
IEEE Communications Magazine • September 2016 1050163-6804/16/$25.00 © 2016 IEEE

Abstract

The computer communication research com-
munity has a significant interest in the para-
digm of ICN. Continuously, new proposals for
ICN-related challenges (caching, forwarding,
etc.) are published. However, due to a lack of a
readily available testbed, the majority of these
proposals are evaluated by either theoretical
analysis and/or conducting network simulations,
potentially masking further challenges that
are not observable in synthetic environments.
Therefore, this article presents a framework for
an ICN testbed using low-budget physical hard-
ware with little deployment and maintenance
effort for the individual researcher; specifical-
ly, named data networking is considered. The
employed hardware and software are powerful
enough for most research projects, but extreme-
ly resource-intensive tasks may push both
components toward their limits. The testbed
framework is based on well established open
source software and provides the tools to read-
ily investigate important ICN characteristics on
physical hardware emulating arbitrary network
topologies. The article discusses the testbed
architecture and provides first results obtained
from emulations that investigate the perfor-
mance of various forwarding strategies. The
results indicate that further challenges have to
be overcome when heading towards a real-world
deployment of ICN-based communication.

Introduction
In recent years, the information-centric network-
ing (ICN) research community has grown contin-
uously, positioning data-oriented communication
as promising architecture for the future Inter-
net. Today, there are a variety of ICN candidates
interpreting and implementing data-oriented
communication in their own ways, as surveyed
in [1, 2]. Among them is named data network-
ing (NDN) [3], probably the most elaborated
approach. As for all data-oriented communica-
tion approaches, data objects are addressed by
name. NDN-based communication follows a
strictly consumer-driven communication pattern.
Consumers issue so-called Interest messages to
request Data objects. The Interest carries the
name of the requested object, and it is forwarded
toward the content origin via longest prefix-based
matching of the naming components. Due to the

principle of data-oriented communication and a
new security model (content-based security [4]),
an Interest’s final destination does not necessar-
ily have to be the content origin. Any intermedi-
ate network node that may hold a content replica
may also satisfy a given Interest. For more details
on the principles of NDN, we kindly refer the
reader to [3].

The NDN community provides an exten-
sive software suite with the objective to further
advance research in this field. This includes the
network simulator ndnSIM [5], which is based
on the well-known ns-3 framework. Furthermore,
the software suite includes the Networking For-
warding Daemon (NFD) [6], an implementation
of the NDN principle on Linux-based systems.
Although the Linux-based implementation is
freely available, evaluations on physical networks
are rarely conducted in research articles. The
majority of proposals have been evaluated in
a synthetic environment, either relying on the-
oretical analysis or using network simulations.
While both methods are valid and necessary,
they should not be the final step and substitute
experiments on physical networks. There are a
number of impediments for experiments on phys-
ical networks/testbeds:
•	Setting up a testbed is a tedious and

work-intensive task.
•	Building a testbed of significant size can be

very costly.
•	Conducting a large batch of evaluations

using different parameters in a testbed is
more time consuming and error-prone than
using a flexible simulation environment.

In order to overcome these impediments and
to support researchers in their daily work, the
provision of a testbed is necessary. Current-
ly, the NDN community provides a testbed [7]
available to all community members. The test-
bed connects NDN nodes around the world
via the Internet, providing the opportunity to
evaluate NDN-based applications. Since this
testbed is a shared resource and can be used
by all members, the availability of the testbed
for the individual researcher may be limited.
Furthermore, researchers may not be able to
experiment with the core functionality of the
NFD (even if it is necessary for their research
objectives), since the NDN testbed needs to
stay functional at all times. Also, the NDN
testbed is realized as an overlay network on

A Low-Cost NDN Testbed on
Banana Pi Routers

Benjamin Rainer, Daniel Posch, Andreas Leibetseder, Sebastian Theuermann, and Hermann Hellwagner

Network Testing and Analytics

The computer commu-
nication research com-

munity has a significant
interest in the paradigm

of ICN. However, due to a
lack of a readily available

testbed, the majority
of these proposals are

evaluated by either
theoretical analysis and/

or conducting network
simulations, potentially

masking further challeng-
es that are not observable
in synthetic environments.

The authors present a
framework for an ICN

testbed using low-budget
physical hardware with

little deployment and
maintenance effort for the

individual researcher.

The authors are with Alpen-Adria-Universität Klagenfurt.

