
A Scalable Video Coding Dataset and Toolchain for
Dynamic Adaptive Streaming over HTTP

Christian Kreuzberger, Daniel Posch and Hermann Hellwagner
Institute of Information Technology (ITEC)

Alpen-Adria-Universität (AAU) Klagenfurt, Austria
firstname.lastname@itec.aau.at

ABSTRACT
With video streaming becoming more and more popular,

the number of devices that are capable of streaming videos
over the Internet is growing. This leads to a heterogeneous
device landscape with varying demands. Dynamic Adaptive
Streaming over HTTP (DASH) offers an elegant solution to
these demands. Smart adaptation logics are able to adjust
the clients’ streaming quality according to several (local)
parameters. Recent research indicated benefits of blending
Scalable Video Coding (SVC) with DASH, especially con-
sidering Future Internet architectures. However, except for
a DASH dataset with a single SVC encoded video, no other
datasets are publicly available. The contribution of this pa-
per is two-fold. First, a DASH/SVC dataset, containing
multiple videos at varying bitrates and spatial resolutions
including 1080p, is presented. Second, a toolchain for mul-
tiplexing SVC encoded videos is provided, therefore making
our results reproducible and allowing researchers to generate
their own datasets.

Categories and Subject Descriptors
H.5.1 [Multimedia Information System]: Video

General Terms
Algorithms, Measurement, Standardization

Keywords
DASH; Dataset; Toolchain; Scalable Video Coding

1. INTRODUCTION
Real-time entertainment platforms such as YouTube and

Netflix cause over 50% of traffic on the Internet [17]. Tradi-
tional satellite or cable-TV with a fixed program schedule is
slowly being supplemented by video-on-demand streaming
solutions over the Internet [13]. The advantages are clear:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MMSyS’15, March 18-20 2015, Portland, OR, USA
Copyright 2015 ACM 978-1-4503-3351-1/15/03 ...$15.00
http://dx.doi.org/10.1145/2713168.2713193.

consumers can watch the video anytime and anywhere, pro-
vided they have a broadband network connection; companies
can use targeted advertisements to generate higher revenues.
Previously, streaming services were using push based pro-

tocols, e.g., Real-Time Transport Protocol (RTP), which of-
ten caused problems with firewall configurations, lossy con-
nections and congested network paths. Contrary to RTP,
Dynamic Adaptive Streaming over HTTP (MPEG-DASH,
ISO/IEC 23009-1) uses an HTTP connection, therefore cop-
ing with most firewall and proxy settings (port 80, HTTP
traffic). Furthermore, MPEG-DASH allows the distribution
of content with varying encodings, therefore supporting het-
erogeneous end devices with different screen sizes, network
connections and decoding capabilities.
However, the benefit of being able to satisfy many dif-

ferent devices and spatial resolutions, ranging from 180p
up to 4k, comes at the cost of increased storage demands
and network usage. Video platform providers have to use
(external) Content Distribution Networks (CDNs) – such as
Akamai or Amazon CloudFront – to handle the enormous
amount of traffic. Furthermore, each video is stored several
times at different spatial resolutions and various bitrates.
While real-time entertainment platforms are striving for

maximizing the users’ satisfaction, Internet Service Providers
are looking at maintaining network stability. With the grow-
ing amount of multimedia traffic this is a non-trivial task.
To deal with this problem the Future Internet community
proposed architectures that implement inherent caching on
network nodes. This would allow network nodes to store
popular content closer to the customers, therefore reducing
load on network links further away from the customers.
Caching popular content closer to the consumer provides

a solution to reduce network load. However, DASH pro-
poses to use many representations at various quality lev-
els. Therefore, one consumer might request a video at basic
quality, while another user might request a video at high
quality, while yet another one might request a medium qual-
ity. A cache would have to store all three copies or store at
least a very high quality and provide the lower qualities by
transcoding. In the case of streaming multiple representa-
tions and many different videos, the caching node(s) would
quickly become overloaded and ineffective.
To overcome this issue, the fusion of MPEG-DASH with

Scalable Video Coding (SVC) [18] was proposed and evalu-
ated by several papers [16, 7]. In particular, [7] stated that
even though SVC does introduce some overhead, roughly
50% of storage space could be saved by replacing AVC en-
coded videos with SVC encoded videos.

