
Comparison of Piece-Picking Algorithms for
Layered Video Content in Peer-to-Peer Networks

Michael Eberhard∗, Riccardo Petrocco†, Hermann Hellwagner∗, and Christian Timmerer∗
∗Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria, firstname.lastname@itec.aau.at

†Technische Universiteit Delft, Delft, The Netherlands, r.petrocco@gmail.com

Abstract—The distribution of video content over P2P systems
has become a popular and cost-effective option in recent years
due to the increasing online availability of content. Additionally,
the diversity of end-user terminals used for consuming content
demands the provisioning of content in different qualities. Both
problems are addressed by distributing layered video content
over P2P networks. A piece-picking algorithm for layered video
content needs to ensure that the pieces are received in time as
well as that the best possible quality that can be processed by
the end-user terminal and downloaded under the given network
conditions is provided. In this paper, we describe our algorithm
for piece-picking of layered video content in Bittorrent-based P2P
systems and compare it to other existing piece-picking algorithms.
The evaluation presented in this paper shows that our algorithm
can very well compete with previously published algorithms.

I. INTRODUCTION

Today, more and more multimedia content is distributed
online in high quality. As the number of users of online
multimedia portals is quickly increasing, the distribution costs
are rising as well. P2P systems provide a cost-effective and
scalable alternative, since the users are distributing the content
to other users while consuming it.

Furthermore, multimedia content is nowadays consumed
on a variety of different end-user terminals with diverse
capabilities. These terminals include high-definition TV-sets,
laptops, and also a number of mobile devices like smartphones
or tablets. Thus, video content needs to be provided in multiple
qualities to ensure that the content can be consumed on all
these devices in appropriate ways. While it is possible to
encode a piece of content multiple times and provide the right
version to the user based on the user terminal’s capabilities,
this is not the best solution for P2P systems since in that case
only users consuming the same video in the same quality could
share the content.

Layered video codecs like the Scalable Video Coding (SVC)
extensions [1] of the Advanced Video Coding (AVC) standard
enable providing multiple video qualities within a single video
bitstream. While it is sufficient to only receive the base layer
(the first quality layer) for playback, all other layers that are
received in time improve the playback quality. The usage of
layered video codecs is especially interesting for P2P systems
since all users consuming the same content can share at least
the base quality layer, and any two users can share additional
layers up to the highest layer that both are consuming.

In this paper, a piece-picking algorithm for layered video
content in Bittorrent-based P2P systems is presented and

compared to other piece-picking algorithms. In a P2P sys-
tem, the piece-picking algorithm decides which pieces are
downloaded at which point in time. The algorithm works on
a sliding window which contains the pieces for all layers
starting at the current playback position into the near future.
When downloading layered content, the algorithm needs to
find a good balance between three requirements: continuous
playback, best possible quality, and avoidance of frequent
quality switches.

To ensure a smooth continuous playback, the piece-picking
algorithm needs to avoid frame skipping, which can be
achieved by prioritization of base layer pieces. When trying
to provide the best possible quality the algorithm needs to
prioritize higher layers with close playback deadlines over
lower layer pieces with a later playback deadline, to ensure
that the higher layers which improve the playback quality are
received in time. This second requirement is often in conflict
with the first requirement, continuous playback. The third
requirement, avoidance of frequent quality switches, causes
the algorithm to switch only to a higher layer (and better
playback quality) if the new layer can be kept for some time.
The reason for this requirement is that frequent switching
of the playback quality is disturbing for the user [2]. The
consideration of all three requirements presents a challenging
optimization problem that needs to be solved by the piece-
picking algorithm.

To evaluate our piece-picking algorithm, it has been inte-
grated into the open-source Next-Share P2P system [3]. Addi-
tionally, other piece-picking algorithms have been integrated
into NextShare as well in order to enable us to evaluate how
our piece-picking algorithm compares to others in terms of
performance. The source code of the NextShare P2P system
including the implementation for layered content is available
at [4].

The remainder of this paper is organized as follows. In
Section II, previously published related work is discussed. In
Section III, our piece-picking algorithm for layered content is
described. Section IV describes the evaluation results of our
real system tests. Finally, Section V concludes the paper.

