
Evaluation of HTTP-based Request-Response Streams for
Internet Video Streaming

Robert Kuschnig, Ingo Kofler, Hermann Hellwagner
Institute of Information Technology (ITEC)

Klagenfurt University, Austria
{firstname.lastname}@uni-klu.ac.at

ABSTRACT
Adaptive video streaming based on TCP/HTTP is becoming
popular because of its ability to adapt to changing network
conditions. We present an in-depth experimental analysis of
the use of HTTP-based request-response streams for video
streaming. In this scheme, video fragments are fetched by
a client from the server, in smaller units called chunks, po-
tentially via multiple parallel HTTP requests (TCP connec-
tions). A model for the achievable throughput is formulated.
The model is validated by a broad range of streaming ex-
periments, including an evaluation of TCP-friendliness.

Our findings include that request-response streams are
able to scale with the available bandwidth by increasing
the chunk size or the number of concurrent streams. Sev-
eral combinations of system parameters exhibiting TCP-
friendliness are presented. We also evaluate the video
streaming performance in terms of video quality in the pres-
ence of packet loss. Multiple request-response streams are
able to maintain satisfactory performance, while a single
TCP connection deteriorates rapidly with increasing packet
loss. The results provide experimental evidence that HTTP-
based request-response streams are a good alternative to
classical TCP streaming.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Video

General Terms
Design, Experimentation, Performance

Keywords
HTTP video streaming, TCP-friendliness, H.264/SVC,
adaptive video streaming

1. INTRODUCTION
The Internet and its applications are starting to play a

main role in consumer electronics. To be able to connect a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’11, February 23–25, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0517-4/11/02 ...$10.00.

Figure 1: Use case

growing number and variety of devices, the network infras-
tructure has to be enhanced. As a result of ongoing invest-
ments, last-mile bandwidths increased considerably in recent
years [4]. This also gave Internet video streaming, which
heavily relies on network bandwidth, a lot of momentum.
Video-on-Demand (e.g., online video rental), Live Video
(TV broadcasts) or social video sharing are only some of
the popular video streaming applications.

The Internet imposes new challenges on video streaming
since it offers best-effort service only and lacks admission
control and quality of service (QoS) mechanisms. Although
the Internet does not provide admission control, some mech-
anisms have to be deployed to avoid network congestion.
The transport protocol TCP is responsible for avoiding con-
gestion by continuously adjusting the transmission rate at
the sender based on feedback from the network. An example
for TCP-based video streaming in the Internet is the video
portal YouTube, which streams the content to consumers all
over the world. The delivery of YouTube videos is almost
centralized [15], which leads to round trip times (RTTs) of
up to 200 ms and more. In this context, coping with packet
losses which may occur due to congestion or packet corrup-
tion, becomes a challenge [8].

In our use case (see Figure 1), we focus on access networks
which are assumed to form the bottleneck links. Currently
the adaptation to different network conditions is done by
the user who chooses from different qualities of the content,
ranging from low resolution video to HD (e.g., 720p). Hav-
ing the user select the video quality based on his/her ex-
perience may be cumbersome and error-prone, because the
available bandwidth is in general not constant. Adaptive
video streaming aims to simplify this process by continu-
ously adapting the content bit rate to the available band-
width of the network. Consequently, adaptive video stream-
ing over TCP gained a lot of attention in recent years [19,
7, 23, 1].

In this paper, we analyze TCP/HTTP-based adaptive
video streaming for use in the Internet (see Section 2). In
particular, we investigate the performance of multiple paral-

lel HTTP-based request-response streams for video stream-
ing. Previous work [13] showed that multiple streams show
favorable characteristics in case of packet loss and mitigate
the effects of TCP connection timeouts or stalls, while main-
taining TCP-friendliness. In Section 3 we will present a re-
fined analytical model (as compared to [13]) for the achiev-
able throughput of a request-response streaming system.
After giving a short introduction of H.264/SVC and pri-
ority streaming in Section 4, we present an HTTP-based
request-response H.264/SVC video streaming system in Sec-
tion 5. We will investigate how the system parameters of
the request-response streaming system influence the system
performance under diverse network conditions. The evalua-
tion methodology, the investigated system, network param-
eters, and the evaluation setup will be described in Section
6. In Section 7, our findings on the throughput performance
and TCP-friendliness are presented. A comparison in terms
of video quality of using multiple HTTP request-response
streams vs. a single TCP connection will show the actual
benefit of the request-response streams. Section 8 concludes
the paper.

2. TCP-/HTTP-BASED VIDEO STREAM-
ING

While there are dedicated protocols for video streaming
in IPTV networks (like RTP/UDP [16]), TCP (and HTTP
over TCP) gained a lot of attention in the area of Internet
video streaming due to its reliable end-to-end transport, the
ability to adapt to changing network conditions, and easy
deployment. Since TCP’s reliability and adaptive behav-
ior are based on acknowledgments and retransmissions, the
performance of TCP depends a lot on the network condi-
tions. Dynamically changing RTTs or packet losses lead to
a degradation of the performance of TCP.