IEEE Communications Magazine • September 2016106

top of today’s Internet using ordinary comput-
ers as software routers. Since the researchers
do not have full control over the used infra-
structure (devices, links, etc.), side effects may
influence their evaluations, leading to distorted
results and aggravating reproducibility.

To tackle the above mentioned challeng-
es, this article presents a framework enabling
researchers to readily deploy their own NDN
testbed with low costs. We suggest a testbed
framework that is based on a set of single-board
devices, so-called Banana Pi routers.

While focusing on a low budget, the selected
hardware is powerful enough to conduct signif-
icant evaluations in all research areas of inter-
est regarding ICN. An exception is the use of
computationally expensive cryptography; howev-
er, this would also challenge recent off-the-shelf
CPUs such as used in ordinary desktop comput-
ers without cryptographic hardware support.

The costs for an NDN Banana Pi testbed of
significant size (e.g., 20 nodes) is approximately
US$3400. Costs scale linearly with approximate-
ly US$160 per added testbed node. We provide
pre-configured disk images, scripts, and installa-
tion guidelines for download (http://icn.itec.aau.
at), enabling researchers to easily realize their
own NDN testbed with little effort. Once the
images are copied to the required disks, and the
testbed hardware is assembled and connected
to a network, the testbed is ready for use. The
proposed framework allows arbitrary network
overlays to quickly be deployed on the physical
topology. Researchers may specify every detail
of the topology including link capacities, delays,
queuing disciplines, queue sizes, and more. The
framework further provides a web interface for
observing the health status of the testbed and
allows watching ongoing emulations in near real
time.

Testbed: Architecture, Deployment,
Emulation Environment, and

Monitoring

This section discusses the testbed architecture.
First, insights on the selected hardware are given.
Second, the tools and applications necessary to
realize an arbitrary network topology on the
physical devices are introduced, and their config-
uration is discussed. Finally, the web-based mon-
itoring possibilities for the testbed are presented.

Testbed Architecture and Hardware Requirements

Figure 1 depicts an overview of the testbed archi-
tecture. The testbed is based on an IP network
and realizes a virtual NDN overlay. In general,
the testbed consists of a number of single-board
computers, at least two network switches, and a
gateway. The testbed architecture requires two
dedicated networks, each forming a star topol-
ogy. The first network is denoted as the man-
agement network (MN), while the second one
is denoted as the emulation network (EN). This
clear separation ensures that traffic in the man-
agement network (setting up nodes, monitor-
ing devices, deploying software, etc.) does not
interfere with, or influence, active emulations.
An ordinary PC provides enough resources to
manage the tasks of the gateway. The gateway
is connected to the MN only, providing external
communication and control functionality.

It acts as the control server for conducting
emulations and is therefore the entry point for
the users to the testbed. Furthermore, it hosts
several (optional, but very useful) services, which
allow the monitoring of the testbed (discussed in
detail later). The single-board computers should
be able to access the Internet via the gateway, so
software updates can be retrieved easily.

Since the testbed architecture foresees two
dedicated networks, the testbed nodes (sin-
gle-board computers) are required to provide
at least two network interfaces. We have cho-
sen Banana Pi routers (BPI-R1) because they
are equipped with a four-port LAN switch
including a dedicated switching circuit. More-
over, these devices provide a WLAN interface
(supporting IEEE 802.11 b/g/n), which addi-
tionally gives the opportunity to support mobil-
ity scenarios. Another advantage of the BPI-R1
is that it offers a SATA 2.0 port. We consider
this an important feature, especially for con-
ducting emulations in the area of ICN. Users
may want to conduct experiments requiring
large in-network caches. When using only ordi-
nary Micro SD cards (default disk storage for
embedded devices and single-board comput-
ers), such experiments could not be performed
since the cache size would be constrained by
the main memory (1 GB DDR3-SDRAM).
Paging memory to the Micro SD cards with
rather low read/write data rates would dras-
tically decrease the performance below the
required line speed. Therefore, we strongly
suggest equipping the Pis with a solid state
disk (SSD). We summarize the most important
hardware specifications of a BPI-R1 in Table 1.
Furthermore, Table 2 lists the required hard-
ware components (including approximate costs

Figure 1. An overview of the testbed architecture. The testbed consists of
two dedicated physical networks. The management network (red lines) is
used to set up and control the testbed nodes, while the emulation network
(blue lines) realizes the virtual overlay network. The gateway is used as a
control server, and enables users to configure, observe, and visualize emu-
lation tasks.