In SVC, videos are split into several interdependent lay-
ers, with each layer subsequently increasing the video qual-
ity. The base layer (BL), which does not depend on any
other layer, provides a basic quality (e.g., 360p, 24 fps).
The remaining layers, also called enhancement layers (EL),
increase the quality (e.g., 720p and 1080p at 24 fps, and
1080p at 48 fps), but depend on at least the base layer.
Blending SVC with MPEG-DASH still allows to satisfy di-
verse consumer demands, while furthermore allowing CDNs
and caches to be used more efficiently by prioritizing the
base layer, and providing enhancement layers only when re-
sources are available.
The remainder of this paper is structured as follows. Sec-

tion 2 gives an overview of the related work in this area. We
provide a Scalable Video Coding toolchain and dataset for
Dynamic Adaptive Streaming over HTTP in Section 3. In
Section 4 we present a short analysis of the generated con-
tent. We conclude the paper in Section 5, indicating future
work using our dataset.

2. RELATED WORK
This section discusses related work in the context of MPEG-

DASH and scalable content encodings. In terms of Scalable
Video Coding, [18] provides a good overview of the coding
concept, and [12] discusses Scalable High Efficiency Video
Coding (SHVC) and its improvements compared to SVC.
In terms of MPEG-DASH and SVC, a lot of research al-

ready exists. [19] evaluates different DASH adaptation logics
based on SVC. Grafl et al. [7, 8, 9] analysed SVC encoder
settings and argued that there is about 10% overhead per
additional layer. Furthermore [8] proposed a hybrid SVC
model, where content is split into multiple base layers at
varying resolutions, e.g., 360p, 720p and 1080p, and then up
to three quality layers are added for each resolution. This
hybrid approach allows to combine the benefits of DASH
and SVC, while keeping the overhead caused by the SVC
encoding at a moderate percentage (roughly 40%).
While plenty of research exists for MPEG-DASH and SVC,

to the best of our knowledge there are no MPEG-DASH
datasets that provide content using Scalable Video Coding,
except for the Tears of Steel (TOS) [5] video in [10]. How-
ever, while [10] provides many AVC encoded videos, they do
not provide proper PSNR nor SSIM values for TOS, there-
fore inhibiting the ability to evaluate SVC-encoded videos
for MPEG-DASH. [11] provides a dataset containing rather
short SVC encoded sequences, though due to the encoder
settings used and their brevity, those videos are not neces-
sarily applicable for experimentations with MPEG-DASH.

3. DASH/SVC TOOLCHAIN
This section discusses the source videos and developed

tools to generate the dataset. Furthermore, we briefly dis-
cuss the encoder settings used. We use the proprietary
MainConcept [1] SVC/H.264 Encoder (Revision 1.5) in favour
of the JSVM reference encoding software, as MainConcept
has a significantly better performance in terms of encod-
ing time (approx. 30 minutes compared to several days
for encoding a 10 minute video at 720p). The toolchain
and scripts provided cover both, the MainConcept and the
JSVM encoder, allowing reproducibility of our results. Our
open source toolchain is available at our github repository
at http://tinyurl.com/DASHSVC.

3.1 Encoder Settings
A key problem of encoding content to be DASH-compliant

is to force I-Frames to be at the beginning of every segment,
and to make segments independently decodable. Assuming
a segment size of two seconds, containing 48 frames, the
following settings were necessary for the MainConcept en-
coder:

• idr_interval=48 guarantees that starting from frame
1, the next 48 frames only depend on each other, but
not on any frames before or after, making segments
independent from each other.

• min_idr_interv=48 forces IDR frames every 48 frames,
therefore ensuring I-Frames at the beginning of every
segment.

• reordering_delay=4 and use_b_slices = 1 are re-
quired to enforce an IBBBP-like frame structure for
each segment.

