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Abstract

The computer communication research com-
munity has a significant interest in the para-
digm of ICN. Continuously, new proposals for 
ICN-related challenges (caching, forwarding, 
etc.) are published. However, due to a lack of a 
readily available testbed, the majority of these 
proposals are evaluated by either theoretical 
analysis and/or conducting network simulations, 
potentially masking further challenges that 
are not observable in synthetic environments. 
Therefore, this article presents a framework for 
an ICN testbed using low-budget physical hard-
ware with little deployment and maintenance 
effort for the individual researcher; specifical-
ly, named data networking is considered. The 
employed hardware and software are powerful 
enough for most research projects, but extreme-
ly resource-intensive tasks may push both 
components toward their limits. The testbed 
framework is based on well established open 
source software and provides the tools to read-
ily investigate important ICN characteristics on 
physical hardware emulating arbitrary network 
topologies. The article discusses the testbed 
architecture and provides first results obtained 
from emulations that investigate the perfor-
mance of various forwarding strategies. The 
results indicate that further challenges have to 
be overcome when heading towards a real-world 
deployment of ICN-based communication.

Introduction
In recent years, the information-centric network-
ing (ICN) research community has grown contin-
uously, positioning data-oriented communication 
as promising architecture for the future Inter-
net. Today, there are a variety of ICN candidates 
interpreting and implementing data-oriented 
communication in their own ways, as surveyed 
in [1, 2]. Among them is named data network-
ing (NDN) [3], probably the most elaborated 
approach. As for all data-oriented communica-
tion approaches, data objects are addressed by 
name. NDN-based communication follows a 
strictly consumer-driven communication pattern. 
Consumers issue so-called Interest messages to 
request Data objects. The Interest carries the 
name of the requested object, and it is forwarded 
toward the content origin via longest prefix-based 
matching of the naming components. Due to the 

principle of data-oriented communication and a 
new security model (content-based security [4]), 
an Interest’s final destination does not necessar-
ily have to be the content origin. Any intermedi-
ate network node that may hold a content replica 
may also satisfy a given Interest. For more details 
on the principles of NDN, we kindly refer the 
reader to [3].

The NDN community provides an exten-
sive software suite with the objective to further 
advance research in this field. This includes the 
network simulator ndnSIM [5], which is based 
on the well-known ns-3 framework. Furthermore, 
the software suite includes the Networking For-
warding Daemon (NFD) [6], an implementation 
of the NDN principle on Linux-based systems. 
Although the Linux-based implementation is 
freely available, evaluations on physical networks 
are rarely conducted in research articles. The 
majority of proposals have been evaluated in 
a synthetic environment, either relying on the-
oretical analysis or using network simulations. 
While both methods are valid and necessary, 
they should not be the final step and substitute 
experiments on physical networks. There are a 
number of impediments for experiments on phys-
ical networks/testbeds:
•	Setting up a testbed is a tedious and 

work-intensive task.
•	Building a testbed of significant size can be 

very costly.
•	Conducting a large batch of evaluations 

using different parameters in a testbed is 
more time consuming and error-prone than 
using a flexible simulation environment.

In order to overcome these impediments and 
to support researchers in their daily work, the 
provision of a testbed is necessary. Current-
ly, the NDN community provides a testbed [7] 
available to all community members. The test-
bed connects NDN nodes around the world 
via the Internet, providing the opportunity to 
evaluate NDN-based applications. Since this 
testbed is a shared resource and can be used 
by all members, the availability of the testbed 
for the individual researcher may be limited. 
Furthermore, researchers may not be able to 
experiment with the core functionality of the 
NFD (even if it is necessary for their research 
objectives), since the NDN testbed needs to 
stay functional at all times. Also, the NDN 
testbed is realized as an overlay network on 
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top of today’s Internet using ordinary comput-
ers as software routers. Since the researchers 
do not have full control over the used infra-
structure (devices, links, etc.), side effects may 
influence their evaluations, leading to distorted 
results and aggravating reproducibility.

To tackle the above mentioned challeng-
es, this article presents a framework enabling 
researchers to readily deploy their own NDN 
testbed with low costs. We suggest a testbed 
framework that is based on a set of single-board 
devices, so-called Banana Pi routers.