II. RELATED WORK

The distribution of layered content has been a popular topic
in recent years. [5] describes a very well defined solution for
integrating layered content into a P2P system. However, the
functionality of the piece-picking algorithm is not described



in detail. Although the solution has been integrated into a
P2P client, the client has been specifically designed for the
distribution of layered content and only AVC codecs have been
used for the implementation (which support only temporal
scalability).

[6] describes a piece-picking algorithm for layered content,
but the proposed architectural choice impedes the algorithm’s
easy integration into existing Bittorrent systems. PALS [7]
describes a receiver-based algorithm that allows to download
the desired quality. However, the quality dimensions of SVC
are not specifically addressed in the solution and an integration
into existing Bittorrent systems would again be difficult.

Our piece-picking algorithm has specifically been designed
to take the requirements of the Bittorrent protocol (e.g., fixed
piece size) into account in order to enable easy integration
into existing clients and backwards compatibility (clients not
supporting SVC can still download and share the SVC base
layer). Additionally, the algorithm has been integrated into the
open-source Bittorent-based NextShare P2P system.

III. PIECE-PICKING ALGORITHM

The task of the piece-picking algorithm in Bittorrent-based
P2P systems is to decide which pieces should be selected for
download at which point in time. To optimize the playback
quality for the user, the piece-picking algorithm needs to
take the three factors mentioned in Section I, avoidance of
frame skipping/stalling, providing the best possible quality,
and avoiding frequent quality switches, into account.

The formal framework for our algorithm has already been
presented in [8]. A brief description of our algorithm is given
in the following. The algorithm is based on algorithms for
the solution of the Knapsack Problem (KP) [9], which is a
problem in combinatorial optimization similar to the piece-
picking problem. The algorithm applies a greedy approach,
where the utility for each of the pieces within the sliding
window is calculated and as many pieces as possible are
downloaded within the available bandwidth. To avoid frequent
quality switches, the algorithm only performs quality switches
to higher layers if the pieces of the new layer have already been
downloaded for multiple future time slots. This algorithms is
from now on referred to as the KP algorithm.

The utility uijk of a piece pij with the playback time slot
ti and layer lj is calculated using the following formula.

uijk =
dj × dpijk
(ti − tk)

α (1)

The distortion reduction importance dj of a piece defines the
importance of a layer, where lower layers have a higher dis-
tortion reduction importance than higher layers. The download
probability dpijk is the probability that the piece is received in
time for its playback time slot and that the piece is useful and
can be decoded (i.e., all pieces of the same time slot and lower
layers are also received in time). tk specifies the decision time
point at which the utility for the piece is calculated.

To calculate the utility, the distortion reduction importance
dj is multiplied with the download probability dpijk. This

Fig. 1: KP Algorithm

ensures that higher layer pieces are only selected for download
if there is still sufficient time until the playback deadline to
download the piece and all lower layer pieces. The result
is subsequently divided by the remaining time slots until
playback (ti − tk), to ensure that urgent pieces that will be
played back soon are downloaded with additional priority. The
urgency weighting α is utilized to influence the importance of
the distortion reduction compared to the remaining time slots.
By changing the urgency weighting, the trade-off between
always downloading the best possible quality (high α value)
and ensuring continuous playback without stalling or frame
skipping (low α value) can be adjusted.

The setting of the parameters of the KP algorithm is
based on the bandwidth conditions and is determined after
the initialization phase and possibly at certain points during
the streaming process. If, e.g., the bandwidth conditions are
critical, a low urgency weighting and/or a higher distortion
reduction importance of the base layer are applied to ensure
continuous playback.

An example of how the KP algorithm works is illustrated
in Figure 1, where the Y axis represents the layers, the X
axis represents the time slots of the sliding window, and each
cell represents one piece. The KP algorithm does not follow a
predefined scheme for piece-picking, but calculates the utility
for each piece in the sliding window and bases the piece
selection on the remaining download time and the bandwidth
conditions. Thus, the piece-picking of the KP algorithm could
follow, e.g., the lower line if the bandwidth conditions do
not allow downloading many layers. On the other hand, the
KP algorithm could follow the higher line if the bandwidth
conditions are good.