We omit the full configuration files due to space constraints
and refer to our dataset, which includes the configuration
files for the MainConcept encoder. Similar settings are nec-
essary when using the JSVM reference encoding software
(e.g., GOPSize 48, IDRPeriod 48). Furthermore, video spe-
cific parameters such as the video resolution, bitrate and
quantization parameters (QP) need to be chosen per layer
(see Section 3.4).
The BitStreamExtractorStatic tool of the JSVM reference

encoding software shows the various layers produced. The
tool lists all layers and indexes them based on their layer
dependency (D), temporal layer (T) and quality layer (Q)
[18]. An example using an encoded video from our dataset
is provided in Listing 1.

3.2 De-Multiplexing the H.264/SVC Bitstream
The SVC encoder creates an H.264 compatible bitstream

[15], which contains so called Access Units (AUs). Each
AU represents a frame and contains one or more Network
Abstraction Layer Units (NALUs). Each NALU then con-
tains a type and some header information, describing sev-
eral types of frames/slices: AVC-I, AVC-P, AVC-B frames,

$> BitStreamExtractorStatic BBB -I -360p.264
JSVM 9.19.15 BitStream Extractor

Contained Layers :
====================

Res. FPS Bitrate MinBitrate (D,T,Q)
0 640 x360 6 162.5 162.50 (0 ,0 ,0)
1 640 x360 12 325.0 325.00 (0 ,1 ,0)
2 640 x360 24 650.0 650.00 (0 ,2 ,0)
3 640 x360 6 275.0 275.00 (1 ,0 ,0)
4 640 x360 12 550.0 550.00 (1 ,1 ,0)
5 640 x360 24 1100.0 1100.00 (1 ,2 ,0)
6 640 x360 6 412.5 412.50 (2 ,0 ,0)
7 640 x360 12 825.0 825.00 (2 ,1 ,0)
8 640 x360 24 1650.0 1650.00 (2 ,2 ,0)
9 640 x360 6 550.0 550.00 (3 ,0 ,0)

10 640 x360 12 1100.0 1100.00 (3 ,1 ,0)
11 640 x360 24 2200.0 2200.00 (3 ,2 ,0)

Listing 1: SVC Layer Information

Type (D,T,Q) Frame
H.264/SVC Header (init-file)
New AU
AVC-I (0,0,0) 1 → BL
SVC-I (1,0,0) 1 → EL 1
SVC-I (2,0,0) 1 → EL 2
New AU
AVC-B (0,1,0) 2 → BL
SVC-B (1,1,0) 2 → EL 1
SVC-B (2,1,0) 2 → EL 2
New AU
AVC-B (0,0,0) 3 → BL
SVC-B (1,0,0) 3 → EL 1
SVC-B (2,0,0) 3 → EL 2
...

...
...

New AU
AVC-P (0,1,0) 48 → BL
SVC-P (1,1,0) 48 → EL 1
SVC-P (2,1,0) 48 → EL 2
H.264/SVC Header (segment border)
New AU
AVC-I (0,0,0) 49 → BL
SVC-I (1,0,0) 49 → EL 1
SVC-I (2,0,0) 49 → EL 2
...

...
...

End of Stream

Table 1: H.264/SVC Bitstream Example with two
quality (D) and one temporal (T) EL

and SVC-I, SVC-P, SVC-B frames. Usually, an AU contains
multiple NALUs, and each NALU describes the frame for a
specific layer. Layer dependencies (D,T,Q) are included in
each NALU’s header, allowing to identify the layer ID (e.g.,
BL, EL 1, EL 2, ...). An example of the frame ordering of
SVC is provided in Table 1 for two enhancement layers.
To create a DASH-compliant structure, the SVC bitstream

is de-multiplexed into several segments. The segment length
has to be chosen in compliance with the encoder settings (see

*

AVC-I SVC-I SVC-I

AVC-B SVC-B SVC-B

AVC-P SVC-P SVC-P

AVC-I SVC-I SVC-I

AVC-B SVC-B SVC-B

AVC-B SVC-B SVC-B

AVC-P SVC-P SVC-P

AVC-I

AVC-B

AVC-B

AVC-P

......