The throughput rate of TCP depends on the maximum
segment size (MSS) and the round trip time (RTT). If we
consider a packet loss pattern such that after the successful
transmission of 1/p packets (of size MSS) one packet is lost,
the estimated TCP throughput rate rtcp for TCP Reno would
be [9]:

rtcp =
MSS√

p
· 1

RTT
(1)

With Equation 1 it becomes evident that the maximum
throughput of TCP is limited by the packet loss rate p for
a given RTT. The additive-increase/multiplicative-decrease
(AIMD) behavior of the congestion control algorithm leads
to an additional variation of the throughput. Thus TCP
has been considered unsuitable for video streaming for many
years. The streaming performance of TCP for constant-bit-
rate content was investigated in [19], which stated that the
TCP throughput should be at least twice the media bit rate
in order to avoid jerky playback of the video. With in-
creasing bandwidth of the last-mile networks (a significant
number of users own DSL/cable connections with down-
link bandwidth greater than 4 Mbps [4]), this kind of over-
provisioning is now feasible for low resolution videos. How-
ever, high-definition videos have in general higher band-
width requirements (> 2 Mbps), so over-provisioning may
not be sufficient to prevent transmission stalls and there-
fore jerky playback. In this case, adapting the video content
may be required to be able to cope with changing network
conditions.

In the last couple of years, adaptive video streaming us-
ing TCP/HTTP has become quite popular. Microsoft intro-
duced HTTP-based adaptive streaming with their Smooth
Streaming System [23]. The idea is to use small HTTP pro-
gressive downloads (of so-called fragments) instead of a sin-
gle one. Each fragment comprises several seconds of video
data and is usually aligned with the GOP boundaries of
the video [23]. In general, the fragments are downloaded
consecutively and the video can be decoded and displayed
on the client. With this approach, it is possible to switch
the media bit rate (and hence the quality) after each down-
load and adapt to the current network conditions. Move
Networks [10] also uses similar mechanisms like Microsoft
Smooth Streaming [23] for the media transport, and so does
Apple’s HTTP Live Streaming [11]. The 3GPP Adaptive
HTTP Streaming standard [1] defines methods for adaptive
media streaming. The Akamai HD Network [3] also features
adaptive streaming of media content.

The adaptation system of all mentioned approaches works
in a similar manner. Different video fragments are sup-
plied which represent various qualities of the media. The
video fragments are downloaded sequentially. If the avail-
able bandwidth does not allow to download the fragments of
high quality, lower quality fragments are selected for down-
load. The main difference between the approaches lies in the
metadata for describing the media content, the container for-
mat for the media [14], and the adaptation decision taking
algorithm, which decides when to switch from one media
quality to another. Most of the streaming systems restrict
their adaptiveness to stream switching (like shown in [17]
for H.264/AVC), without taking advantage of the most re-
cent scalable video codec H.264/SVC [22] which enables fine-
grained adaptation. The transport of the video fragments
is mainly based on HTTP’s request-response paradigm, be-
cause using HTTP allows easy deployment in existing net-
work infrastructures.

In our work we call a single HTTP connection transport-
ing video fragments an HTTP-based request-response stream.
While the streaming systems mentioned above are mainly
based on a single request-response stream, we investigate
the behavior of multiple concurrent HTTP request-response
streams. In the next section, the HTTP-based request-
response streams will be described in detail.

3. HTTP-BASED REQUEST-RESPONSE
STREAMS

In classical TCP streaming, the media data is contin-
uously streamed from the server to the client using a
long-lived TCP connection. Because HTTP is based on
the request-response (rr) paradigm, HTTP-based request-
response streams have to request the media data to initiate
their transmission. Request-response streams behave differ-
ently also in that the responses are in general small chunks of
media data. While it is possible to emulate the behavior of a
long-lived TCP connection in a request-response streaming
setting by using very large chunks, the use of small chunks
leads to short responses, which may experience unfairness
in congested networks [8].

In general, TCP connections share the available band-
width in a fair manner [8]. Aggregating multiple TCP
streams for a single use is potentially unfair to concurrent
single connections. We observed that it is possible to con-

trol the TCP-friendliness of request-response streams by
introducing temporal gaps between requests (inter-request
gap tgap), which emulate an increased RTT [13]. Because
TCP features no throughput fairness between connections
with different RTTs [8], it is possible to aggregate multiple
submissive request-response streams for a single purpose,
while still providing TCP-friendliness. In addition, multiple
request-response streams are not as prone to packet losses
as a single TCP connection [13].

To get an of idea of the achievable throughput of such
a request-response streaming system, we created a simple
model describing the upper bound of the throughput. As-
suming that a chunk (of size lch) is transferred within a single
RTT and nc concurrent streams are used for transmitting
the media data, the upper bound for the throughput without
packet loss rrrsimple can be calculated as follows [13]:

rrrsimple = nc

„

lch

RTT + tgap

«

(2)

Equation 2 shows that we are able to control the
throughput by means of nc, lch and tgap. In addition,
TCP-friendliness has to be supplied, so a trade-off has to be
found between the throughput and the TCP-friendliness.
The goal is to stabilize and enhance the overall throughput
and to be more robust to changing network conditions
than a single TCP connection, but also to be fair to other
concurrent TCP connections in case of congestion.

Because the assumption that a chunk can be transferred
within a single RTT is not valid for large chunk sizes, we
extend our model by taking the network configuration into
account. This extension allows us to explore the limita-
tion of the request-response streams under certain network
conditions. For that reason, we assume to know the bottle-
neck bandwidth BW and the maximum queueing delay tq

of the bottleneck router. Using BW and tq we can calculate
the queue size lq = BW ∗ tq. Because the nc concurrent
TCP connections are competing on the network link, we
assume that the router queue is shared between all request-
response streams (lrr = lq/nc). Taking into account that
each request-response stream can transfer at most lrr bytes
per RTT, we can define the number of round trips needed
to transmit the chunk as nrt = lch/lrr.