IV. EVALUATION

In this section, our piece-picking algorithm for layered
content is evaluated and compared to other piece-picking
algorithms. For the evaluation, the piece-picking algorithms
have been integrated into the NextShare P2P system. The KP
algorithm described in Section III is compared to two other
algorithms, the baseline algorithm and the zigzag algorithm.

The baseline algorithm [3] prioritizes the pieces within the
sliding window based on layers only and is illustrated in Figure
2. The baseline algorithm selects all pieces of the base layer
according to their deadlines first, then all pieces from the first
enhancement layer, then from the second enhancement layer,
and so on. By applying this strategy, the algorithm ensures



Fig. 2: Baseline Algorithm

Fig. 3: Zigzag Algorithm

that frame skipping is minimized since base layer pieces are
always prioritized, and that only useful pieces are downloaded
since pieces of an enhancement layer cannot be selected for
download before all lower layer pieces are selected.

The zigzag algorithm [6] downloads the pieces based on a
zigzag priority allocation and is illustrated in Figure 3. The
zigzag algorithm prioritizes lower layer pieces, but higher
layer pieces with close playback deadlines are more important
than lower layer pieces with a later playback deadline. This
allows to increase the playback quality faster than in the
baseline algorithm, but might lead to frequent quality switches.

The piece-picking algorithms were evaluated in a test lab
with Linux machines. The test lab consists of server machines,
on which the seeding peers are running, and client machines,
on which the peers that stream the content are running.
Between the server and client machines, routers (Linux ma-
chines as well) are utilized which allow to influence the
network conditions between the peers. The routing machines
use the Netem [10] kernel component to emulate network
characteristics like delays or upload and download bandwidths.
By changing the parameters of the routers, the following four
scenarios could be evaluated for the piece-picking algorithms:

• Scenario 1: In this scenario, the seeders provide more
than the bandwidth required for the download of all layers
to the clients. This scenario illustrates the behavior of the
algorithms under optimal bandwidth conditions.

• Scenario 2: In this scenario, the bandwidth from the seed-
ers is strongly limited to provide slightly less bandwidth
than required for the playback of the first two layers. This
illustrates the behavior of the algorithms under critical
bandwidth conditions.

• Scenario 3: In this scenario, the seeders provide slightly
more bandwidth than required for streaming three layers

TABLE I: Layer Structure

Layer Bit Rate [kbit/s] Resolution
BL 512 480p

EL1 1024 480p

EL2 1536 480p

EL3 2048 480p

TABLE II: Parameter Settings

Parameter Value
Video Duration 37 min

Piece Size 168 KB

Time Slot Size 2.56 s (64 frames)

Sliding Window Size 10 time slots

Initialization Phase 2 time slots

Seeders Upload Capacity Scn. 1 3000 kbit/s

Seeders Upload Capacity Scn. 2 800 kbit/s

Seeders Upload Capacity Scn. 3/4 1800 kbit/s

to the peers.
• Scenario 4: This scenario uses the same parameters as

Scenario 3, except that a 5% churn rate is applied, i.e.,
each seeding peer has a chance of 5% at every time slot
to leave the swarm and join again afterwards.

The reason for defining these four scenarios was to evaluate
the piece-picking algorithms under optimal bandwidth condi-
tions, critical bandwidth conditions, and bandwidth conditions
that trigger frequent quality changes.

For each scenario, 100 peers are streaming the video se-
quence Big Buck Bunny (concatenated three times to reach
the desired length) that is encoded with the layer structure
presented in Table I. Each layer has a bit rate of 512 kbit/s,
the cumulative bit rate for each layer is shown in the table.
The parameter settings for all four scenarios are presented in
Table II.

Before streaming of the layered content starts, the sliding
window is initially filled during the initialization phase. This
ensures that the playback is not immediately stalled at the
beginning of the streaming process if a base layer piece is not
received in time.

To compare the three algorithms, the average received bit
rate of the peers for the four scenarios is presented in the
following result figures. The received bit rate of a single peer
is always one of the four layers’ cumulative bit rate presented
in Table I, or 0 if no piece is received in time. In the result
figures each value represents the average received bit rate for
all 100 peers. Additional result details for each scenario are
presented in Table III. Again, the results in the table represent
the average values for all 100 peers.

