a peer-to-peer network, the piece-
picking algorithm needs to be modified to ensure that the best
possible quality is displayed while all desired pieces still have to
be received before their deadline expires. In this paper, the piece-
picking problem for layered content is analyzed and a number of
piece-picking algorithms for layered content based on the
solutions for the knapsack problem are presented. Furthermore, an
evaluation of these algorithms is performed and possible
applications are discussed.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Algorithms – Analysis of
Algorithms.

General Terms
Algorithms, Measurement, Performance, Design.

Keywords
Knapsack Problem, Layered/Scalable Content, Piece-Picking,
Piece Utility Calculation.

1. INTRODUCTION
As the popularity of streaming multimedia data over peer-to-peer
(P2P) networks is constantly increasing nowadays, the users have
access to network connections with varying bandwidth
capabilities and are consuming the content on diverse terminals.
Thus, it is important to provide the content in a number of
different qualities to ensure that the user can consume the content
in a suitable quality. The traditional approach for this problem is
to provide the same content in different qualities encoded in
different files. Although this approach works fine for most cases,
it makes the sharing process less efficient, as only users
consuming exactly the same quality can share data with each
other. Solutions for layered video coding, where the different
qualities are provided within a single bitstream, are better suited,
as all peers interested in this content can exchange the base layer,
and the optional enhancement layers can be shared with all peers
interested in the same or higher quality. Additionally, the support

of layered codecs can significantly reduce the start-up delay when
streaming content over P2P.
When content is distributed over P2P networks, the piece-picking
algorithm ensures that the desired pieces are downloaded before
their deadline expires. This is especially important for live
streaming or Video on Demand (VoD) scenarios, where it is
essential that the pieces are received in time for display in the
video player. For the distribution of layered content, the piece-
picking algorithm needs to be modified to consider, in addition to
the deadline, the layer of the piece. The main goal of the layered
piece-picking algorithm is to ensure that all pieces are received in
time for playback while trying to provide the best possible quality
for the available bandwidth at every time instance. Additionally,
frequent quality switches should be avoided as such switches are
usually more disturbing for the user than watching the video at
slightly lower, but constant quality. The problem of finding the
best trade-off between smooth playback and displaying the best
possible quality, while also trying to avoid quality switches,
represents a very challenging optimization problem. In this paper,
a number of different algorithms for the piece-picking of layered
content that address this optimization problem are described and
evaluated. Although the algorithms are codec-agnostic, the
Scalable Video Coding (SVC) extension of the Advanced Video
Coding (AVC) standard [1] has been utilized for our
implementation work.
To find a feasible piece-picking algorithm for layered content,
several approaches have been investigated in [2]. The piece-
picking problem is very close to the knapsack problem (KP) [3],
which is a well-known problem in combinatorial optimization.
Therefore, the algorithms for the KP including solutions utilizing
dynamic programming and greedy methods can be adapted to
solve the piece-picking problem. In the evaluation section, the
knapsack-related algorithms are evaluated and compared to a
baseline algorithm using the provided simulation framework.
The remainder of this paper is organized as follows. In Section 2
the related work is discussed. Section 3 provides an introduction
to the layered piece-picking problem. In Section 4 a detailed
description of the piece selection algorithms addressed in this
paper is provided. Finally, in Section 5 the presented piece-
picking algorithms are evaluated and compared to each other,
while Section 6 concludes the paper.

2. RELATED WORK
The distribution of scalable content in P2P systems has been a
popular research topic in recent years. There are already a number
of P2P systems with SVC support and some of them, like
LayerP2P [4], propose very well defined solutions for the
distribution of scalable content in P2P systems. However, these
P2P prototype systems are implemented from scratch with the
intention to support scalability, and do not offer compatibility to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AVSTP2P’10, October 29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-4503-0169-5/10/10...$10.00.

already existing P2P systems which provide a large user base and
huge amounts of content. The focus of the work presented in this
paper is to integrate the support of layered content into an already
existing P2P system, the NextShare system [5], which is
backwards compatible to the Bittorrent protocol. Thus, the
architectural choices were made and the algorithms were
developed taking the requirements of the Bittorrent protocol into
account while ensuring that the algorithms can be easily
integrated into a codec-agnostic Bittorrent-based P2P system.