While focusing on a low budget, the selected 
hardware is powerful enough to conduct signif-
icant evaluations in all research areas of inter-
est regarding ICN. An exception is the use of 
computationally expensive cryptography; howev-
er, this would also challenge recent off-the-shelf 
CPUs such as used in ordinary desktop comput-
ers without cryptographic hardware support.

The costs for an NDN Banana Pi testbed of 
significant size (e.g., 20 nodes) is approximately 
US$3400. Costs scale linearly with approximate-
ly US$160 per added testbed node. We provide 
pre-configured disk images, scripts, and installa-
tion guidelines for download (http://icn.itec.aau.
at), enabling researchers to easily realize their 
own NDN testbed with little effort. Once the 
images are copied to the required disks, and the 
testbed hardware is assembled and connected 
to a network, the testbed is ready for use. The 
proposed framework allows arbitrary network 
overlays to quickly be deployed on the physical 
topology. Researchers may specify every detail 
of the topology including link capacities, delays, 
queuing disciplines, queue sizes, and more. The 
framework further provides a web interface for 
observing the health status of the testbed and 
allows watching ongoing emulations in near real 
time.

Testbed: Architecture, Deployment, 
Emulation Environment, and 

Monitoring

This section discusses the testbed architecture. 
First, insights on the selected hardware are given. 
Second, the tools and applications necessary to 
realize an arbitrary network topology on the 
physical devices are introduced, and their config-
uration is discussed. Finally, the web-based mon-
itoring possibilities for the testbed are presented.

Testbed Architecture and Hardware Requirements

Figure 1 depicts an overview of the testbed archi-
tecture. The testbed is based on an IP network 
and realizes a virtual NDN overlay. In general, 
the testbed consists of a number of single-board 
computers, at least two network switches, and a 
gateway. The testbed architecture requires two 
dedicated networks, each forming a star topol-
ogy. The first network is denoted as the man-
agement network (MN), while the second one 
is denoted as the emulation network (EN). This 
clear separation ensures that traffic in the man-
agement network (setting up nodes, monitor-
ing devices, deploying software, etc.) does not 
interfere with, or influence, active emulations. 
An ordinary PC provides enough resources to 
manage the tasks of the gateway. The gateway 
is connected to the MN only, providing external 
communication and control functionality.

It acts as the control server for conducting 
emulations and is therefore the entry point for 
the users to the testbed. Furthermore, it hosts 
several (optional, but very useful) services, which 
allow the monitoring of the testbed (discussed in 
detail later). The single-board computers should 
be able to access the Internet via the gateway, so 
software updates can be retrieved easily.

Since the testbed architecture foresees two 
dedicated networks, the testbed nodes (sin-
gle-board computers) are required to provide 
at least two network interfaces. We have cho-
sen Banana Pi routers (BPI-R1) because they 
are equipped with a four-port LAN switch 
including a dedicated switching circuit. More-
over, these devices provide a WLAN interface 
(supporting IEEE 802.11 b/g/n), which addi-
tionally gives the opportunity to support mobil-
ity scenarios. Another advantage of the BPI-R1 
is that it offers a SATA 2.0 port. We consider 
this an important feature, especially for con-
ducting emulations in the area of ICN. Users 
may want to conduct experiments requiring 
large in-network caches. When using only ordi-
nary Micro SD cards (default disk storage for 
embedded devices and single-board comput-
ers), such experiments could not be performed 
since the cache size would be constrained by 
the main memory (1 GB DDR3-SDRAM). 
Paging memory to the Micro SD cards with 
rather low read/write data rates would dras-
tically decrease the performance below the 
required line speed. Therefore, we strongly 
suggest equipping the Pis with a solid state 
disk (SSD). We summarize the most important 
hardware specifications of a BPI-R1 in Table 1. 
Furthermore, Table 2 lists the required hard-
ware components (including approximate costs 

Figure 1. An overview of the testbed architecture. The testbed consists of 
two dedicated physical networks. The management network (red lines) is 
used to set up and control the testbed nodes, while the emulation network 
(blue lines) realizes the virtual overlay network. The gateway is used as a 
control server, and enables users to configure, observe, and visualize emu-
lation tasks.
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per unit) for a testbed with 20 nodes. Note that 
we did not include hardware for the control 
server because any available PC should be able 
to handle the required workload and does not 
burden one’s budget.