SVC-I

SVC-B

SVC-B

SVC-P

1

2

3

n

H.264/SVC Segment

......

SVC-I

SVC-B

SVC-B

SVC-P

BL EL 1 EL 2

Figure 1: A DASH/SVC segment, starting with an
I-Frame, is split into multiple files, one per layer.
The different layers are indicated by the boxes on
the right side and the coloring of the frames.

Name Length Type
Big Buck Bunny [2] 14315 frames Animation
Elephants Dream [3] 15691 frames Animation
Tears of Steel [5] 17620 frames Movie
Sintel [4] 21312 frames Animation
Xiph.org Test Videos (derf’s collection)

Table 2: Videos included in the dataset

Section 3.1), i.e., n = 48 frames (or n = 96, 144, . . . respec-
tively). Except for the last segment, each segment contains
exactly n frames, and every segment must start with an
AVC-I Frame. Depending on the encoding process, each seg-
ment starts with an SVC header, describing the scalability
structure (Sequence Parameter Set). However, said header
contains the same information for each segment, therefore
the header of the first segment can be re-used for all other
segments. Similar to DASH/AVC, this header is removed
from all segments and stored in an init-file. Now each seg-
ment contains frames for multiple layers, though for exploit-
ing the full potential of SVC, each segment needs to be split
into multiple files, one per layer, as depicted in Figure 1.
Multiplexing is done on a per-segment basis, by follow-

ing the process depicted in Figure 1 in reverse order. If
only a subset of the layers is present, e.g., BL and EL 1,
only the subset is multiplexed. Finally the init-file is in-
serted at the beginning of the multiplexed segment. The
decoder will notice any missing enhancement layers, and
only decode the available subset. Based on [6], we provide
enhanced tools, such as a bitstream analyzer, a fake video
player (without video output) and new demultiplexer/multi-
plexer scripts for DASH/SVC at our github respository (see
http://tinyurl.com/DASHSVC). Decoding of the generated
dataset is possible for all encoded videos by using the pro-
vided scripts (i.e., svc_merge.py) in combination with the
JSVM reference software on a per-segment basis.

3.3 Source Videos
As we wanted to create the possibility to evaluate DASH

with SVC compared to the existing DASH dataset [10],
we decided to encode the source files of Big Buck Bunny
(BBB) [2], Elephants Dream (ED) [3], Tears of Steel (TOS)
[5] and Sintel [4] (see Table 2). All four videos are avail-
able in the raw YUV format (YUV420p, 1080p, 24 fps),
therefore PSNR and SSIM [21] values of the encoded videos
can be calculated accordingly (see Section 4). In addition,
we encoded a selection of short videos of derf’s collection
(http://media.xiph.org): Blue Sky, Rush Hour, Pedestrian
Area, Riverbed, Station2, Sunflower, Tractor, Factory.

3.4 Bitrates and Spatial Resolutions
Exploiting SVC with multiple enhancement layers in var-

ious dimensions (e.g., a mix of spatial and quality scalabil-
ity) could result in a rather large overhead (roughly 10% per
additional layer [7]). Furthermore, using too many enhance-
ment layers would have a negative impact on the client (and
potentially the server), as the client would have to issue a
high number of HTTP requests for each segment. We en-
coded the content with a maximum of 4 ELs with MainCon-
cept’s Variable Bitrate Encoding (VBR), using the following
four different variants:

• Variant I uses the Hybrid SVC approach and bitrate
recommendations of [7]. Content is split into several
independent base layers at varying resolutions (e.g.,
360p, 720p, 1080p), and then SNR scalability is used
to enhance each resolution’s quality successively (e.g.,
low, medium, high and very high quality). Each en-
hancement layer introduces 10% additional overhead,
resulting in 10, 20 and 30% overhead, respectively –
see Table 3.

• Variant II uses the same approach as Variant I, but the
spatial resolutions and bitrates are chosen to match
the existing dataset [10]. For simplicity, we limited
the number of enhancement layers to two. The resolu-
tions used are 480x360, 1280x720 and 1920x1080. See
Table 4 for the bitrates used.