Because the underlying TCP connection tries to maximize
the throughput, we can assume that the router queue will
be fully utilized. For a single request-response stream, the
AIMD algorithm of TCP leads to a saw tooth shaped queue
utilization (see Figure 2), which results in a queuing delay of
tq/2 on average. Because multiple TCP streams tend to self-
synchronize [2], we assume that the average queuing delay
is also valid for multiple TCP streams. A request-response
stream may not be able to fully utilize the network queue, if
small chunk sizes and a low number of concurrent streams
are used. In this case, we reduce the estimated queuing
delay in our model, if nrt is below one. So the average
queuing delay of a request-response stream can be defined
as tqav = min(nrt, 1) · tq/2. Using this information the es-
timated transfer duration of one chunk tch can be defined
as:

tch = ⌈nrt⌉(RTT + tqav) (3)

0 100 200 300 400 500

0

50

100

150

200

250

300

T
C

P
 w

in
do

w
 [p

kt
s]

0 100 200 300 400 500

0
50

100
150

number of RTTs

qu
eu

e
[p

kt
s]

Figure 2: TCP window size and router queue utiliza-
tion for a TCP flow through a router with a queue
size of lq = BW ∗ MAXRTT [2].

The average achieved throughput rrr of the request-response
streams can be defined as:

rrr = nc

„

lch

tch + tgap

«

(4)

Like in the initial model, we are able to tune the throughput
by means of nc, lch, and tgap (see Equation 4). The main
difference is now that this model takes the characteristics
of the network into account (except packet loss).

A direct result of Equation 1 is that the data which TCP
can transport within a single RTT is limited by the packet
loss rate. So in case of packet loss, we have to define lrrloss,
which is the amount of data which can be transported by a
request-response stream within one RTT. This is now either
restricted by the router queue or the behavior of TCP in case
of packet loss. Note that we are now using the same packet
loss pattern as used in the TCP throughput estimation (see
Equation 1).

lrrloss = min(lrr,
MSS√

p
) (5)

The queuing delay is also affected by the packet loss, because
the packet loss restricts TCP’s window size and therefore the
router queue utilization. Our model makes the simplifying
assumption that if the utilized queue size in the router sinks
below a certain level, the queuing delay begins to decrease.
For that reason, we define the average queuing delay under
packet loss tqavloss as:

tqavloss =

lrrloss

lrr
· tq/2 if lrrloss < lrr

2

min(nrt, 1) · tq/2 otherwise
(6)

Because the number of round trips needed to transmit the
chunk is also affected by the packet loss, we redefine it as
nrtloss = lch/lrrloss. As a result, we can calculate the es-
timated transfer duration of one chunk under packet loss
tchloss:

tchloss = ⌈nrtloss⌉(RTT + tqavloss) (7)

50 100 150 200

0

2000

4000

6000

8000

10000

RTT [ms]

th
ro

ug
hp

ut
 [k

bp
s]

packet loss

0%
0.1%

0.5%
1%

2%
TCP
Request−Response

Figure 3: Model for throughput performance of
a single TCP connection (TCP) rtcp and for the
request-response streams rrr (MSS = 1460 bytes,
lch = 160 kB, nc = 5, tgap = 210 ms) at a fixed
bottleneck bandwidth BW = 8192 kbps and packet
loss rate p.

The throughput under packet loss for the request-response
streaming system rrrloss can be defined as follows:

rrrloss = nc

„

lch

tchloss + tgap

«

(8)

This refined model for request-response streams jointly
takes the packet loss and the queuing delay on the bottleneck
router into account, by using the throughput estimation for
TCP and the knowledge about the bottleneck router. In
general, increasing the number of request-response streams
or the chunk size leads to an increased throughput, but ob-
viously also affects the TCP fairness and the computational
effort needed to manage the multiple streams. In Figure
3, the upper bounds for a single TCP connection and the
request-response streams (RR) according to Equations 1 and
8, respectively, are shown. While the performance of the
single TCP connection highly depends on the packet loss
and the RTT, the decline of the throughput of the request-
response streams with increasing RTT and packet loss is sig-
nificantly reduced. In Section 6, we will discuss the pros and
cons of the request-response system parameters in detail and
present a comparison of our model with real measurements.
In the next section, we will briefly introduce the scalable
video codec H.264/SVC and priority streaming, which will
be used in our HTTP-based request-response streaming sys-
tem (see Section 5).

4. H.264/SVC AND PRIORITY STREAM-
ING

To investigate the video streaming performance of request-
response streams in terms of video quality, we choose priority
streaming based on H.264/SVC scalable content because this
does not require an estimation of the available bandwidth
and therefore makes additional buffer management at the
server obsolete [12]. This simplifies the interpretation of the
evaluation results on the streaming performance.

Figure 4: PRID-based NAL unit reordering

The H.264/SVC video coding standard [22] was recently
standardized as an extension to the well-known H.264/AVC
standard. H.264/SVC introduces scalability in three dimen-
sions. Temporal scalability is the property of a bit stream
that video sequences with different frame rates can be ex-
tracted. Spatial scalability, which allows the extraction of
video sequences with different spatial resolutions, is also re-
alized in a layered fashion. Finally, quality scalability is sup-
ported, which enables the adaptation to certain quality lev-
els or bit rates. An H.264/AVC bitstream is structured into
NAL (Network Abstraction Layer) units, which start with a
one byte header. In order to signal the scalability informa-
tion in the bit stream, SVC extends the NAL unit concept
of H.264/AVC [20] (NAL unit header and types). Among
others, the SVC header contains a priority id (PRID) field
which can be used to define a suggested adaptation path.
This adaptation path specifies in which order the NAL units
should be discarded in case of adaptation. The assignment
of the PRID to NAL units is not further specified in the
standard and can be allocated based on the needs of a cer-
tain application or use case. The Quality Level Assigner tool
that is included in the JSVM [6] reference software can be
used to assign priority values to NAL units contained in the
bit stream. The assignment is done in a way that the ex-
traction based on the PRID is optimal w.r.t. rate-distortion.
Using the PRID, we are able to extract up to 64 different
qualities of the video content.