deployment of the vIrtuAl network topology

Once the Pis are assembled (they are usually 
shipped without a case) and connected to the 
switches, the next step is to deploy the desired 
virtual network overlay on top of the testbed. 
The BPI-R1 is shipped with its own operating 
system called Bananian, a customized Debian 
Linux composed by the hardware manufacturers. 
Thus, basically all networking tools available for 
Linux, for example, iptables and traffic control 
(tc), can be used to realize the desired overlay 
network. However, in order to use some more 
advanced features of the tc, the Linux Kernel 
has to be re-configured and re-compiled as the 
default disk image is optimized with respect to 
space constraints rather than for networking 
functionality. Therefore, we provide a modifi ed 
Bananian image for download (http://icn.itec.
aau.at).

We continue the discussion by providing the 
technical details to deploy a virtual overlay on 
the testbed. All discussed steps are implemented 
in script(s) that can be downloaded at the pre-
viously indicated web page. Researchers using 
the framework may specify arbitrary overlay 
networks (in an ordinary text file, or using the 
provided random network topology generator) 
and apply them on the physical devices instanta-
neously. Note that only the EN will be modifi ed. 
The MN remains always unchanged as it is only 
used for confi guration and monitoring tasks.

Let us assume that the overlay network illus-
trated in Fig. 1 shall be deployed. The directed 
edges defi ne the virtual links connecting the indi-
vidual nodes (thicker lines indicate higher link 
capacities), and the link delays are indicated next 
to directed edges’ heads in milliseconds. The fi rst 
step is to model the virtual connection(s). This 
can be achieved with the application iptables, 
which enables the configuration of the tables 
provided by the Linux kernel firewall. Initially, 
we configure the tables to block all IP packets 
received or transmitted over the EN. Then, for 
each virtual link in the overlay network, an excep-
tion is inserted allowing the forwarding/receiving 

of IP packets. For instance, in the case of node 
A these are the upstream and downstream con-
nections to B and D (Fig. 1). Figure 2a depicts 
the required rules to realize the connections for 
node A. Once the iptables are confi gured on all 
nodes, the basic topology of the overlay network 
is refl ected by the EN on the IP layer.

The next step is to enforce the link capacities 
and delays as indicated by the overlay descrip-
tion. For this task the framework relies on tc, an 
application to configure and control the Linux 
kernel’s network scheduler as sketched in Fig. 
2b. The figure illustrates the employed traffic 
control classifi cation for packet scheduling by the 
example of node E. We use hierarchical token 
bucket (HTB) fi lters, with multiple child classes 
(one class per up- or downstream connection). 
The bandwidth capacities are not limited at the 
HTB level, but at the individual HTB’s child 
classes. Each child is equipped with an additional 
queuing discipline, a classical token bucket fi lter 
(TBF) controlling the link capacities and queue 
sizes. Furthermore, each child class is equipped 
with a netem discipline realizing the individu-
al link delays. One can go even further and use 
netem to introduce artifi cial packet loss or pack-
et corruption facilities if desired; however, we 
do not discuss this further and refer to [8, 9] for 
details.

InstAllIng the ndn communIcAtIon lAyer

The fi nal step before emulations can be conduct-
ed is to set up the NFD [6] accordingly on the 
Pis. This application implements the NDN-based 
communication layer. To make this task as com-
fortable as possible, the framework also takes 
over this part. The user may specify the config-
uration of the NFDs (caching strategies, cache 
sizes, forwarding strategies and entries, etc.) and 
deploy it on the individual Pis using a deploy-
ment script. The NFD supports two baseline 
caching strategies, least recently used (LRU) and 
fi rst-in fi rst-out (FIFO), and several Interest for-
warding strategies (BroadCast, BestRoute, and 
NCC) [6]. Nevertheless, one may be interested in 
implementing more sophisticated approaches. To 

Table 1. Specifi cation of a Banana Pi router 
(BPI-R1).

Component Description (http://bananapi.com)

CPU ARM-Cortex-A7 (2x1.0 GHz)

GPU Mali-400MP2

Memory 1 GB DDR3-SDRAM

Storage 1x Micro SD, 1x SATA 2.0

Network 1x Ethernet RJ45, 4-Port-Switch, WLAN 
802.11b/g/n

Power source 5 V/ 2 A via Micro USB

Table 2. Components for a testbed with 20 nodes.