E
Visualization

Observation Configuration

Gateway

Management
network
Emulation
network

Switch

Banana Pi
router

2ms

7ms

12m
s

4m
s

5m
s

20ms

5ms

17ms

3ms

9m
s

4ms

3ms

6ms

8ms

Virtual emulation network overlay

FD

C

A

B

IEEE Communications Magazine • September 2016 107

per unit) for a testbed with 20 nodes. Note that
we did not include hardware for the control
server because any available PC should be able
to handle the required workload and does not
burden one’s budget.

deployment of the vIrtuAl network topology

Once the Pis are assembled (they are usually
shipped without a case) and connected to the
switches, the next step is to deploy the desired
virtual network overlay on top of the testbed.
The BPI-R1 is shipped with its own operating
system called Bananian, a customized Debian
Linux composed by the hardware manufacturers.
Thus, basically all networking tools available for
Linux, for example, iptables and traffic control
(tc), can be used to realize the desired overlay
network. However, in order to use some more
advanced features of the tc, the Linux Kernel
has to be re-configured and re-compiled as the
default disk image is optimized with respect to
space constraints rather than for networking
functionality. Therefore, we provide a modifi ed
Bananian image for download (http://icn.itec.
aau.at).

We continue the discussion by providing the
technical details to deploy a virtual overlay on
the testbed. All discussed steps are implemented
in script(s) that can be downloaded at the pre-
viously indicated web page. Researchers using
the framework may specify arbitrary overlay
networks (in an ordinary text file, or using the
provided random network topology generator)
and apply them on the physical devices instanta-
neously. Note that only the EN will be modifi ed.
The MN remains always unchanged as it is only
used for confi guration and monitoring tasks.

Let us assume that the overlay network illus-
trated in Fig. 1 shall be deployed. The directed
edges defi ne the virtual links connecting the indi-
vidual nodes (thicker lines indicate higher link
capacities), and the link delays are indicated next
to directed edges’ heads in milliseconds. The fi rst
step is to model the virtual connection(s). This
can be achieved with the application iptables,
which enables the configuration of the tables
provided by the Linux kernel firewall. Initially,
we configure the tables to block all IP packets
received or transmitted over the EN. Then, for
each virtual link in the overlay network, an excep-
tion is inserted allowing the forwarding/receiving

of IP packets. For instance, in the case of node
A these are the upstream and downstream con-
nections to B and D (Fig. 1). Figure 2a depicts
the required rules to realize the connections for
node A. Once the iptables are confi gured on all
nodes, the basic topology of the overlay network
is refl ected by the EN on the IP layer.

The next step is to enforce the link capacities
and delays as indicated by the overlay descrip-
tion. For this task the framework relies on tc, an
application to configure and control the Linux
kernel’s network scheduler as sketched in Fig.
2b. The figure illustrates the employed traffic
control classifi cation for packet scheduling by the
example of node E. We use hierarchical token
bucket (HTB) fi lters, with multiple child classes
(one class per up- or downstream connection).
The bandwidth capacities are not limited at the
HTB level, but at the individual HTB’s child
classes. Each child is equipped with an additional
queuing discipline, a classical token bucket fi lter
(TBF) controlling the link capacities and queue
sizes. Furthermore, each child class is equipped
with a netem discipline realizing the individu-
al link delays. One can go even further and use
netem to introduce artifi cial packet loss or pack-
et corruption facilities if desired; however, we
do not discuss this further and refer to [8, 9] for
details.

InstAllIng the ndn communIcAtIon lAyer

The fi nal step before emulations can be conduct-
ed is to set up the NFD [6] accordingly on the
Pis. This application implements the NDN-based
communication layer. To make this task as com-
fortable as possible, the framework also takes
over this part. The user may specify the config-
uration of the NFDs (caching strategies, cache
sizes, forwarding strategies and entries, etc.) and
deploy it on the individual Pis using a deploy-
ment script. The NFD supports two baseline
caching strategies, least recently used (LRU) and
fi rst-in fi rst-out (FIFO), and several Interest for-
warding strategies (BroadCast, BestRoute, and
NCC) [6]. Nevertheless, one may be interested in
implementing more sophisticated approaches. To

Table 1. Specifi cation of a Banana Pi router
(BPI-R1).