3. LAYERED PIECE-PICKING PROBLEM
In this section the layered piece-picking problem with regard to
the NextShare P2P system [5] is described. The NextShare P2P
system is a fully decentralized P2P system which is based on a
modified version of the Bittorrent protocol (supporting live
streaming and VoD). The system is agnostic of the transmitted
content and is intended for sharing all kinds of data and
audiovisual content. Thus, when investigating different piece-
picking algorithms, it had to be taken into account that the
algorithms need to be integrated into an existing Bittorrent-based
P2P system, which imposes a number of requirements. When
content is distributed in Bittorrent, it is split into pieces of fixed
size. To perform a mapping of the layered content to pieces of
fixed size, the audiovisual content is firstly provided at a constant
bitrate. The content is then split into pieces which contain a fixed
number of frames for each layer. Depending on the bitrate of the
layers, the size of the pieces for each layer can vary. Thus, the
pieces for each layer can be mapped to a different number of
actual Bittorrent pieces. During the piece-picking process the
mapping is still considered, i.e., if one piece is selected for
download all corresponding Bittorrent pieces need to be selected
for download. Additionally, only the layer-based scalability of
SVC is considered initially, as a client can only decide on piece-
level which quality to download. A detailed description of the
architectural choices for the integration of layered content in the
NextShare architecture and more information on the layer and
piece structure within NextShare are provided in [5].
As mentioned before, the piece-picking algorithm for single-layer
content and live streaming or VoD scenarios assigns the priority
only based on the deadline of the pieces. For layered content, the
layer of the pieces also needs to be considered. While the priority
settings based on the deadline remain the same as for single-layer
content, the layer-based priority settings assign a higher priority to
lower layers. The reason for this assignment is that higher layer
pieces depend on lower layers for decoding. In addition to the
deadline and the layer, also the available pieces from the previous
timeslots need to be considered to avoid frequent quality switches.
Although the calculation of the piece utilities is rather complex,
such a calculation only needs to be performed for pieces with a
deadline in the near future (the pieces within the sliding window,

described below). For the pieces with a later deadline, the rarest-
first strategy as employed in the original Bittorrent protocol is
usually the best choice. An illustration of such a sliding window is
provided in Figure 1.
In Figure 1 the rows illustrate the layers and the columns
represent the timeslots. It should be noted that the size of the
timeslots is constant, as each piece contains a fixed number of
frames. The range of the sliding window is illustrated by the
rectangular border. The numbers in the cells represent the
download status, i.e., 1.0 indicates that the piece has been
successfully downloaded and 0.0 indicates that the download has
not started yet. As mentioned before, the cells in the sliding
window represent pieces, which can be mapped to a different
number of actual Bittorrent pieces depending on the bitrate of
each layer. In the situation illustrated in Figure 1 the piece-picking
algorithm has to decide which pieces need to be downloaded for
the upcoming timeslots t+1 to t+8. When taking this decision, the
algorithm has to find the best trade-off between smooth playback
(no freezing or quality switching) and trying to provide the best
possible quality to the user. Thus, the algorithm could decide to
download the base layer pieces for t+7 and t+8 first, to avoid
player freezing even if the network conditions get worse in the
future. Another possibility would be to focus on downloading the
second enhancement layer for t+5, and subsequently the first and
second enhancement layer for t+6, to ensure that the pieces
required for the current playback quality arrive in time. If the
network conditions have improved over the last time instances,
the algorithm might even decide to increase the current playback
quality, e.g., by downloading the third enhancement layer for t+1
and t+2. When actually applied, the algorithm will have to
consider all of these possibilities and find the best possible
solution for the current network conditions and user preferences.
The initial filling of the sliding window is performed during the
start-up phase. The start-up phase consists of a specific number of
timeslots (usually around half or all of the timeslots of the sliding
window) during which the initial download window is filled. The
start-up algorithm starts to download the pieces of the lowest layer
for all of its timeslots and then continues with the download of the
pieces for the next higher layers, as long as there is time
remaining in the start-up phase. After the start-up phase is
finished, the highest layer for which all of the pieces within the
initial download window have been downloaded is taken as the
initial target download quality.
In general, all pieces within the sliding window that are not
currently being downloaded are considered for the piece-picking
process. However, if pieces are unlikely to be received in time,
their download can be stopped even before the deadline expires.
Additionally, some pieces might be downloaded from more than
one neighbour peer if they have a high priority and the deadline is
already close. These special cases are considered when preparing
the piece queue for the piece-picking algorithms. The algorithms
subsequently select the most useful pieces from this queue.
It should be noted that additionally to the piece selection process,
all pieces selected for download have to be assigned to a suitable
neighbour peer for download. This peer selection process is
usually performed after the piece selection and assigns the
download capacity of the neighbour peers to the pieces according
to their utility (i.e., the piece with the highest utility is
downloaded from the neighbour peer with the best download
capability).