Component Advice/comment ≈ Cost/unit

20x BPI-R1 US$80

20x Case for BPI-R1 Optional, but handy US$15

20x SSD Size of at least 120 GB US$50

20x Micro SD Size of at least 8 GB US$4

20x USB power cable Dimensioned for 2 A US$3

4x USB power hub At least 6 ports US$20

2x Gigabit switch At least 24 ports US$100

40x Ethernet cable CAT6, two colors, 5 ft US$2

Total: US$3400
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that end, references [10, 11] provide good sur-
veys of recent caching strategies, while the relat-
ed work in [12] gives a good overview of existing 
forwarding strategies.

To complete the configuration, the installa-
tion of the routing and forwarding entries in the 
routing and forwarding information base of the 
NFD [6] is required. The framework provides 
two choices when users decide to automatically 
deploy routes, similar as implemented in ndnSIM 
[5]. The user may choose to use either all pos-
sible routes, or only the shortest paths between 
each pair of nodes. The framework implements 
the installation of the entries as follows. Each 
node is given a unique identifi er. Then for each 
forwarding strategy and for each other node, 
one forwarding entry of the following structure 
is installed: /fw-strategy/source-node-id. If using all 
routes has been selected, the entry may point to 
multiple outgoing faces. Hence, any user-defi ned 
application within the testbed can easily choose 
the source from which it may consume data by 
specifying the producer’s node identifier. One 
further chooses the forwarding strategy by indi-
cating the strategy name in the emitted request 
message.

conductIng And observIng An eXperIment

To conduct a batch of emulations/experiments, 
the user needs to specify the emulation param-
eters in a script. Basically, the framework fore-
sees the following behavior. The user specifies 
two kinds of abstract applications: consumers 
and producers. Which application is executed on 
which node has to be specified in the previous-
ly mentioned topology file. First, a script starts 
the logging functionality on all Pis, and then all 
producer/consumer applications are executed. 
The gateway monitors the Pis and stops the emu-
lation once all consumer applications have fin-
ished. Then the logging functionality is stopped, 
and the corresponding logfi les are gathered and 
stored on the gateway for later processing. The 
logfi les provide information about the Pis includ-
ing CPU load, power consumption, and memory 
usage, and may also contain application-specifi c 

data provided by the specifi ed consumer/produc-
er applications.

testbed monItorIng

Testbed monitoring is coordinated by the gate-
way (Fig. 1). There are basically two levels of 
monitoring that can be accessed via the web 
interface. The first level provides a very rough 
overview that allows monitoring the health state 
of the testbed. To that end, each Banana Pi uses 
cron (a job scheduler for Linux) to trigger the 
logging of important data periodically (e.g., on 
an hourly basis). The logged data is provided in 
JSON format and is collected by the gateway 
using wget (a program to fetch data via HTTP-/
FTP connections). This data includes important 
information about the Pis including CPU load, 
power consumption, memory usage, network 
traffi c, disk usage, and so on. A history of about 
one week is stored at the gateway, providing a 
quick overview of whether or not the testbed has 
been operating as expected. The second monitor-
ing level is more detailed and is active once emu-
lations are conducted. During an experiment, 
every few seconds the Pis actively push logfiles 
to a virtual RAM disk on the gateway (through 
the MN) using the Network File System (NFS). 
These files are then accessible via a web serv-
er, and users may monitor the ongoing experi-
ment in near real time using the web interface, as 
illustrated in Fig. 3. The second monitoring level 
should be disabled for experiments demanding 
highly accurate measurements of the CPU load 
or power consumption, as the provision of this 
real-time log data requires little but noticeable 
resource consumption.

testbed evAluAtIon And compArIson to 
network sImulAtIons

This section presents the design and results of an 
exemplary experiment conducted on the testbed. 
The selected experiment investigates the influ-
ence of different forwarding strategies on the data 
delivery performance of NDN. Furthermore, the 
obtained results are compared to the same experi-

Figure 2. The left side sketches the confi guration of the Linux iptables by the example of node A (Fig. 1). 
The right side illustrates the Linux traffi c control classifi cation for packet scheduling by the example 
of node E.
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ment conducted using ndnSIM 2.0 [5]. Finally, we 
push the Pis to their limits to assess the maximum 
work load these devices can handle.