Component Description (http://bananapi.com)

CPU ARM-Cortex-A7 (2x1.0 GHz)

GPU Mali-400MP2

Memory 1 GB DDR3-SDRAM

Storage 1x Micro SD, 1x SATA 2.0

Network 1x Ethernet RJ45, 4-Port-Switch, WLAN
802.11b/g/n

Power source 5 V/ 2 A via Micro USB

Table 2. Components for a testbed with 20 nodes.

Component Advice/comment ≈ Cost/unit

20x BPI-R1 US$80

20x Case for BPI-R1 Optional, but handy US$15

20x SSD Size of at least 120 GB US$50

20x Micro SD Size of at least 8 GB US$4

20x USB power cable Dimensioned for 2 A US$3

4x USB power hub At least 6 ports US$20

2x Gigabit switch At least 24 ports US$100

40x Ethernet cable CAT6, two colors, 5 ft US$2

Total: US$3400

The testbed architecture

requires two dedicated

networks, each forming

a star topology. The fi rst

network is denoted as

the management net-

work, while the second

one is denoted as the

emulation network. This

clear separation ensures

that traffi c in the man-

agement network does

not interfere with, or

infl uence, active

emulations.

IEEE Communications Magazine • September 2016108

that end, references [10, 11] provide good sur-
veys of recent caching strategies, while the relat-
ed work in [12] gives a good overview of existing
forwarding strategies.

To complete the configuration, the installa-
tion of the routing and forwarding entries in the
routing and forwarding information base of the
NFD [6] is required. The framework provides
two choices when users decide to automatically
deploy routes, similar as implemented in ndnSIM
[5]. The user may choose to use either all pos-
sible routes, or only the shortest paths between
each pair of nodes. The framework implements
the installation of the entries as follows. Each
node is given a unique identifi er. Then for each
forwarding strategy and for each other node,
one forwarding entry of the following structure
is installed: /fw-strategy/source-node-id. If using all
routes has been selected, the entry may point to
multiple outgoing faces. Hence, any user-defi ned
application within the testbed can easily choose
the source from which it may consume data by
specifying the producer’s node identifier. One
further chooses the forwarding strategy by indi-
cating the strategy name in the emitted request
message.

conductIng And observIng An eXperIment

To conduct a batch of emulations/experiments,
the user needs to specify the emulation param-
eters in a script. Basically, the framework fore-
sees the following behavior. The user specifies
two kinds of abstract applications: consumers
and producers. Which application is executed on
which node has to be specified in the previous-
ly mentioned topology file. First, a script starts
the logging functionality on all Pis, and then all
producer/consumer applications are executed.
The gateway monitors the Pis and stops the emu-
lation once all consumer applications have fin-
ished. Then the logging functionality is stopped,
and the corresponding logfi les are gathered and
stored on the gateway for later processing. The
logfi les provide information about the Pis includ-
ing CPU load, power consumption, and memory
usage, and may also contain application-specifi c

data provided by the specifi ed consumer/produc-
er applications.

testbed monItorIng

Testbed monitoring is coordinated by the gate-
way (Fig. 1). There are basically two levels of
monitoring that can be accessed via the web
interface. The first level provides a very rough
overview that allows monitoring the health state
of the testbed. To that end, each Banana Pi uses
cron (a job scheduler for Linux) to trigger the
logging of important data periodically (e.g., on
an hourly basis). The logged data is provided in
JSON format and is collected by the gateway
using wget (a program to fetch data via HTTP-/
FTP connections). This data includes important
information about the Pis including CPU load,
power consumption, memory usage, network
traffi c, disk usage, and so on. A history of about
one week is stored at the gateway, providing a
quick overview of whether or not the testbed has
been operating as expected. The second monitor-
ing level is more detailed and is active once emu-
lations are conducted. During an experiment,
every few seconds the Pis actively push logfiles
to a virtual RAM disk on the gateway (through
the MN) using the Network File System (NFS).
These files are then accessible via a web serv-
er, and users may monitor the ongoing experi-
ment in near real time using the web interface, as
illustrated in Fig. 3. The second monitoring level
should be disabled for experiments demanding
highly accurate measurements of the CPU load
or power consumption, as the provision of this
real-time log data requires little but noticeable
resource consumption.

testbed evAluAtIon And compArIson to
network sImulAtIons

This section presents the design and results of an
exemplary experiment conducted on the testbed.
The selected experiment investigates the influ-
ence of different forwarding strategies on the data
delivery performance of NDN. Furthermore, the
obtained results are compared to the same experi-

Figure 2. The left side sketches the confi guration of the Linux iptables by the example of node A (Fig. 1).
The right side illustrates the Linux traffi c control classifi cation for packet scheduling by the example
of node E.