Figure 1. Sliding Window.

4. LAYERED PIECE-PICKING
ALGORITHMS
In this section different algorithms for solving the piece-picking
problem are investigated. Before the actual discussion of the
algorithms, the utility calculation, which is used by all algorithms,
and the KP, which provides the basis for the algorithms, are
described. An overview of the notations utilized in the following
sections of this paper is presented in Table 1.

4.1 Utility Calculation
The calculation of the utility value is used by the piece selection
algorithms in order to determine which pieces to select for
download (pieces with higher utility are downloaded with higher
priority). The utility of a piece is based on its layer, deadline, and
download probability. Thus, to calculate the utility of a piece, it is
firstly necessary to calculate the weighted download probability
that the piece is received in time and is useful (a piece is only
useful if the pieces of all lower layers at the same timeslot are also
available). The weighted download probability is defined as
follows:

𝑤𝑤𝑤𝑤𝑖𝑖 𝑗𝑗 𝑘𝑘 𝑙𝑙 = � �𝑤𝑤𝑝𝑝𝑖𝑖 𝑗𝑗 ′ 𝑘𝑘 𝑙𝑙�
𝑗𝑗 ′ ≤ 𝑗𝑗

× 𝑤𝑤𝑝𝑝𝑖𝑖−1 𝑗𝑗 𝑘𝑘 𝑙𝑙 (1)

To calculate the weighted download probability, the download
probability for the actual piece is multiplied with the download
probability for the pieces of all lower layers at the same timeslot.
The download propability pri j k l is calculated based on the
remaining download size and the estimated download bandwidth
from the neighbour peer (the estimated download bandwidth is
available in the NextShare P2P system). Additionally, the result is
multiplied with the download probability for the piece at the same
layer at the previous timeslot, which prohibits the algorithm to
implicitly switch to a higher quality. To avoid frequent quality
switches, switches to a higher quality are not performed by the
piece selection algorithm but are performed explicitly if the

bandwidth is higher than expected over a number of timeslots. For
this purpose a monitoring algorithm is used which utilizes the
excess bandwidth to fill the buffer for the higher layers. If the
bandwidth conditions remain constantly improved for some time,
the algorithm switches to the higher layer and provides the initial
buffer filling for the new layer(s).
The overall weighted download probability that summarizes the
download probability from all neighbour peers (if the piece itself
or pieces it depends on are downloaded from multiple neighbours)
is subsequently defined as

𝑤𝑤𝑤𝑤𝑖𝑖 𝑗𝑗 𝑘𝑘 = 1 −� �1 − 𝑤𝑤𝑤𝑤𝑖𝑖 𝑗𝑗 𝑘𝑘 𝑙𝑙′ �
𝑙𝑙′ ≤ 𝑧𝑧

 (2)

where z specifies the number of neighbour nodes and the product
in the formula specifies the probability that the piece is not
received in time from any of the neighbour peers.
Based on (2) the utility is defined as follows:

𝑢𝑢𝑖𝑖 𝑗𝑗 𝑘𝑘 =
𝑑𝑑𝑗𝑗 × 𝑤𝑤𝑤𝑤𝑖𝑖 𝑗𝑗 𝑘𝑘

(𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑘𝑘)𝛼𝛼 (3)