Unlike traditional buffering at the receiver, which tries
to overcome bandwidth shortages, priority streaming [18, 7]
levels the quality of the video over a period of time. For that
reason, the video is split into fragments, each comprising the
same play-out duration. In a next step, the video syntax ele-
ments (e.g., slices, frames, layers) are rearranged in order of
priority. For example, using a non-scalable video codec, the
I-frames would precede the P-frames and the B-frames. A
reordered video fragment is called video segment. In prior-
ity streaming with H.264/SVC, the NAL units of each video
fragment are rearranged according to their priority. In our
case, a lower numerical value of the PRID signals a higher
priority of the NAL unit according to [21]. The basic prin-
ciples of this reordering are illustrated in Figure 4. For the
sake of simplicity, the figure shows a GOP consisting of only
four pictures (I, P, B, B) in decoding order. Each of the pic-
tures is represented by one NAL unit carrying the base layer
(BL) and two NAL units representing enhancement layers
(EL1, EL2). The numerical values in the boxes represent
the PRID value of each NAL unit; in our configuration, all
NAL units of the base layer have the highest priority. For
transmission, the NAL units are ordered according to their
priority. As a result of the scalable property of H.264/SVC,

Figure 5: Request-response-based client-driven
streaming system

the quality of the decoded bit stream at the client monotoni-
cally increases with the amount of data (NAL units) received
by the client.

In the next section our HTTP-based request-response
streaming system based on priority streaming and
H.264/SVC will be explained in detail.

5. HTTP-BASED REQUEST-RESPONSE
STREAMING SYSTEM

To investigate the video streaming performance of request-
response streams, we designed a streaming system based on
HTTP. The ability of the request-response streams to avoid
transmission stalls and therefore jerky playback makes them
a good candidate for video streaming. Multiple request-
response streams are able to reduce quality fluctuations,
while providing fairness to a single TCP connection. In
addition, priority streaming is used to ensure timeliness of
delivery.

The architecture of the HTTP-based request-response
streaming system can be seen in Figure 5. Since the system
uses HTTP, easy deployment, reuse of existing infrastruc-
ture (HTTP server, client, encryption, etc.) and application-
layer multicast through HTTP proxies are possible. Persis-
tent connections (as defined in HTTP/1.1 [5]) are used for
establishing the TCP connections, in order to reduce the
overhead of connection setup. Before streaming, the video
is split into fragments, each comprising the same play-out
duration. Each video fragment is rearranged according to
the video quality / priority, resulting in a video segment
(see Section 4).

The streaming system is characterized by three different
parameters, namely the chunk size lch, the number of con-
current streams nc and the inter-request gap tgap. A video
segment is split into chunks of size lch, which are served
by a standard HTTP server. The download of the video
chunks is coordinated by the client. For that purpose, the
client maintains nc HTTP-based request-response streams
and schedules the downloads of the different chunks by us-
ing a separate queue for each stream as shown in Figure 6.
Each chunk is retrieved by the client according to the order
within the queue. Between consecutive chunk download re-
quests, an inter-request gap tgap is inserted to provide TCP-
friendliness. On the client, the time used for downloading
a segment is monitored. If the maximum time allocated for
downloading a segment is reached (normally the the play-
out duration of the segment), the client stops downloading
chunks of the segment and switches to chunks of the next

Figure 6: Three HTTP streams/queues on the client
with priority management

segment. The client reconstructs the video from the received
(and possibly truncated) video segment.

The streaming client coordinates the in-order transmis-
sion of the chunks and attempts to maximize the in-order
throughput. To prevent transmission stalls, timeout man-
agement is used. A chunk is considered stalled if it is not
retrieved within a timeout duration which can vary between
1000 ms and 5000 ms. Assuming that the maximum RTT is
about 200 ms, which is common in Internet video streaming
[15], at most 25 “attempts” (25 ∗ 200 ms ≈ 5000 ms) should
be needed to transmit the video chunk. Very large chunks
may exceed this limit, but we regard using such chunk sizes
as unreasonable for video streaming. The lower bound of
the transfer timeout is set to 1000 ms, to allow retransmis-
sions on congested network links. The timeout is initialized
as 3000 ms. The transfer duration, i.e., the time needed to
download a chunk, is monitored for each chunk. A moving
average over the last 20 transfer durations plus a tolerance
of 30% is used for the calculation of the current transfer
timeout. Expired transfers are considered (with a penalty)
in the moving average as well, in order to supply the timeout
management with early feedback on stalled transfers.

Priority management tries to improve the timeliness of the
delivery by prioritizing video chunks required in the near fu-
ture. In our case, the chunks will be needed by the client in
priority order (as shown in Figure 6). If the transmission of
a chunk is stalled (see original chunk 4 in Figure 6), it will be
re-inserted into two queues (see hatched chunks), in order to
increase the probability of a successful download. The prior-
ity management does not change the TCP-friendliness of the
streaming system, because the number of concurrent HTTP
streams is kept constant. Only the queues at the client used
for fetching the chunks are updated, while the congestion
control is ensured by the underlying TCP implementation
of each single HTTP stream.