Root queueing
discipline (HTB)

HTB
node F

HTB
(default)

HTB
node C

Class
C-up

Class
C-down

Class
F-up

Class
F-down

Root
qdisc

TBF
C-up

(a) (b)

1 Chain INPUT (policy DROP)
2 target protocol option source destination
3 ACCEPT all ⎯ B A
4 ACCEPT all ⎯ D A
5
6 Chain FORWARD (policy DROP)
7 target protocol option source destination
8 ACCEPT all ⎯ A B
9 ACCEPT all ⎯ B A
10 ACCEPT all ⎯ A D
11 ACCEPT all ⎯ D A
12
13 Chain OUTPUT (policy DROP)
14 target protocol option source destination
15 ACCEPT all ⎯ A B
15 ACCEPT all ⎯ A D

TBF
C-down

TBF
F-up

TBF
F-down

Netem
C-up

Netem
C-down

Netem
F-up

Netem
F-down

Per link HTB
exception:
default for MN

Separate up-/
downstream

Rules for up-/
downstream,
bandwidth, delay,
burst, buffer, etc

There are basically two

levels of monitoring

that can be accessed

via the web interface.

The fi rst level provides

a very rough overview

that allows monitoring

the health state of the

testbed. The second

monitoring level is

more detailed and is

active once emulations

are conducted.

IEEE Communications Magazine • September 2016 109

ment conducted using ndnSIM 2.0 [5]. Finally, we
push the Pis to their limits to assess the maximum
work load these devices can handle.

Evaluation Scenario

In the experiment we want to investigate the per-
formance of the following forwarding strategies:
Broadcast [6], BestRoute [6], NCC [6], RFA
[13], and SAF [12]. Due to the limited number
of available testbed nodes, we decided to model
a typical peer-to-peer overlay network. We gen-
erate network topologies consisting of n = 20
nodes using the Erdõs Rényi model [14]. The
probability of creating a link between two nodes
was set to p = 0.15, and the link delays d  [5
ms, 20 ms] are drawn from a uniform distribu-
tion. We ensure that the generated graph is con-
nected by omitting topologies not satisfying this
condition. For the bandwidth capacity of a link
we consider three different settings: LowBW,
that is, from the interval [2000 kb/s, 3000 kb/s];
MediumBW, that is, from [3000 kb/s, 4000 kb/s];
and HighBW, that is, from [4000 kb/s, 5000 kb/s].
Each node maintains a 250 MB large cache using
the FIFO replacement strategy. For each simu-
lation/emulation, 4 nodes are randomly assigned
as servers providing unique content to 12 clients.
Each client requests content with a constant bit
rate of approximately 2000 kb/s from a single
server, with a Data packet size of 4 kB. The pair-
ing between client and server is randomized for
each run. In total, 40 runs are performed for

each configuration simulating/emulating 30 min
of network traffic.

Please note that this evaluation scenario is
exemplary to compare results obtained from the
testbed with results obtained from simulations. The
evaluations are not sufficiently extensive to assess
the real performance of the investigated strategies.
Nevertheless, this experiment may indicate interest-
ing trends.

Results Obtained from the Testbed

Figures 4a–d illustrate the results of the experi-
ment when conducted on the testbed. Figure 4a
shows the Interest satisfaction ratio, which provides
the ratio of received Data packets and generated
Interests per client. The figure indicates that SAF
outperforms its competitors in scenarios with lim-
ited bandwidth; however, as bandwidth resources
are increased, the other algorithms start to catch
up, particularly BestRoute. Figure 4b depicts the
average cache hit ratio per network node. Here
one can observe that Broadcast and NCC obtain
the highest cache hit ratio. However, one has to
consider that those strategies tend to replicate
Interests, especially Broadcast, and therefore, the
cache hit ratio always has to be seen in relation to
the caused traffic and the achieved Interest satis-
faction ratio. In Figs. 4c and 4d the average power
consumption and the average CPU load per node
are illustrated. These results can only be obtained
from the testbed. This makes them particu-
larly interesting for investigating the real-world

Figure 3. Snapshot of the web interface that can be used to monitor ongoing emulations in near real time.