The general importance of a piece is defined as dj, which
describes its importance with regard to the distortion reduction.
The importance is defined based on the distortion reduction, as
each received piece reduces the distortion. Thus, the importance
for the base layer pieces is the highest, as these pieces provide the
biggest distortion reduction (from no content at all to the basic
quality). The distortion reduction importance is multiplied with
the weighted download probability and divided by its urgency (the
number of timeslots remaining to finish the download). Finally,
the parameter α is utilized to influence the ratio between the
urgency of the piece and its distortion reduction importance.
To sort the pieces according to their utility, the cost for the
transmission of a piece (the number of actual Bittorrent pieces it
consists of) also needs to be taken into account. Thus, the
weighted utility is defined as

𝑤𝑤𝑢𝑢𝑖𝑖 𝑗𝑗 𝑘𝑘 =
 𝑢𝑢𝑖𝑖 𝑗𝑗 𝑘𝑘

𝑐𝑐𝑗𝑗
 (4)

and is used to evaluate the utility of a piece based on the required
bandwidth. As the piece size is constant for each layer, the cost
values are only associated with the layers, but not with the
timeslots.

4.2 The Knapsack Problem
In this section we firstly provide a formal definition of the piece
selection problem and then relate it to the KP. The piece selection
at decision point tk can be defined formally as an optimization
problem as follows:
Maximize

�𝑢𝑢𝑖𝑖 𝑗𝑗 𝑘𝑘 × 𝑥𝑥𝑖𝑖 𝑗𝑗 𝑘𝑘 (5)

Subject to

�𝑐𝑐𝑗𝑗 × 𝑥𝑥𝑖𝑖 𝑗𝑗 𝑘𝑘 ≤ 𝑆𝑆 (6)

𝑥𝑥𝑖𝑖 𝑗𝑗 𝑘𝑘 ∈ {0, 1} (7)

𝑥𝑥𝑖𝑖 𝑗𝑗 𝑘𝑘 ≤ 𝑥𝑥𝑖𝑖 𝑗𝑗−1 𝑘𝑘 (8)

𝑥𝑥𝑖𝑖 𝑗𝑗 𝑘𝑘 ≤ 𝑥𝑥𝑖𝑖−1 𝑗𝑗 𝑘𝑘 (9)

Table 1. Notations.

ti the ith timeslot of the stream
tk the kth decision point during the download of the stream
lj the jth layer of the stream
nl the lth neighbour node (neighbour peer)
m the number of timeslots within the sliding window
n the number of layers within the sliding window
z the number of neighbour peers
pi j a piece at timeslot ti and layer lj
dj the distortion reduction importance of a piece at layer lj
pri j k l the probability at decision point tk that the piece pi j will be

downloaded until its timeslot tj from neighbour node nl
wpi j k l the weighted probability at decision point tk that the piece pi j

and all the pieces it depends on will be downloaded until its
timeslot tj from neighbour node nl

wpi j k the weighted probability at decision point tk that one of the
downloads of piece pi j and all the pieces it depends on will be
successful until its timeslot tj

ui j k the utility of the piece pi j at decision point tk
α the urgency weighting, used to influence the ratio between

urgency and distortion reduction of a piece
cj the required bandwidth for transmission of a piece at layer lj
S the maximum available download bandwidth
wui j k the weighted utility of the piece pi j at decision point tk
xi j k indicates whether piece pi j is selected for download at decision

point tk (1 if selected, 0 otherwise)

The aim of the piece selection process is to maximize the total
utility of the selected pieces (5). Constraint (6) expresses the limit
on the total cost of the pieces, i.e., the required bandwidth for the
selected pieces has to be lower than the available download
bandwidth. Each piece can be either selected or not selected for
download (7). Due to the dependency between the layers, a piece
can be selected only if the piece in the lower layer is also selected
(8). In order to avoid frequent quality switches, constraint (9) is
introduced to ensure that a piece can be selected only if the piece
in the preceding timeslot of the same layer is also selected for
download. The switching between layers is performed by the
monitoring algorithm, which only switches layers if the network
conditions remain changed over a longer period. However,
switches to lower layers are still implicitly possible, if there is not
sufficient bandwidth available to select higher layer pieces.