The results in Figure 4 show the behavior of the algorithms
under optimal bandwidth conditions. For this scenario only
the results for the first minutes of the test run are shown,
as all of the tested algorithms are able to constantly stream
the best quality after the first few minutes under the given
network conditions. During the start-up, the KP and the Zigzag
algorithms both start at a higher quality and quickly increase



Fig. 4: Evaluation Scenario 1

Fig. 5: Evaluation Scenario 2

the playback quality to the highest layer compared to the
baseline algorithm. The reason for this behavior is that the
KP and Zigzag algorithm assign a higher priority to pieces of
higher layers with a close deadline than to lower layer pieces
with a later deadline. The baseline algorithm, on the other
hand, firstly fills the entire sliding window with lower layer
pieces before switching to the highest quality, which leads to
a lower playback quality in the beginning.

After the initialization, all three algorithms stream con-
stantly the highest quality. All three piece-picking algorithms
work as expected for Scenario 1, although the baseline algo-
rithm takes unnecessarily long to reach the desired streaming
quality.

In Figure 5 the behavior of the algorithms in the critical
scenario is shown. The average bit rate varies significantly over
the time of the streaming session for all algorithms since the
bandwidth conditions lead to rather frequent quality switches.
However, the quality switches occur at different time slots
for the 100 peers, which leads to the steady variation in the
average received bit rate.

In this scenario, the KP algorithm switches faster to the best
quality possible under the network conditions than the baseline
algorithm. However, once the baseline and the KP algorithm
reach the average playback quality, the average quality of the

Fig. 6: Evaluation Scenario 3

KP algorithm is approx. 2% lower than the quality provided
by the baseline algorithm. The reason for this difference is that
the KP algorithm does not switch immediately to the higher
quality once the first enhancement layer piece is received.
When switching to the first enhancement layer, the baseline
algorithm can usually only sustain the quality for a single
time slot, and then needs to switch back to the base layer
quality. This is due to the fact that the baseline algorithm
cannot buffer the first enhancement layer because base layer
pieces always have priority and the bandwidth is not sufficient
to buffer both layers at the same time. The KP algorithm
switches less frequently to higher quality; as it only switches to
the higher quality once some enhancement layer pieces have
been buffered, the KP algorithm can sustain the quality for
more than three time slots on average.

The zigzag algorithm does not work well when the network
conditions are critical. The clearly lower average streaming
rate is due to the fact that the zigzag algorithms has to
frequently skip time slots as the base layer pieces are not
sufficiently prioritized for the given network conditions and
no piece is received in time for playback. The skipping leads
to a clearly lower average streaming rate and also to frequent
disturbances of the user experience (as no frames are shown
for the skipped time slots). Due to the skipping, the average
streaming rate of all 100 peers is even lower than the base
layer bit rate.

The results in Figure 6 show the behavior of the algorithms
when more than sufficient bandwidth for the constant playback
of three layers is provided. The average bit rate varies less for
this scenario, as the bandwidth conditions allow the steady
download of a consistent quality.

In this scenario, the zigzag algorithm switches most quickly
to the desired playback quality, as the KP algorithm needs to
buffer some enhancement layer pieces before increasing the
quality. The baseline algorithm again has to fill the buffer for
all lower layers first and thus switches later to the desired
playback quality. After the initialization, all algorithms work
similarly and provide a constant high playback quality. At
the end of the streaming process, the baseline algorithm can



Fig. 7: Evaluation Scenario 4

increase the playback quality to the highest layer for approx.
45 seconds, as the buffers for all lower layers until the end
of the stream have already been filled. The KP algorithm can
also increase the quality at the end for approx. 20 seconds.

The final scenario illustrates the behavior of the algorithms
when sufficient bandwidth for the download of three layers is
provided and churn occurs. In this scenario, the behavior of the
KP and the zigzag algorithms is similar. Both quickly go up
to reach the highest sustainable playback quality and keep this
quality until the end of the streaming session. However, the KP
algorithm again performs fewer switches to a higher quality
but can keep this quality longer. In average the KP algorithm
can stream a slightly higher quality than the zigzag algorithm.
It should be noted that this differences is due to more frame
skipping events when applying the zigzag algorithm.