IEEE Communications Magazine • September 2016110

requirements of algorithms. It is evident that both
SAF and BestRoute consume less power on the
single-board computers than the other algorithms.
For an environment with scarce energy resourc-
es, these algorithms may thus be better suited.
Regarding CPU load, we can observe that RFA
requires the most CPU resources, which may lead
to problems on constrained, embedded devices.
Also Broadcast tends to use a lot of resourc-
es, as the relentless duplication of Interests and
especially their later processing, requires a lot of
resources.

To assess the capabilities of the BPI-R1 we
conducted another experiment measuring the
CPU usage of the NFD with respect to the pro-
cessed packets. Figure 4e illustrates the result of
this experiment, where we varied the number of
issued Interests from 100 to 800 packets/s (one
satisfied Interest results in two processed pack-
ets, i.e., an additional Data packet). Furthermore,
we conducted this experiment with different
cache sizes. The employed cache sizes are 10,000,
50,000, 100,000, and 150,000 entries. We always
start the individual runs with full caches to force
extensive entry replacement to assess its influence
on the CPU load. Figure 4e shows that the CPU
load of the NFD increases proportionally with the
number of processed Interests. Also, larger cache
sizes increase the CPU load, as the replacement of
entries becomes more expensive. With 500 issued
Interests, the BPI-R1 reaches its capacity limits,
leading to drastic packet loss if more packets have
to be processed. Although the BPI-R1 maintains
a dual-core CPU, the NFD [6] is not capable of
using more than one core, limiting the Pi’s capa-
bilities. One can translate this result in a possible
data rate a BPI-R1 may handle using the NFD
on a single CPU core. Assuming a Data packet
size of 8 kB (maximum currently supported by
the NFD), a Pi may handle at most a data rate of

500 · 8 · 8192 = 32,768 kb/s. If researchers require
more than 500 forwarded Interest/Data pairs per
second and/or a higher data rate for their experi-
ments, there are two options:
•	Use more powerful devices. We expect that

there will be a successor for BPI-R1 avail-
able shortly, with similar hardware as the
recently released BPI-M3 (octa-core CPU
with 8  1.8 GHz).

•	Update the NFD to make use of multiple
CPU cores.
Please note that for all our experiments the

digital signing of packets as foreseen by [3] was
disabled. Using public-key cryptography [15] for
real-time packet signing without dedicated cryp-
tographic hardware is not feasible even with power-
ful desktop CPUs.

Comparing the Results of ndnSIM and the Testbed

We anticipate that the observed performance of
the algorithms in the simulator is better than on the
testbed. We expect this because ndnSIM [5] does
not consider the overhead caused by the underlying
protocols (UDP: 8 bytes, IPv4: 20 bytes, Ethernet:
18 bytes) that are required for communication on
the testbed. Instead, the simulator uses a virtual
channel to transmit NDN packets with nearly no
overhead (2 bytes for a protocol flag).

As already mentioned in the previous sec-
tion, using ndnSIM we are not able to obtain
figures for the power consumption or the CPU
load required by the algorithms. Therefore,
Figs. 4f and 4g only depict the results obtained
for the Interest satisfaction ratio and the cache
hit ratio. Please note that we compare only the
results for the setting MediumBW to ease read-
ability; the results for the other two settings are
similar. The left set of bars in Figs. 4f and 4g
depict the results obtained by conducting sim-
ulations, while the right set of bars depict the

Figure 4. The figure depicts the findings of the conducted experiments. Subfigures 4a–d illustrate the results obtained from the test-
bed. Subfigures 4f and 4g compare the results obtained by emulations and simulations for the setting “MediumBW” also. Subfig-
ure 4e indicates the packet processing capabilities of a BPI-R1 with respect to varying cache sizes (10,000–150,000 entries).