• Variant III is slightly different. It uses only a single
base-layer at 640x360, with two spatial and one quality
enhancement layer – see Table 5.

• Variant IV is based on Variant III, with the addition
of one more EL at 1920x1080 – see Table 6.

Evaluations of PSNR/SSIM values and bitrates for each
variant are given in Section 4.

3.5 Temporal Scalability
As the example in Section 3.1 shows, there are multiple

temporal layers (at 6, 12 and 24 fps). In addition to the
previously discussed layers at 24 fps, we provide all variants
with temporal scalability at 6, 12 and 24 fps. The full benefit
of temporal scalability can be exploited when content with
higher framerates, e.g., 48 or 60 fps, is used.

3.6 Deployment
For each variant, the bitstream is de-multiplexed into mul-

tiple segments with multiple layers, resulting in the follow-
ing structure: $VideoName$-Seg$Number$-L$LayerId$.svc.
For Variant I a simplified example of the media presenta-
tion description (MPD) file is given in Listing 1. The full
dataset for all videos including the MPD files is available at
http://concert.itec.aau.at/SVCDataset/.

4. DATASET ANALYSIS
In this section we provide an analysis of the generated

dataset with respect to Structural Similarity (SSIM) [21] and
the respective video bitrates. Peak Signtal-to-Noise Ratio
(PSNR) values are provided at the dataset website.
As we used Variable Bitrate Encoding (VBR), the target

bitrates as defined in Section 3.4 are only approximated. In
addition, the encoder used does not support two-pass encod-
ing, resulting in more variability within the effective video
bitrates per layer. This results in different bitrates per video,
though on average the target bitrates are approximated (see
Tables 7 and 8).

4.1 Objective Quality Measurements
The SVC encoded videos were decoded and analyzed in

terms of PSNR and SSIM values. The calculated PSNR and
SSIM values are provided per frame and layer within the
dataset. Furthermore, we calculated PSNR/SSIM values of
BBB for the DASH/AVC dataset, and compared the SSIM

LayerId Resolution AVC bitrate SVC bitrate
I.1.BL 640x360 600 kbps 600 kbps
I.1.EL1 640x360 900 kbps 990 kbps
I.1.EL2 640x360 1250 kbps 1500 kbps
I.1.EL3 640x360 1600 kbps 2075 kbps
I.2.BL 1280x720 1500 kbps 1500 kbps
I.2.EL1 1280x720 2500 kbps 2750 kbps
I.2.EL2 1280x720 4000 kbps 4800 kbps
I.2.EL3 1280x720 6000 kbps 7800 kbps
I.3.BL 1920x1080 4000 kbps 4000 kbps
I.3.EL1 1920x1080 5000 kbps 5500 kbps
I.3.EL2 1920x1080 6000 kbps 7200 kbps
I.3.EL3 1920x1080 8000 kbps 10400 kbps

Table 3: Variant I – Resolution and bitrates based
on [7], with 10 % overhead per layer [7]

Resolution AVC bitrates [kbps] SVC bitrates [kbps]
480x360 180, 220, 370 180, 242, 444
1280x720 780, 1000, 1500 780, 1100, 1800
1920x1080 2000, 2900, 3190 2000, 3190, 5040

Table 4: Variant II – Resolution and bitrates based
on [10], with 10 % overhead per layer [7]

LayerId Resolution AVC bitrate SVC bitrate
III.BL 640x360 600 kbps 600 kbps
III.EL1 1280x720 2000 kbps 2200 kbps
III.EL2 1920x1080 4000 kbps 4800 kbps
III.EL3 1920x1080 8000 kbps 10400 kbps

Table 5: Variant III – Resolution and bitrates for
spatial and quality scalability, with 10 % overhead
per layer [7].

LayerId Resolution AVC bitrate SVC bitrate
IV.BL 640x360 600 kbps 600 kbps
IV.EL1 1280x720 2000 kbps 2200 kbps
IV.EL2 1920x1080 4000 kbps 4800 kbps
IV.EL3 1920x1080 5200 kbps 6760 kbps
IV.EL4 1920x1080 8000 kbps 11200 kbps

Table 6: Variant IV – based on Variant III with one
additional EL and 10 % overhead per layer [7].