The behavior of the baseline algorithm differs for this
scenario from the other algorithms. The baseline algorithm
takes about 2 minutes to reach the sustainable quality, as the
buffer filling for the lower layers takes longer. However, once it
reaches the higher layers the average streaming rate is slightly
higher than the one provided by the KP algorithm. As both, the
KP and the baseline algorithm, provide a good performance,
it depends on the usage scenario which algorithm is preferred
(faster reaching of the sustainable quality or slightly higher
average streaming rate).

V. CONCLUSION

In this paper, a piece-picking algorithm for layered con-
tent in Bittorrent-based P2P systems has been presented and
compared to other piece-picking algorithms. To compare the
algorithms, they have been implemented in the NextShare P2P
system and real system tests have been performed in our test
lab.

The results show that a piece-picking algorithm for layered
content needs to consider the network conditions to find the
best trade-off between ensuring continuous playback and pro-
viding the best possible quality. While the baseline algorithm
performs well under low bandwidth conditions, it wastes time
while going up to a better quality when the network conditions
are good. On the other hand, the zigzag algorithm performs

TABLE III: Test Results (Average for 100 Peers)

Algorithm Bit Rate [kbit/s] # Skipped Time Slots # Quality Changes

Scenario 1

KP 1972 0 6.8

Baseline 1960 0 8.9

Zigzag 1970 0 9.7

Scenario 2

KP 589 0.28 76

Baseline 603 0.19 346

Zigzag 406 108 287

Scenario 3

KP 1501 0.07 8.4

Baseline 1484 0.05 10.1

Zigzag 1496 0.06 12.3

Scenario 4

KP 1348 1.22 41.7

Baseline 1357 1.09 53.1

Zigzag 1327 4.90 79.1

well under high bandwidth conditions, but when the network
conditions become worse, unnecessary frame skipping occurs
when applying the zigzag algorithm and the user experience
is disturbed. The KP algorithm works well in high and low
bandwidth situations, as it changes its parameters (i.e., urgency
weighting, distortion reduction importance of the layers) based
on the network conditions. This ensures that the best trade-off
between ensuring continuous playback and providing the best
possible quality for the network conditions is usually found.
Additionally, the KP algorithm limits the quality switches to
avoid disturbing the user experience.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
under grant agreement no. 216217 (P2P-Next).

REFERENCES

[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the H.264/AVC standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–
1120, September 2007.

[2] M. Zink, O. Knzel, J. Schmitt, and R. Steinmetz, “Subjective impression
of variations in layer encoded videos,” in International Workshop on
Quality of Service, 2003, pp. 137–154.

[3] N. Capovilla, M. Eberhard, S. Mignanti, R. Petrocco, and J. Vehkapera,
“An architecture for distributing scalable content over peer-to-peer
networks,” in MMEDIA Conference Proceedings, June 2010, pp. 1–6.

[4] P2P-Next Project. http://p2p-next.org/.
[5] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, and Y. Wang, “LayerP2P:

Using layered video chunks in P2P live streaming,” IEEE Transactions
on Multimedia, vol. 11, no. 7, pp. 1340–1352, November 2009.

[6] Y. Ding, J. Liu, D. Wang, and H. Jiang, “Peer-to-peer video-on-demand
with scalable video coding,” Computer Communications, vol. 33, no. 14,
pp. 1589–1597, September 2010.

[7] R. Rejaie and A. Ortega, “PALS: peer-to-peer adaptive layered stream-
ing,” in Proceedings NOSSDAV’03. New York, NY, USA: ACM, 2003,
pp. 153–161.

[8] M. Eberhard, T. Szkaliczki, H. Hellwagner, L. Szobonya, and C. Tim-
merer, “Knapsack problem-based piece-picking algorithms for layered
content in peer-to-peer networks,” in AVSTP2P’10 Workshop Proceed-
ings, October 2010, pp. 71–76.

[9] S. Martello and P. Toth, Knapsack problems: algorithms and computer
implementations. New York, NY, USA: John Wiley & Sons, Inc., 1990.

[10] Netem network emulation. http://www.linuxfoundation.org/collaborate/
workgroups/networking/netem.