4.3 Dynamic Programming for the Knapsack
Problem
Exact solutions for the KP using dynamic programming have
already been studied extensively in the literature [6]. This solution
of the KP, from now on referred to as DP, does not consider the
precedence constraints among the pieces, i.e., that the piece is
useful only if the pieces it depends on are also selected. Its
running time is O(S⋅m⋅n).
When the DP algorithm is applied for piece-selection, it needs to
be ensured that only useful pieces are selected. This can be either
achieved when certain conditions regarding the utility and layer
structure are fulfilled or by considering the dependencies
explicitly in the algorithm. The conditions for the DP algorithm to
select only useful pieces are provided below.

�𝑡𝑡𝑖𝑖′ ≤ 𝑡𝑡𝑖𝑖 𝑎𝑎𝑎𝑎𝑑𝑑 𝑙𝑙𝑗𝑗 ′ ≤ 𝑙𝑙𝑗𝑗 � ⟹ �𝑢𝑢𝑖𝑖′ 𝑗𝑗 ′ 𝑘𝑘 ≥ 𝑢𝑢𝑖𝑖 𝑗𝑗 𝑘𝑘 𝑎𝑎𝑎𝑎𝑑𝑑 𝑐𝑐𝑗𝑗′ ≤ 𝑐𝑐𝑗𝑗 � (10)

(10) specifies that if a piece pi j depends on piece pi j’, its utility
cannot be larger than the utility of the piece it depends on. This
condition is in conformance with the definition of the distortion
reduction importance (dj), which specifies that pieces of lower
layers have a higher importance. Similarly, the condition specifies
that a piece pi’ j, which has an earlier deadline than a piece pi j,
always needs to have a higher utility. Again, this is in
conformance with the definition of the utility (3), where the
importance value is divided by the remaining timeslots (and fewer
remaining timeslots result in a higher utility).
However, regarding the layer costs, condition (10) is very
restrictive. To ensure that the optimal solution is found by the DP
algorithm, the costs for lower layers always have to be lower or
equal to the costs of the higher layers. Although this layer
structure condition is often fulfilled and the DP algorithm still
only selects useless pieces if no other pieces can be selected with
the remaining bandwidth, it limits the applicability of the
algorithm.
The DP algorithm can also be extended to select only useful
pieces by considering the dependencies between the pieces
explicitly. This can be done but its complexity then increases to
O(S⋅m⋅n2). More details on the extension of the DP algorithm and
its application to the piece-picking problem can be found in [2].

4.4 The Multiple-Choice Multi-Dimension
Knapsack Problem

The dependency between the pieces does not have to be explicitly
addressed if we consider the multiple-choice knapsack problem

(MCKP). In this problem, there are several groups of items, each
group representing one timeslot, and it is enough to choose only
one item from each group. One item represents the piece sequence
from the lowest layer piece which is still not downloaded to any
higher layer piece. This means that, when the algorithm starts,
there are as many items as layers for each group. The first item
contains only the base layer piece, the second item the base and
first enhancement layer pieces, etc., until the final item, which
contains the pieces for all layers. All the items belonging to the
same time slot form a group. Thus, we have to select at most one
item from each group and for each time slot.
A further extension of the MCKP is the multiple-choice multi-
dimensional knapsack problem (MMKP). In this case there are
several knapsacks (neighbour peers), each of them with limited
(download) capacity. The resource needs of the pieces can be
described as a vector because the piece can be downloaded from a
number of neighbour peers. The goal of applying the MMKP to
our problem is to optimize the value of the selected pieces while
none of the resources is exceeded. The main advantage of this
approach is that it can consider the individual resources
(bandwidth) provided by the neighbour peers instead of only the
overall bandwidth.
The MMKP can be easily mapped to the piece and peer selection
problems. Due to its performance and applicability the HEU
algorithm presented in [7] was selected for implementation.
Although the algorithm can deal well with the dependency
between the layers, it does not consider the dependency between
pieces in the subsequent timeslots (to avoid quality switches). Its
complexity is O(m2⋅(n-1)2⋅z), which already includes the peer
selection process.

4.5 The Greedy Algorithm
Based on the already existing greedy algorithms for the KP, a
greedy algorithm that specifically considers the requirements of
the piece selection was developed. Before the algorithm starts, the
pieces in the queue are ordered decreasingly according to their
weighted utility. This sorting of the pieces in the queue has a
complexity of O(m⋅n⋅log(max(m,n))). The pseudo-code
description of the piece selection algorithm is provided in
Algorithm 1:

inputs: q (piece queue), bw (actual free bandwidth)
outputs: r (list of pieces to download)

1. for all pieces in q
2. if cj < bw
3. add pi j to r
4. update bw

Algorithm 1. Greedy Piece Selection Algorithm.