<AdaptationSet>
<SegmentTemplate media=
"H/BBB-seg$Number$-LId.svc"
startNumber="0" initialization=
"H/BBB.init.svc" />

<Repr id="I.1.BL" codecs="avc" w="640"
h="360" fps="24" bwKbps="600" />

<Repr id="I.1.EL1" depId="I.1.BL"
codecs="svc" bwKbps="990" />

<Repr id="I.1.EL2" depId="I.1.EL1"
codecs="svc" bwKbps="1500" />

<Repr id="I.1.EL3" depId="I.1.EL2"
codecs="svc" bwKbps="2075" />

</AdaptationSet>

Listing 2: Shortened example of the MPD file for
BBB, Variant I

Var. Bitrates [kbps] SSIM
I.1 636, 975, 1401, 1808 0.962, 0.971, 0.977, 0.981
I.2 1524, 2655, 4454, 6716 0.952, 0.964, 0.974, 0.981
I.3 3936, 5484, 7004, 10787 0.969, 0.972, 0.975, 0.990
II.1 195, 275, 444 0.902, 0.911, 0.935
II.2 782, 1212, 1727 0.922, 0.931, 0.943
II.3 2071, 3013, 4525 0.95, 0.954, 0.963
III 613, 2079, 5003, 9680 0.885, 0.939, 0.966, 0.979
IV 610, 2073, 4944 0.886, 0.939, 0.966

6979, 10952 0.971, 0.980

Table 7: Bitrates and SSIM values for BBB, at their
respective spatial resolutions

Var. Bitrates [kbps] SSIM
I.1 612, 962, 1361, 1807 0.945, 0.955, 0.962, 0.968
I.2 1472, 2541, 4332, 7105 0.944, 0.953, 0.961, 0.970
I.3 3734, 5305, 6877, 10755 0.948, 0.951, 0.952, 0.964
II.1 205, 281, 460 0.869, 0.882, 0.906
II.2 824, 1266, 1765 0.916, 0.926, 0.934
II.3 2091, 2094, 4533 0.932, 0.937, 0.944
III 584, 1989, 4520, 9986 0.874, 0.925 0.943, 0.956
IV 582, 1983, 4507 0.874, 0.925, 0.943

6370, 10933 0.948, 0.956

Table 8: Bitrates and SSIM values for TOS, at their
respective spatial resolutions

values of the SVC and AVC encoded videos with respect to
the spatial resolution and video bitrate.
While we consider both, PSNR and SSIM, for measuring

the video quality, we focus on SSIM within this paper. Ta-
bles 7 and 8 provide a list of SSIM values per layer of the
SVC encoded dataset, while Figure 2 shows the SSIM val-
ues of Big Buck Bunny for Variant I. The 360p and 720p
encoded videos were decoded and then upsampled to 1080p.
SSIM values were calculated by comparing the source 1080p
YUV file with all decoded layers. ED and BBB achieve
nearly identical quality at similar bitrates for sub-variants
I.2 (720p) and I.3 (1080p), but not for I.1 (360p). The sub-
variants (360p, 720p, 1080p) are annotated in Figure 2.
Figure 3 depicts the DASH/AVC SSIM values (red dotted

line) for Big Buck Bunny, compared with Variant II of our
dataset. The SVC Base Layers, marked as filled circles, are
very close to the SSIM and bitrate values of the AVC con-
tent, as expected. However, the respective SVC Enhance-
ment Layers always achieve a lower SSIM value, therefore
worse video quality, than the AVC content at the same bi-
trate. For instance, Variant II at 4525 kbps (EL 2) has a cal-
culated SSIM of 0.963, while the AVC counterpart achieves
an SSIM value of 0.964 with only 3447 kbps. This results in
a calculated overhead of roughly 30%. Even more overhead
(roughly 78%) can be observed for the TOS content, though
for the 1080p content the opposite (almost no overhead) is
the case, as depicted in Figure 4. For Variant IV, Tables 7
and 8 show that the additional quality enhancement layer
results in a roughly 1 Mbps higher bitrate (10%) for the last
enhancement layer. While Grafl et. al [7] suggests a 10%
overhead per additional layer, our dataset suggests that an
overhead of (up to) 15% per additional EL could be more
accurate, though further investigation is needed to give a
more accurate result for overhead. In addition, the accu-
racy of the VBR encoding of MainConcept (Rev. 1.5) is
rather modest, and tweaking bitrate settings of the layers to
meet the (calculated) overhead proved to be difficult.