Evaluation Scenario

In the experiment we want to investigate the per-
formance of the following forwarding strategies: 
Broadcast [6], BestRoute [6], NCC [6], RFA 
[13], and SAF [12]. Due to the limited number 
of available testbed nodes, we decided to model 
a typical peer-to-peer overlay network. We gen-
erate network topologies consisting of n = 20 
nodes using the Erdõs Rényi model [14]. The 
probability of creating a link between two nodes 
was set to p = 0.15, and the link delays d  [5 
ms, 20 ms] are drawn from a uniform distribu-
tion. We ensure that the generated graph is con-
nected by omitting topologies not satisfying this 
condition. For the bandwidth capacity of a link 
we consider three different settings: LowBW, 
that is, from the interval [2000 kb/s, 3000 kb/s]; 
MediumBW, that is, from [3000 kb/s, 4000 kb/s]; 
and HighBW, that is, from [4000 kb/s, 5000 kb/s]. 
Each node maintains a 250 MB large cache using 
the FIFO replacement strategy. For each simu-
lation/emulation, 4 nodes are randomly assigned 
as servers providing unique content to 12 clients. 
Each client requests content with a constant bit 
rate of approximately 2000 kb/s from a single 
server, with a Data packet size of 4 kB. The pair-
ing between client and server is randomized for 
each run. In total, 40 runs are performed for 

each configuration simulating/emulating 30 min 
of network traffic.

Please note that this evaluation scenario is 
exemplary to compare results obtained from the 
testbed with results obtained from simulations. The 
evaluations are not sufficiently extensive to assess 
the real performance of the investigated strategies. 
Nevertheless, this experiment may indicate interest-
ing trends.

Results Obtained from the Testbed

Figures 4a–d illustrate the results of the experi-
ment when conducted on the testbed. Figure 4a 
shows the Interest satisfaction ratio, which provides 
the ratio of received Data packets and generated 
Interests per client. The figure indicates that SAF 
outperforms its competitors in scenarios with lim-
ited bandwidth; however, as bandwidth resources 
are increased, the other algorithms start to catch 
up, particularly BestRoute. Figure 4b depicts the 
average cache hit ratio per network node. Here 
one can observe that Broadcast and NCC obtain 
the highest cache hit ratio. However, one has to 
consider that those strategies tend to replicate 
Interests, especially Broadcast, and therefore, the 
cache hit ratio always has to be seen in relation to 
the caused traffic and the achieved Interest satis-
faction ratio. In Figs. 4c and 4d the average power 
consumption and the average CPU load per node 
are illustrated. These results can only be obtained 
from the testbed. This makes them particu-
larly interesting for investigating the real-world 

Figure 3. Snapshot of the web interface that can be used to monitor ongoing emulations in near real time.
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requirements of algorithms. It is evident that both 
SAF and BestRoute consume less power on the 
single-board computers than the other algorithms. 
For an environment with scarce energy resourc-
es, these algorithms may thus be better suited. 
Regarding CPU load, we can observe that RFA 
requires the most CPU resources, which may lead 
to problems on constrained, embedded devices. 
Also Broadcast tends to use a lot of resourc-
es, as the relentless duplication of Interests and 
especially their later processing, requires a lot of 
resources.

To assess the capabilities of the BPI-R1 we 
conducted another experiment measuring the 
CPU usage of the NFD with respect to the pro-
cessed packets. Figure 4e illustrates the result of 
this experiment, where we varied the number of 
issued Interests from 100 to 800 packets/s (one 
satisfied Interest results in two processed pack-
ets, i.e., an additional Data packet). Furthermore, 
we conducted this experiment with different 
cache sizes. The employed cache sizes are 10,000, 
50,000, 100,000, and 150,000 entries. We always 
start the individual runs with full caches to force 
extensive entry replacement to assess its influence 
on the CPU load. Figure 4e shows that the CPU 
load of the NFD increases proportionally with the 
number of processed Interests. Also, larger cache 
sizes increase the CPU load, as the replacement of 
entries becomes more expensive. With 500 issued 
Interests, the BPI-R1 reaches its capacity limits, 
leading to drastic packet loss if more packets have 
to be processed. Although the BPI-R1 maintains 
a dual-core CPU, the NFD [6] is not capable of 
using more than one core, limiting the Pi’s capa-
bilities. One can translate this result in a possible 
data rate a BPI-R1 may handle using the NFD 
on a single CPU core. Assuming a Data packet 
size of 8 kB (maximum currently supported by 
the NFD), a Pi may handle at most a data rate of 

500 · 8 · 8192 = 32,768 kb/s. If researchers require 
more than 500 forwarded Interest/Data pairs per 
second and/or a higher data rate for their experi-
ments, there are two options:
•	Use more powerful devices. We expect that 

there will be a successor for BPI-R1 avail-
able shortly, with similar hardware as the 
recently released BPI-M3 (octa-core CPU 
with 8  1.8 GHz).