The algorithm selects as many pieces as possible (depending on
the currently available free bandwidth) from the beginning of the
piece queue. As the pieces are sorted according to their weighted
utility, the most useful pieces are selected for download. In line 2,
a check is performed if the cost of the actual piece is lower than
the available bandwidth. The complexity of the greedy piece
selection algorithm without the initial sorting is O(m⋅n), but the
overall time complexity is O(m⋅n⋅log(max(m,n))).
Although the greedy algorithm does not explicitly consider the
dependencies between the pieces, it selects only useful pieces if
condition (11) is fulfilled:

�𝑡𝑡𝑖𝑖′ ≤ 𝑡𝑡𝑖𝑖 𝑎𝑎𝑎𝑎𝑑𝑑 𝑙𝑙𝑗𝑗 ′ ≤ 𝑙𝑙𝑗𝑗 � ⟹ �𝑤𝑤𝑢𝑢𝑖𝑖′ 𝑗𝑗 ′ 𝑘𝑘 ≥ 𝑤𝑤𝑢𝑢𝑖𝑖 𝑗𝑗 𝑘𝑘� (11)

Again, this condition is in conformance with the definition of the
distortion reduction importance (dj), which specifies that pieces of
lower layers have a higher importance, and the utility (3), where
fewer remaining timeslots result in a higher utility. Compared to
condition (10), which ensures that the DP algorithm selects only
useful pieces, condition (11) is less restrictive regarding the costs.
It only implies that the utility per cost unit is higher for lower
layer pieces, which should always be the case if the utility
parameters are selected correctly.

5. EVALUATION OF THE ALGORITHMS
In this section the evaluation of the KP-based algorithms (the DP,
HEU, and greedy algorithms) is presented. Firstly, the algorithms
are compared to a simple layered piece-picking algorithm (the
baseline algorithm), and the advantages of the KP-based
algorithms in comparison to the baseline algorithm are presented.
Additionally, the differences between the three KP-based
algorithms are discussed.
The performance of the algorithms described in Section 3 was
tested using the Oversim P2P simulation framework [8], which is
based on the OMNeT++ simulation framework [9]. In order to
support the protocols utilized within the NextShare P2P system
and the piece-picking algorithms, we modified Oversim and
implemented a new overlay (the NextShare protocol) and a
number of new applications (the piece-picking algorithms). All
algorithms were tested in a number of different settings where the
following parameters were adjusted: number and bandwidth of the
neighbour peers, number and cost of layers, sliding window size,
network conditions, and the utility parameters.
The simulations have shown that the performance of the KP-based
algorithms in terms of received video peak signal-to-noise ratio
(PSNR) is very similar, as these algorithms use the same utility
formula to assign priority to the pieces. Nevertheless, the
algorithms differ in terms of time complexity (and hence runtime).
Some additional differences between the KP-based algorithms are
also discussed at the end of this section.
However, to illustrate the advantages of the KP-based algorithms,
they are also compared to an efficient simple piece-picking
algorithm, the baseline algorithm. The baseline algorithm works
similar to the algorithm for the sliding window initialization. The
algorithm considers all pieces within the sliding window that are
not currently being downloaded and firstly selects the pieces from