Number of issued Interests per second
(e)

200

40 0.2

CP
U

us
ag

e
of

 th
e

N
FD

 (%
)

30

50

60

70

80

90

100

0.1
0

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

300 400 500 600 700 800

CPU 10k
CPU 50k
CPU 100k
CPU 150k

SAT 10k
SAT 50k
SAT 100k
SAT 150k

Medium bandwidth
(g)

Simulation

0.1

0

Ca
ch

e
hi

t r
at

io

0.2

0.3

0.4

Emulation

Bandwidth-setting
(c)

LowBW

3.4

3.2

Po
w

er
 c

on
su

m
pt

io
n

(w
)

3.6

3.8

4

Medium BW HighBW

Medium bandwidth
(f)

Simulation

0.4

0

In
te

re
st

 sa
tis

fa
ct

io
n

ra
tio

0.2

0.6

0.8

1

Emulation

Bandwidth-setting
(b)

LowBW

0.1

0

Ca
ch

e
hi

t r
at

io

0.2

0.3

0.4

Medium BW HighBW
Bandwidth-setting

(d)

LowBW

0.3

0.1

CP
U

lo
ad

0.2

0.4

0.5

Medium BW HighBW
Bandwidth-setting

(a)

LowBW
0

In
te

re
st

 sa
tis

fa
ct

io
n

ra
tio

0.4

0.2

0.6

0.8

1

Medium BW HighBW

Broadcast
NCC

RFA
BestRoute

SAFBroadcast
NCC

RFA
BestRoute

SAF

Broadcast
NCC

RFA
BestRoute

SAF Broadcast
NCC

RFA
BestRoute

SAFBroadcast
NCC

RFA
BestRoute

SAFBroadcast
NCC

RFA
BestRoute

SAF

IEEE Communications Magazine • September 2016 111

results obtained conducting emulations on the
testbed. It is evident from Fig. 4f that especial-
ly Broadcast and NCC suffer from severe per-
formance loss when executed on the testbed.
This is defi nitely due to the larger overhead in
the testbed as these strategies tend to replicate
Interests. Considering that the average Inter-
est size during simulation was about 40 bytes
(according to the ndnSIM documentation, the
minimum size of an Interest message is 14
bytes), an additional overhead of 8 + 20 + 18
= 46 bytes roughly doubles the size of each for-
warded Interest. Also, BestRoute suffers from
minor performance loss; however, as this strat-
egy does not replicate Interests, the impact is
substantially smaller. Interestingly, the forward-
ing strategies RFA and SAF do not suffer from
signifi cant performance loss. This is due to their
basic principles of distributing traffi c among the
interfaces with the lowest load without creat-
ing replicas of Interests avoiding Interest drops
at congested interfaces. Regarding the cache
hits illustrated in Fig. 4g, there is no signifi cant
difference observable for the algorithms Broad-
cast, NNC, and BestRoute as their confidence
intervals are overlapping. Surprisingly, SAF is
able to maintain a slightly higher cache hit ratio
when executed on the testbed, while for RFA
exactly the opposite is true.

conclusIon And outlook
This article presents a framework that enables
researchers to readily deploy an NDN testbed
on low-budget single-board computers, so-called
Banana Pis. All required tools/applications are
introduced, and an open source contribution pro-
vides disk images, scripts, and guidelines to enable
researchers to set up their own testbed. The arti-
cle shows the potential benefi t of such a testbed by
conducting a baseline experiment. A comparison
of network emulations and simulations shows that
the abstraction introduced by simulations hides
important details (overheads, resource usage,
etc.). For the future we expect that this testbed
will help ICN/NDN researchers assess the perfor-
mance of their proposals in more detail. Conduct-
ing experiments on physical networks and devices
will provide researchers with deeper insights on
their algorithms, reveal further challenges, and
potentially support the progress in the research
area of data-oriented communication.

Acknowledgment

This work was supported in part by the Austrian
Science Fund (FWF) under the CHIST-ERA
project CONCERT (A Context-Adaptive Con-
tent Ecosystem Under Uncertainty), project no.
I1402 at Alpen-Adria-Universität Klagenfurt.

references

[1] B. Ahlgren et al., “A Survey of Information-Centric Networking,” IEEE Com-
mun. Mag., vol. 50, no. 7, 2012, pp. 26–36.

[2] G. Xylomenos et al., “A Survey of Information-Centric Networking
Research,” IEEE Commun. Surveys & Tutorials, vol. 16, no. 2, 2014, pp.
1024–49.

[3] L. Zhang et al., “Named Data Networking,” ACM SIGCOMM Comp. Com-
mun. Rev., vol. 44, no. 3, 2014, pp. 66–73.

[4] V. Jacobson et al., “Networking Named Content,” Proc. 5th ACM Int’l. Conf.
Emerging Networking Experiments and Technologies, 2009, pp. 1–12.

[5] S. Mastorakis et al., “ndnSIM 2.0: A New Version of the NDN Simulator for
NS-3,” tech. rep. NDN-0028, UCLA, 2015.