6. EVALUATION
In Section 5, we presented an HTTP-based video stream-

ing system which makes use of request-response streams.
The system offers many parameters to configure the HTTP-
based streaming process, so it allows for an in-depth analysis
of the streaming performance. Therefore, we will use this
request-response streaming system as a basis for the evalua-
tion of the streaming performance regarding the achievable
throughput and the TCP fairness in different congestion sce-
narios.

Content
The test sequences used for evaluation were created by
means of the H.264/SVC codec provided by the Joint Scal-
able Video Model (JSVM) [6] 9.18 software. The soccer se-
quence was encoded in 4CIF resolution at 30 fps and the

bitrate [kbit/s]

av
er

ag
e

P
S

N
R

 [d
B

]

34

35

36

37

38

1000 2000 3000 4000 5000 6000 7000 8000

soccer
intotree

Figure 7: Rate-distortion curves of the test se-
quences

in to tree sequence in 720p resolution at 50 fps. Each se-
quence features an H.264/AVC backward compatible base
layer and one MGS quality enhancement layer. Within the
MGS quality enhancement layer, the transform coefficients
are uniformly partitioned into four NAL units. The Quality
Level Assigner tool (JSVM) was used to assign 64 different
PRIDs to the NAL units based on rate-distortion values. In
Figure 7, the rate-distortion values of the test sequences are
shown, ranging from the lowest bit rate (highest priority) to
the full bit rate (lowest priority). The video quality is eval-
uated at a fixed bottleneck bandwidth of BW = 8192kbps
and two different test sequences. To show the influence of
over-provisioning on the video quality, the sequences have
a different maximum bit rate (see Figure 7). It can be
observed that the maximum bit rate of the in to tree se-
quence is roughly twice the maximum bit rate of the soccer
sequence. Each test sequence has a play-out duration of
10 seconds, which is also considered as the video fragment
size. For the streaming experiments, the content is streamed
50 times in a loop.

Evaluation Setup
For the emulation of the Internet and the last-mile network,
we use a test setup consisting of six Linux boxes. As shown
in Figure 8, two servers are streaming the media data to two
clients. Two routers are responsible for network emulation.
The operating system is Ubuntu Linux (kernel 2.6.27) and
on all computers the TCP Reno variant is used. On the
routers, Netem1 is used for the emulation of network char-
acteristics like delay, jitter, and packet loss. The symmetric
end-to-end delay of the Internet and the provider network is
emulated by Router 1. Router 2 acts as the access network
and limits the up- and downstream bandwidths (BW), al-
lowing a maximum queuing delay of 200 ms. In addition, the
packets are dropped in a random fashion to emulate packet
loss on the transmission channel. Our implementation of the
streaming system is based on Python and the HTTP library
libcurl2. In the evaluation, Server 1 streams the media data

1
http://www.linuxfoundation.org/en/Net:Netem

2
http://curl.haxx.se

Figure 8: Evaluation setup

to Client 1. Congestion is emulated by concurrent HTTP
downloads from Server 2 initiated by Client 2. The Apache
HTTP Server3 was used for serving the video chunks and
the concurrent downloads.

System Parameters
The performance of the system is measured for the different
system parameters (see Equation 4) and network scenarios.
Different chunk sizes lch are used for the evaluation, namely
20, 40, 80, 160 and 320 kBytes (kB). The number of concur-
rent request-response streams nc used is varied in a range of
1 to 5. The fairness of the request-response streaming sys-
tem can be controlled via the inter-request gap parameter
tgap, as shown in [13]. On the other hand, the inter-request
gap increases the transmission latency, therefore we choose
it to be 220 ms at maximum. Each streaming evaluation
run lasts for 500 seconds.

Network Scenarios
Because HTTP-based request-response streaming targets
the Internet streaming use case, two different network sce-
narios are considered. First, we start the evaluation with
an uncongested network link, where the streaming system
should be able to make use of all the bandwidth. Second,
we look at congested network links with different congestion
levels, which are emulated by 1 to 4 concurrent TCP down-
loads. Two different bottleneck network bandwidths (4096
and 8192 kbps) and four different RTTs (ranging from 50 to
200 ms) were investigated. Given all the possible network
and system parameters, a single evaluation run varying all
parameters consists of 8000 streaming experiments. Each
streaming experiment was repeated three times and the av-
erage performance values were used for the presentation of
the results.

Performance Metrics
For the characterization of the streaming system, we use the
average throughput which is measured for each video frag-
ment (in our case every 10 seconds) and the average down-
load duration of the chunks. We decided to use the average
performance value of the different RTTs for presentation, be-
cause we want to show a single performance value for each
system parameter set.

RR

TCP
=

rrr

1

ntcp

ntcp
P

i=1

rtcpi

(9)

The TCP fairness ratio RR/TCP of the request-response
streams (see Equation 9) in a congested network should give
us a good idea of how to choose the system parameters to
achieve TCP fairness for a given bottleneck bandwidth of

3
http://httpd.apache.org

the last-mile link. A fairness ratio value RR/TCP = 1
indicates that the request-response streams only use their
fair share of the available bandwidth. The request-response
streams are potentially unfair to concurrent TCP streams
if the ratio is larger than one (RR/TCP > 1), while a
ratio of RR/TCP < 1 indicates that the request-response
streams are only using less than their fair share. For the
presentation of the fairness ratio, we average the values for
the different congestion levels (number of competing down-
loads), in order to get a single value for a specific system
parameter set. In addition, we will show how our model of
Section 2 correlates with the measured results for the av-
eraged performance values and a specific system parameter
set (lch = 160 kB, nc = 5, tgap = 210 ms at a fixed
bottleneck bandwidth BW = 8192 kbps), which provides
TCP fairness.