•	Update the NFD to make use of multiple 
CPU cores.
Please note that for all our experiments the 

digital signing of packets as foreseen by [3] was 
disabled. Using public-key cryptography [15] for 
real-time packet signing without dedicated cryp-
tographic hardware is not feasible even with power-
ful desktop CPUs.

Comparing the Results of ndnSIM and the Testbed

We anticipate that the observed performance of 
the algorithms in the simulator is better than on the 
testbed. We expect this because ndnSIM [5] does 
not consider the overhead caused by the underlying 
protocols (UDP: 8 bytes, IPv4: 20 bytes, Ethernet: 
18 bytes) that are required for communication on 
the testbed. Instead, the simulator uses a virtual 
channel to transmit NDN packets with nearly no 
overhead (2 bytes for a protocol flag).

As already mentioned in the previous sec-
tion, using ndnSIM we are not able to obtain 
figures for the power consumption or the CPU 
load required by the algorithms. Therefore, 
Figs. 4f and 4g only depict the results obtained 
for the Interest satisfaction ratio and the cache 
hit ratio. Please note that we compare only the 
results for the setting MediumBW to ease read-
ability; the results for the other two settings are 
similar. The left set of bars in Figs. 4f and 4g 
depict the results obtained by conducting sim-
ulations, while the right set of bars depict the 

Figure 4. The figure depicts the findings of the conducted experiments. Subfigures 4a–d illustrate the results obtained from the test-
bed. Subfigures 4f and 4g compare the results obtained by emulations and simulations for the setting “MediumBW” also. Subfig-
ure 4e indicates the packet processing capabilities of a BPI-R1 with respect to varying cache sizes (10,000–150,000 entries).
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results obtained conducting emulations on the 
testbed. It is evident from Fig. 4f that especial-
ly Broadcast and NCC suffer from severe per-
formance loss when executed on the testbed. 
This is defi nitely due to the larger overhead in 
the testbed as these strategies tend to replicate 
Interests. Considering that the average Inter-
est size during simulation was about 40 bytes 
(according to the ndnSIM documentation, the 
minimum size of an Interest message is 14 
bytes), an additional overhead of 8 + 20 + 18 
= 46 bytes roughly doubles the size of each for-
warded Interest. Also, BestRoute suffers from 
minor performance loss; however, as this strat-
egy does not replicate Interests, the impact is 
substantially smaller. Interestingly, the forward-
ing strategies RFA and SAF do not suffer from 
signifi cant performance loss. This is due to their 
basic principles of distributing traffi c among the 
interfaces with the lowest load without creat-
ing replicas of Interests avoiding Interest drops 
at congested interfaces. Regarding the cache 
hits illustrated in Fig. 4g, there is no signifi cant 
difference observable for the algorithms Broad-
cast, NNC, and BestRoute as their confidence 
intervals are overlapping. Surprisingly, SAF is 
able to maintain a slightly higher cache hit ratio 
when executed on the testbed, while for RFA 
exactly the opposite is true.

conclusIon And outlook
This article presents a framework that enables 
researchers to readily deploy an NDN testbed 
on low-budget single-board computers, so-called 
Banana Pis. All required tools/applications are 
introduced, and an open source contribution pro-
vides disk images, scripts, and guidelines to enable 
researchers to set up their own testbed. The arti-
cle shows the potential benefi t of such a testbed by 
conducting a baseline experiment. A comparison 
of network emulations and simulations shows that 
the abstraction introduced by simulations hides 
important details (overheads, resource usage, 
etc.). For the future we expect that this testbed 
will help ICN/NDN researchers assess the perfor-
mance of their proposals in more detail. Conduct-
ing experiments on physical networks and devices 
will provide researchers with deeper insights on 
their algorithms, reveal further challenges, and 
potentially support the progress in the research 
area of data-oriented communication.
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