0 2000 4000 6000 8000 10000 12000

0.
85

0.
90

0.
95

1.
00

Bitrates [kbps]

S
S

IM

360p

720p

1080p

BBB BL
ED BL
BBB EL
ED EL

Figure 2: SSIM values (at 1080p) for BBB and ED
(SVC Variant I)

0 1000 2000 3000 4000 5000 6000

0.
85

0.
90

0.
95

1.
00

Bitrates [kbps]

S
S

IM

4525 kbps

3450 kbps

BBB AVC
BBB Var. II.2 (720p)
BBB Var. II.3 (1080p)
SVC BL
SVC EL

Figure 3: SSIM values (at 1080p) for BBB for SVC
Variant II and DASH with AVC

0 2000 4000 6000 8000 10000 12000

0.
85

0.
90

0.
95

1.
00

Bitrates [kbps]

S
S

IM

4333 kbps

2426 kbps

TOS AVC
TOS Var. I.1 (360p)
TOS Var. I.2 (720p)
TOS Var. I.3 (1080p)
SVC BL
SVC EL

Figure 4: SSIM values (at 1080p) for TOS for SVC
Variant I and DASH with AVC

5. CONCLUSION AND DATASET USAGE
This paper presented a DASH/SVC dataset, including

four different variants, and evaluated the encoded videos
compared to the DASH dataset [10] in terms of PSNR and
SSIM. Furthermore, we provided a toolchain for converting
SVC encoded videos into DASH-compliant streams. The
dataset is available online, including configuration- and the
generated MPD files, enabling researchers to immediately
use the dataset with existing DASH systems and simula-
tions – see http://concert.itec.aau.at/SVCDataset/.
This dataset enables researchers to do experimentations

with SVC and DASH. Evaluations of existing research, such
as the proposal of In-Network Adaptation in NDN/ICN by
using SVC [14], could be extended to multiple videos and
representations. In addition, advanced caching and rout-
ing strategies can be applied when using SVC content, e.g.,
prioritizing the base layer(s) to reduce video playback stalls.
Furthermore, finding an optimal number of DASH rep-

resentations and video bitrates, as proposed by [20], could
be applied to SVC encoded videos. Based on our dataset,
several adaptation logics [19] for SVC can be re-evaluated
with more content, and researchers are able to compare
DASH/AVC with DASH/SVC in terms of video bitrate,
PSNR and SSIM values.
Our toolchain also has the benefit of being open source

and it will support – with minor modifications – the SHVC
(Scalable High Efficiency Video Coding) extension of HEVC.
The provided sources will also allow researchers to study and
understand the structure of H.264/SVC encoded videos in
more detail, as we provide plenty of debug output.
SVC has the potential to benefit both, the consumers in

terms of QoE and the producers in terms of content dissemi-
nation, though advanced QoE and dissemination models are
still to be researched for DASH/SVC.

6. ACKNOWLEDGMENTS
This work was partly funded by the Austrian Science

Fund (FWF) under the CHIST-ERA project CONCERT (A
Context-Adaptive Content Ecosystem Under Uncertainty),
project number I1402.