In the next section, the results of our evaluation are pre-
sented.

7. RESULTS
In our evaluation of video streaming with HTTP-based

request-response streams, we conducted a broad range of
experiments. We measured the average throughput, the
average download duration of the chunks, and evaluated
the fairness of the streaming solution. To show our findings
in a concise manner, we choose to average the results over
the different RTTs.

In the first part of this section, we discuss the influence of
the three system parameters, namely the chunk size lch, the
number of concurrent request-response streams nc and the
inter-request gap tgap. Figures 9 and 10 show the average
throughput performance and the average download duration
of a chunk for the bottleneck bandwidths BW = 4096 kbps
and BW = 8192 kbps, respectively. The evaluation took
place in an uncongested network. In general, it can be no-
ticed that a single request-response stream cannot make full
use of the available bandwidth, because of the nature of the
request-response paradigm and the inter-request gap. The
influence of the system parameters under consideration is
discussed as follows.

Chunk size: Larger chunk sizes use the available network
bandwidth more effectively. This can be noticed in Fig-
ure 10, when comparing the chunk sizes 20 kB and 160 kB.
While the 20 kB chunks cannot fully utilize the network
link with 5 streams, the 160 kB chunks are able to make
good use of the available bandwidth with even 3 streams.
Request-response streams with very large chunks behave
similarly to single TCP connections. This leads to an in-
creased throughput performance, but also to congestion in
case of multiple streams. Because of the fixed bandwidth
limit BW , in uncongested networks the download duration
increases linearly with the chunk size (e.g., with a single
stream tdur = lch/BW). Yet, if the available bandwidth is
exhausted, enlarging chunks will not lead to an increased
throughput anymore.

Number of streams: The number of request-response
streams shows a behavior similar to the chunk size. In
Figure 9, at a chunk size of 20 kB, a higher number of
streams leads to higher throughput. Multiple streams are
also more error resilient (see Section 3), but tend to gener-
ate self-congestion, because each request-response stream is
based on TCP which tries to maximize the throughput. If

increasing the number of streams does not lead to a substan-
tial throughput increase, we can assume that self-congestion
takes place (see chunk size 320 kB in Figure 9). As a result
of this, also the download duration increases with the num-
ber of streams. We observed that one can safely increase the
number of streams as long as the download duration does
not increase in a linear fashion.

Temporal gap: The inter-request gap parameter has obvi-
ously no positive effect on the throughput or download du-
rations. Because of the artificial gap between the requests,
the time the request-response streams are not transporting
data is increased. Therefore, smaller inter-request gaps lead
to higher throughput. In general, the inter-request gap has
no influence on the download duration, because the inter-
request gap is applied between the downloads. In addition,
Figure 9 shows that the inter-request gap has a higher influ-
ence on small chunks, because the inter-request gap is ap-
plied between consecutive downloads of chunks and larger
chunks need longer to be transferred.

In Figures 9 and 10 we also show the values of our model
for the estimated throughput. The model shows a good
correlation with the measured values and can give a good
hint on the achievable throughput. At large chunk sizes and
heavy self-congestion, the model seems to increase its error,
but can predict the upper bound of the throughput. The
same behavior can be noticed for the download duration.

For the evaluation of TCP fairness, we start 1 to 4 con-
current HTTP downloads to the request-response streaming
system. By changing the number of concurrent downloads,
we are able to adjust the network congestion to different
levels. For the HTTP downloads and the streaming system,
the throughput values are recorded and the TCP fairness ra-
tio RR/TCP is calculated (see Equation 9). We choose to
average the fairness ratios for the different RTTs and con-
gestion levels, to get a single value for the fairness of a spe-
cific parameter set. In Figure 11, the TCP fairness of the
request-response streaming system for the three system pa-
rameters is shown. The value RR/TCP = 1 is marked,
because it shows under which conditions TCP fairness can
be achieved. It can be seen that all three parameters have
an influence on the TCP fairness. While the fairness de-
creases (RR/TCP increases) with the number of streams
and the chunk size, an increasing inter-request gap is able
to increase the fairness. For very large chunks (e.g., 320 kB
at BW = 4096 kbps), it becomes increasingly difficult to
find a fair parameter set with multiple streams. This is be-
cause the inter-request gap has in general an upper bound
defined by the use case envisioned (in our case 220 ms).

Another interesting finding can be noticed when directly
comparing the fairness ratio plots for BW = 4096 kbps
and BW = 8192 kbps. The fairness ratio values of a
certain chunk size in BW = 4096 kbps behave similarly
to the fairness ratio values of the doubled chunk size in
BW = 8192 kbps. In our opinion, this may be an in-
dicator for the scalability of the request-response streaming
system. If more bandwidth is available, using larger chunk
sizes may lead to a better link utilization without hurting
TCP fairness. Further work will look into that presumption
in more detail to explore the scalability of request-response
streams.