the lowest layer, starting with the earliest deadline, and then
continues to select pieces from the next higher layer, and so on.
Although this algorithm is rather simple to implement it achieves
quite good results and is, thus, compared to the other algorithms
presented in this paper.
In Figure 2 the received video quality for streaming a video
sequence is illustrated as an example of the experiments with our
simulation framework. The results for the algorithms discussed
based on this test run have been similar over numerous test runs,
but due to space constraints a single test run is presented. The
video has a length of approx. five minutes (120 timeslots with 2.5
seconds each). It was encoded with three quality layers (500 kpbs,
800 kpbs, and 1000 kpbs) using medium-grain scalability (MGS).
For the encoding process our optimized reference encoder [5] was
used. The reason for using only quality layers and no spatial
layers for the test sequence was to allow an easy comparison of
the layers’ PSNR values.
The peer for which the results are presented is connected to four
neighbour peers. Every minute a change of the network conditions
occurs. At the beginning, the download bandwidth provided by
the neighbour peers allows to download the first two layers. After
the first minute, the download bandwidth decreases to allow the
download of only the base layer. After another minute, the
available download bandwidth is increased to allow the download
of all layers. With the start of the fourth minute the bandwidth
decreases to allow the download of two layers and for the final
minute the bandwidth increases to allow the download of all
layers.
The figure shows the PSNR of the received video for each of the
120 timeslots at a single peer. The PSNR for a piece is determined
by calculating the average of the PSNR values for all frames
contained within the piece. The buffer initialization phase takes 5
timeslots and the sliding window size is 10 timeslots (~25
seconds). The figure illustrates the differences of the KP-based
algorithms to the baseline algorithm. It should be noted to the
performance of the KP-based algorithms can differ in specific
cases (discussed later in this section), but for the settings of the
test-run their performance in terms of received video PSNR was
the same, as they use the same formula for utility calculation.
At the beginning of the streaming the network conditions allow to
download the first two layers. The baseline algorithm performs an
unnecessary quality switch at the beginning, as the buffer for the
lower layers was only partly filled during the initialization phase
(i.e., 5 of the 10 timeslots of the sliding window were filled) and
the baseline algorithm firstly fills the entire sliding window for the
lower layers before downloading the pieces for the desired
quality. On the other hand, the KP-based algorithms take the more
urgent deadline of the higher layer pieces into account and make
sure that no quality switch is performed. At timeslot 25 the first
decrease of the network bandwidth occurs. The baseline algorithm
reduces the quality immediately, as it only filled the buffer for the
lower layers. The KP-based algorithm can delay the quality switch
for a few timeslots due to the higher layer buffer filling, which
can be useful if there is just a short fluctuation of the network
conditions.
When the quality increases to allow download of all layers at
timeslot 49, the baseline algorithm increases the quality as soon as
it has enough bandwidth to download one higher layer piece,
while the KP-based algorithms fill the buffer and delay the step-
up in quality due to the algorithm monitoring the quality switches

Figure 2. Evaluation of the Algorithms.

(again, this avoids quality switches when there are only temporary
network fluctuations). However, the algorithms can subsequently
perform a switch directly to the highest layer. At timeslot 73 the
network bandwidth decreases to allow the download of two
layers, and at timeslot 97 the network bandwidth changes again to
allow the download of all layers. The behaviour of the algorithms
is similar to the previous changes of the network bandwidth.
The main advantages of the KP-based algorithms in the presented
test run are that unnecessary quality switch during initialization
are avoided, as the consideration of the deadline during the utility
calculation ensures that urgent pieces of higher layers are
downloaded in time. Additionally, the KP-based algorithms react
better to temporary bandwidth fluctuations due to the filling of the
buffer also for higher layers (if the network conditions get worse)
and the monitoring algorithm which avoids premature quality
switches to higher layers (if the network conditions improve). In
the presented test run the changes in bandwidth conditions
remained always constant for a minute, but if, e.g., the decrease in
bandwidth at timeslot 25 would only last for a few seconds, the
baseline algorithm would perform a quality switch that the KP-
based algorithms could avoid.
As the KP-based algorithms use the same formula for the utility
calculation of the pieces, the results are the same for the test
sequence in Figure 2. However, the KP-based algorithms differ in
some aspects. Firstly, the complexity of the greedy algorithm that
has been specifically developed for piece-picking is at
O(m⋅n⋅log(max(m,n))). The complexity of the DP algorithm is
O(S⋅m⋅n), or O(S⋅m⋅n2) if the dependency between the pieces is
considered. Finally, the complexity of the HEU algorithm is
O(m2⋅(n-1)2⋅z), but includes the peer selection process as well.
However, the peer selection process can be performed on its own
with a complexity of O(m⋅n⋅z), which makes the HEU algorithm
still rather complex in comparison to the other algorithms. First
runtime profiling results have confirmed what is already indicated
by the time complexity statements, i.e., that the greedy algorithm
can perform the piece selection significantly faster than the DP
and the HEU algorithm. It should also be noted that the runtime
performance of the KP-based algorithms depends strongly on the
sliding window size (and hence the number of pieces that need to
be considered for download).
In terms of received video PSNR the algorithms usually perform
similar, but the DP algorithm without considering the dependency
can download useless pieces, if the bitrate of the higher layer is
smaller than the bitrate of the next lower layer (i.e., there is only
sufficient bandwidth to download the higher layer piece, see (10)).
For the greedy algorithm, the condition for selecting only useful
pieces (11) is less restrictive and only requires that the utility per
cost unit is higher for lower layer pieces.