[6] A. Afanasyev et al., “NFD Developer’s Guide,” tech. rep. NDN-0021, 2014;
http://named-data.net/publications/techreports/nfd-developer-guide/

[7] Data Networking Consortium, “The NDN Testbed,” http://named-data.net/
ndn-testbed/; last accessed: Jan. 2016.

[8] B. Hubert et al., “Linux Advanced Routing and Traffic Control HOWTO
v.1.0.1,” 2012; http://www.lartc.org/; last accessed: Jan. 2016

[9] S. Heminger, “Network Emulation with NetEm,” Proc. Linux Conf. Australia,
Apr. 2005, p. 9.

[10] G. Zhang, Y. Li, and T. Lin, “Caching in Information Centric Networking: A
Survey,” Computer Networks, vol. 57, no. 16, 2013, pp. 3128–41.

[11] M. Zhang, H. Luo, and H. Zhang, “A Survey of Caching Mechanisms in
Information-Centric Networking,” IEEE Commun. Surveys & Tutorials, vol.
17, no. 3, 2015, pp. 1473–99.

[12] D. Posch, B. Rainer, and H. Hellwagner, “SAF: Stochastic Adaptive For-
warding in Named Data Networking,” Computing Research Repository
(CoRR), 2016, p. 14; http://arxiv.org/abs/1505.05259.

[13] G. Carofi glio et al., “Optimal Multipath Congestion Control and Request
Forwarding in Information-Centric Networks,” Proc. 21st IEEE Int’l. Conf.
Network Protocols, Oct. 2013, pp. 1–10.

[14] P. Erdõs and A. Rényi, “On Random Graphs I,” Publicationes Mathemati-
cae, vol. 6, 1959, pp. 290–97.

[15] A. J. Menezes, P. C. Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996.

bIogrAphIes

BENJAMIN RAINER received his B.Sc., M.Sc. (Dipl.-Ing.), and Ph.D. (Dr. techn.) in
computer science with distinction from the Alpen-Adria-Universiät Klagenfurt,
Austria. He is a postdoctoral researcher at the Department of Information
Technology (ITEC) in the Multimedia Communication (MMC) research group
working on the CONCERT project, Alpen-Adria-Universitäat Klagenfurt. His
research interests are audio/video encoding, parallel computing, quality of
experience, and ICN/NDN.

DANIEL POSCH received his B.Sc. and M.Sc. (Dipl.-Ing.) in computer science
with distinction from the Alpen-Adria-Universität Klagenfurt. He is pursuing
a Ph.D. (Dr. techn.) in computer science at the ITEC in the MMC research
group, Alpen-Adria-Universität Klagenfurt. His research interests are multi-
media technologies in ICN/NDN. Currently, he works on Interest forwarding
strategies for NDN with the objective to enhance multimedia content delivery.

ANDREAS LEIBETSEDER received his B.Sc., and M.Sc. (Dipl.-Ing.) in computer sci-
ence with distinction from the Alpen-Adria-Universitäat Klagenfurt. He is pur-
suing a Ph.D. (Dr. techn.) in computer science at the ITEC in the Distributed
Multimedia Systems (DMS) research group, Alpen-Adria-Universität Klagenfurt.

SEBESTIAN THEUERMANN is a B.Sc. student in computer science at the
Alpen-Adria-Universität Klagenfurt. He is a student assistant at the ITEC
employed in the CONCERT project funded by the Austrian Science Fund
(FWF). Currently, he supports NDN research and is actively involved in the
development of the NDN testbed.

HERMANN HELLWAGNER [M] is a full professor of computer science in the ITEC,
Alpen-Adria-Universität Klagenfurt, leading the MMC research group. His current
research areas are distributed multimedia systems, multimedia communications,
ICN/NDN, and quality of service. He has received many research grants from
national (Austria, Germany) and European funding agencies as well as from
industry, is the Editor of several books, and has published more than 200
scientifi c papers. He is a member of the ACM, German Informatics Society, and
Austrian Computer Society, and is Vice President of the Austrian Science Fund.

For the future we

expect that this testbed

will help ICN/NDN

researchers assess the

performance of their

proposals in more

detail. Conducting

experiments on physical

networks and devices

will provide researchers

with deeper insights on

their algorithms, reveal

further challenges and

potentially support the

progress in the research

area of data-oriented

communication.