0 50 100 150 200

0
20

00
40

00

throughput [kbps]
ch

un
k

si
ze

 =
 2

0k
B

0 50 100 150 200

0
1

2
3

4
5

download duration [s]

 number of RR streams
measurement

1
2
3
4
5

model

1
2
3
4
5

0 50 100 150 200

0
10

00
30

00
50

00

ch
un

k
si

ze
 =

 4
0k

B

0 50 100 150 200

0
1

2
3

4
5

0 50 100 150 200

0
10

00
30

00
50

00

ch
un

k
si

ze
 =

 8
0k

B

0 50 100 150 200

0
1

2
3

4
5

0 50 100 150 200

0
10

00
30

00
50

00

ch
un

k
si

ze
 =

 1
60

kB

0 50 100 150 200

0
1

2
3

4
5

0 50 100 150 200

0
20

00
40

00

tgap [ms]

ch
un

k
si

ze
 =

 3
20

kB

0 50 100 150 200

0
1

2
3

4
5

tgap [ms]

Figure 9: Measured and modeled throughput performance rrr and download duration of a chunk tch for the
request-response streams. The results are shown for a fixed bottleneck bandwidth of BW = 4096 kbps, a
maximum queuing delay of tq = 200 ms and averaged over the RTTs to provide a single performance value.

0 50 100 150 200

0
20

00
60

00

throughput [kbps]
ch

un
k

si
ze

 2
0k

B

0 50 100 150 200

0.
0

1.
0

2.
0

download duration [s]

 number of RR streams
measurement

1
2
3
4
5

model

1
2
3
4
5

0 50 100 150 200

0
20

00
60

00

ch
un

k
si

ze
 4

0k
B

0 50 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 50 100 150 200

0
20

00
60

00

ch
un

k
si

ze
 8

0k
B

0 50 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 50 100 150 200

0
20

00
60

00

ch
un

k
si

ze
 1

60
kB

0 50 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 50 100 150 200

0
20

00
60

00

tgap [ms]

ch
un

k
si

ze
 3

20
kB

0 50 100 150 200

0.
0

1.
0

2.
0

tgap [ms]

Figure 10: Measured and modeled throughput performance rrr and download duration of a chunk tch for the
request-response streams. The results are shown for a fixed bottleneck bandwidth of BW = 8192 kbps, a
maximum queuing delay of tq = 200 ms and averaged over the RTTs to provide a single performance value.

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

fairness ratio RR/TCP (BW = 4096kbps)
ch

un
k

si
ze

 =
 2

0k
B

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

fairness ratio RR/TCP (BW = 8192kbps)

number of RR streams

1 2 3 4 5

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

ch
un

k
si

ze
 =

 4
0k

B

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

ch
un

k
si

ze
 =

 8
0k

B

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

ch
un

k
si

ze
 =

 1
60

kB

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

tgap [ms]

ch
un

k
si

ze
 =

 3
20

kB

0 50 100 150 200

0.
2

0.
5

1.
0

2.
0

5.
0

tgap [ms]

Figure 11: Measured TCP fairness ratio RR/TCP of the request-response streams compared to 1 . . . 4 concur-
rent HTTP downloads. The results are shown for two bottleneck bandwidths (BW = 4096 kbps and 8192 kbps
and maximum queuing delay of tq = 200 ms and averaged over the RTTs and different congestion levels to
provide a single performance value.

50 100 150 200

0

2000

4000

6000

8000

10000

RTT [ms]

th
ro

ug
hp

ut
 [k

bp
s]

packet loss

0%
0.1%

0.5%
1%

2%
TCP
Request−Response

Figure 12: Measured throughput performance of
a single TCP connection (TCP) rtcp and for the
request-response streams rrr using the same condi-
tions as used in Figure 3.

When using request-response streaming systems in the In-
ternet, the streaming system should provide TCP fairness
(RR/TCP = 1). Because there is more than a single
parameter set which provides TCP fairness, a good trade-
off between throughput performance and TCP fairness has
to be found. The number of request-response streams also
directly impacts the performance in case of packet loss or
transmission stalls. Therefore, we propose to use a param-
eter set with a large number of streams which offers good
throughput.

In Figure 12, the performance of such a parameter set for
a fixed bottleneck bandwidth of BW = 8192 kbps is shown.
The chunk size was set to 160 kB and 5 request-response
streams with an inter-request gap of 210 ms were used for
the transmission of the video data. In direct comparison
with the performance of a single TCP connection, the
benefit of the multiple streams becomes evident. While the
throughput of the single TCP connection rapidly decreases
with increasing packet loss, the request-response streams
are able to mitigate the effect. Also, the performance in
an uncongested network with no packet loss (p = 0 %)
is quite good, but of course not as good as TCP, because
of the fixed inter-request gap value. When comparing the
values of the measurement with the model (see Figures 12
and 3), it can be noticed that the correlation between the
model and the real measured values is good. We know
that our model is only a simplification of the real world
problems, but we think it can be used for an estimation
of the throughput performance of the request-response
streams (with and without packet loss).

The impact of the streaming performance on the video
quality shows a behavior similar to the throughput perfor-
mance. Figures 13 and 14 present the video quality in terms
of PSNR for the test sequences soccer and in to tree, respec-
tively. In case of no packet loss and stable network condi-
tions, TCP and the request-response streams perform well,
with an advantage for TCP in terms of network utilization.
If packet loss is present, then this fact changes dramatically.

50 100 150 200

34

36

38

40

RTT [ms]

P
S

N
R

 [d
B

]

packet loss

0%
0.1%

0.5%
1%

2%
TCP
Request−Response

Figure 13: Measured video quality of the streamed
test sequence soccer in terms of PSNR of a single
TCP connection (TCP) and for the request-response
streams (MSS = 1460 bytes, lch = 160 kB, nc = 5,
tgap = 210 ms) at a fixed bottleneck bandwidth
BW = 8192 kbps and packet loss rate p.