6. CONCLUSION
In this paper a number of piece-picking algorithms based on the
KP have been presented. These algorithms have been well
investigated in combinatorial optimization for some time and find
the solution for an optimization problem onto which the piece-
picking problem can be mapped. We have shown that these
algorithms can be applied to the piece-picking problem
considering the requirements of a Bittorrent-based system. The
greedy algorithm can perform as well as the other KP-based
algorithms at clearly lower complexity. In the evaluation section,
a comparison of the KP-based algorithms to a baseline algorithm
that is often applied in the context of layered piece-picking has

been presented, in which the KP-based algorithms have shown a
better performance during initialization and when quality switches
occur.
Due to space constraints the evaluation of the KP-based
algorithms was limited to the presentation of a single test run that
is representative for the results gathered during many experiments
in our simulation framework. In the future, the proposed
algorithms will be integrated into our NextShare P2P system and
extensively tested in our project’s living lab [10], and a more
detailed evaluation will be performed.

7. ACKNOWLEDGMENTS
This work is supported in part by the European Commission in the
context of the P2P-Next project (FP7-ICT-216217). Additional
support of the Hungarian Science and Technology Foundation
(AT-2/07), the Austrian Agency for International Cooperation in
Education and Research (HU-6/08), and the Hungarian National
Science Fund and the National Office for Research and
Technology (Grant No. OTKA 67651) are gratefully
acknowledged.

8. REFERENCES
[1] Schwarz, H., Marpe, D., and Wiegand, T. 2007. Overview of

the Scalable Video Coding Extension of the H.264/AVC
Standard. IEEE Transactions on Circuits and Systems for
Video Technology, vol. 17, no. 9 (Sept. 2007), 1103-1120.

[2] Szkaliczki, T., Eberhard, M., Hellwagner, H., and Szobonya,
L. 2010. Piece Selection Algorithm for Layered Video
Streaming in P2P Networks. Electronic Notes in Discrete
Mathematics, Elsevier, vol. 36, 1265-1272.

[3] Martello, S. and Toth, P. 1990. Knapsack Problems:
Algorithms and Computer Implementation. John Wiley and
Sons, New York.

[4] Liu, Z., Shen, Y., Ross, K. W., Panwar, S. S., and Wang, Y.
2009. LayerP2P: Using Layered Video Chunks in P2P Live
Streaming. IEEE Transactions on Multimedia, vol. 11, no. 7
(August 2009), 1340-1352.

[5] Capovilla, N., Eberhard, M., Mignanti, S., Petrocco, R., and
Vehkaperä, J. 2010. An Architecture for Distributing
Scalable Content over Peer-to-Peer Networks. Proceedings
of the Second MMEDIA Conference, 1-6.

[6] Andonov, R., Poirriez, V., and Rajopadhye, S. 2000.
Unbounded Knapsack Problem: Dynamic Programming
Revisited. European Journal of Operational Research, No.
123, Issue 2, 394-407.

[7] Khan, S., Li, K. F., Manning, E. G., and Akbar, M. M. 2002.
Solving the Knapsack Problem for Adaptive Multimedia
Systems. Studia Informatica Universalis 2 (1), 161-182.

[8] Baumgart, I., Heep, B., and Krause, S. 2007. Oversim: A
Flexible Overlay Network Simulation Framework.
Proceedings of the 10th IEEE Global Internet Symposium
(May 2007), 79-84.

[9] Varga A., and Hornig R. 2008. An Overview of the
Omnet++ Simulation Environment. Proceedings of the 1st
International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems, 1-
10.

[10] P2P-Next Living Lab, http://livinglab.eu, last accessed on
26/07/2010.