7. REFERENCES
[1] MainConcept Website. http://mainconcept.com/ .
[2] Blender Foundation. Big Buck Bunny.

http://bigbuckbunny.org/ .
[3] Blender Foundation. Elephants Dream.

http://elephantsdream.org/ .
[4] Blender Foundation. Sintel, Durian Open Movie

Project. http://sintel.org/ .
[5] Blender Foundation. Tears of Steel, Mango Open

Movie Project. http://tearsofsteel.org.
[6] M. Grafl. SVC Demux & Mux, 2013.

tinyurl.com/ITEC-SVCMux.
[7] M. Grafl, C. Timmerer, H. Hellwagner, W. Cherif, and

A. Ksentini. Evaluation of Hybrid Scalable Video
Coding for HTTP-based Adaptive Media Streaming
with High-Definition Content. In IEEE 14th
International Symposium and Workshops on a World
of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2013, pages 1–7, June 2013.

[8] M. Grafl, C. Timmerer, H. Hellwagner, W. Cherif, and
A. Ksentini. Hybrid Scalable Video Coding for

HTTP-based Adaptive Media Streaming with
High-Definition Content. Computer Communications,
Dec 2013.

[9] M. Grafl, C. Timmerer, H. Hellwagner, D. Negru,
W. Cherif, and S. Battista. Scalable Video Coding
Guidelines and Performance Evaluations for Adaptive
Media Delivery of High Definition Content. In IEEE
Symposium on Computers and Communications
(ISCC), 2013, pages 855–861, July 2013.

[10] S. Lederer, C. Müller, and C. Timmerer. Dynamic
Adaptive Streaming over HTTP Dataset. In
Proceedings of the 3rd Multimedia Systems
Conference, MMSys ’12, pages 89–94, New York, NY,
USA, 2012. ACM.

[11] J.-S. Lee, F. De Simone, and T. Ebrahimi. Subjective
Quality Evaluation via Paired Comparison:
Application to Scalable Video Coding. IEEE
Transactions on Multimedia, 13(5):882–893, Oct 2011.

[12] J. Nightingale, Q. Wang, and C. Grecos. Scalable
HEVC (SHVC)-Based Video Stream Adaptation in
Wireless Networks. In IEEE 24th International
Symposium on Personal Indoor and Mobile Radio
Communications (PIMRC), 2013, pages 3573–3577,
Sept 2013.

[13] Ooyala. Video Index Report. Technical Report Q2,
2014.

[14] D. Posch, C. Kreuzberger, B. Rainer, and
H. Hellwagner. Using In-Network Adaptation to
Tackle Inefficiencies Caused by DASH in
Information-Centric Networks. In Proceedings of the
10th International Conference on Emerging
Networking Experiments and Technologies, VideoNext
Workshop, Dec 2014.

[15] I. Richardson. The H.264 Advanced Video
Compression Standard. Wiley, 2011.

[16] Y. Sanchez, T. Schierl, C. Hellge, T. Wiegand,
D. Hong, D. D. Vleeschauwer, W. V. Leekwijck, and
Y. L. Louédec. Efficient HTTP-based Streaming using
Scalable Video Coding. Signal Processing: Image
Communication, 27(4):329 – 342, 2012.

[17] Sandvine. Global Internet Phenomena Report.
Technical Report 1H, 2014.

[18] H. Schwarz, D. Marpe, and T. Wiegand. Overview of
the Scalable Video Coding Extension of the
H.264/AVC Standard. IEEE Transactions on Circuits
and Systems for Video Technology, 17(9):1103–1120,
Sept 2007.

[19] C. Sieber, T. Hoßfeld, T. Zinner, P. Tran-Gia, and
C. Timmerer. Implementation and User-centric
Comparison of a Novel Adaptation Logic for DASH
with SVC. In IFIP/IEEE International Symposium on
Integrated Network Management (IM 2013), 2013,
pages 1318–1323, May 2013.

[20] L. Toni, R. Aparicio-Pardo, G. Simon, A. Blanc, and
P. Frossard. Optimal Set of Video Representations in
Adaptive Streaming. In Proceedings of the 5th ACM
Multimedia Systems Conference, MMSys ’14, pages
271–282, New York, NY, USA, 2014. ACM.

[21] Z. Wang and A. Bovik. Mean Squared Error: Love it
or Leave it? A New Look at Signal Fidelity Measures.
Signal Processing Magazine, IEEE, 26(1):98–117, Jan
2009.