For high packet loss rates, the single TCP connection can-
not even transmit the base layer of the video, because of
insufficient TCP throughput. High RTTs and the HD video
in to tree present difficulties for the request-response streams
as well. It is quite evident, though, that the request-response
streams can make better use of the available bandwidth,
while the performance of the single TCP stream is stuck (see
Equation 1). Unfortunately, the difference in PSNR values
can only be calculated for a packet loss rate of p = 0.1 %
and the test sequence soccer, which is at average 2.04 dB.
In the other network scenarios with packet loss and for the
sequence in to tree, TCP cannot deliver the video at every
given RTT. So the main advantage of the request-response
streams compared to a single TCP connection is that it can
deliver the video, while TCP may not be capable of deliver-
ing the video at all.

8. CONCLUSION
Internet video streaming has gained popularity mainly due

to social video portals and video-on-demand applications.
Because of the dynamic nature of the Internet, constant bit
rate video streaming based on TCP is only possible with high
over-provisioning [19]. Adaptive video streaming based on
TCP/HTTP is certainly the key to Internet video streaming
and a lot of systems were proposed [23, 10, 3, 1, 11].

HTTP streaming using video fragments is usually more
robust against network fluctuations and is basically state-
less on the server-side, because it is in general fully client-
driven. Compared to a single TCP connection, request-
response streams can mitigate the effects of packet loss and
TCP connection timeouts or stalls. In our work, we ana-
lyzed the basic properties of HTTP streaming. By intro-
ducing HTTP-based request-response streams, we were able
to identify the system parameters of HTTP-based stream-
ing. Using knowledge about the bottleneck router led us to a
model for the estimated throughput of the request-response
streams.

50 100 150 200

34

36

38

40

RTT [ms]

P
S

N
R

 [d
B

]

packet loss

0%
0.1%

0.5%
1%

2%
TCP
Request−Response

Figure 14: Measured video quality of the streamed
test sequence in to tree in terms of PSNR of a single
TCP connection (TCP) and for the request-response
streams (MSS = 1460 bytes, lch = 160 kB, nc = 5,
tgap = 210 ms) at a fixed bottleneck bandwidth
BW = 8192 kbps and packet loss rate p.

An in-depth evaluation of the performance of request-
response streams was presented in this paper. It revealed
that request-response streams are able to scale with the
available bandwidth by increasing the chunk size or the num-
ber of concurrent streams. The system parameters have to
be carefully chosen, however, based on the bandwidth of the
bottleneck router in order to avoid self-congestion. Our pro-
posed model for the throughput shows a good correlation
with the experimental results. Regarding TCP-friendliness,
we were able to show that there are several combinations
of system parameters which exhibit TCP-friendliness. By
means of a temporal inter-request gap, we were able to ad-
just the fairness of a certain chunk size / number of streams
combination to a fair level. For such a fair system param-
eter set, we evaluated the video streaming performance in
terms of video quality in the presence of packet loss. While
the single TCP connection performs better than the request-
response streams if no packet loss is present, the performance
of the single TCP connection deteriorates rapidly with in-
creasing packet loss.

In this paper, we provided experimental evidence that
multiple HTTP-based request-response streams are a good
alternative to classical TCP streaming. Additionally, we
presented several system parameter sets featuring TCP-
friendliness, which can be used in the design of TCP-
friendly streaming systems. Currently the performance of
the request-response streams is limited by their fixed pa-
rameter settings. Future work will cover an investigation of
dynamic parameter sets and their TCP-friendliness.

9. ACKNOWLEDGMENT
This work was supported in part by the European Com-

mission in the context of the Integrated Project ALICANTE
(FP7-ICT-248652; http://www.ict-alicante.eu).

10. REFERENCES
[1] Transparent End-to-end Packet-switched Streaming Service;

Protocols and codecs. ETSI TS 126 234, V9.3.0, June 2010.

[2] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router
buffers. SIGCOMM Comput. Commun. Rev., 34:281–292,
August 2004.

[3] L. De Cicco and S. Mascolo. An Experimental Investigation of
the Akamai Adaptive Video Streaming. In Proceedings of the
6th Symposium of the Workgroup Human-Computer
Interaction and Usability Engineering (USAB), pages
447–464, Nov. 2010.

[4] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu.
Characterizing Residential Broadband Networks. In
Proceedings of the 7th ACM SIGCOMM Conference on
Internet Measurement (IMC ’07), pages 43–56, 2007.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616 (Draft Standard), June 1999.

[6] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T
VCEG. Joint Scalable Video Model. Doc. JVT-X202, 2007.

[7] C. Krasic, J. Walpole, and W.-C. Feng. Quality-adaptive
Media Streaming by Priority Drop. In Proceedings of the 13th
International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV ’03), pages
112–121, 2003.

[8] M. Hassan and R. Jain, editor. High Performance TCP/IP
Networking: Concepts, Issues, and Solutions. Pearson
Prentice Hall, 2004.

[9] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
Macroscopic Behavior of the TCP Congestion Avoidance
Algorithm. ACM SIGCOMM - Computer Communication
Review, 27(3):67–82, 1997.

[10] Move Networks. Move Adaptive Stream - Product Sheet.
http://www.movenetworks.com. Last accessed on 2010-12-07.

[11] R. Pantos. HTTP Live Streaming. Internet Draft
draft-pantos-http-live-streaming-04, 2009.

[12] R. Kuschnig, I. Kofler, and H. Hellwagner. An Evaluation of
TCP-based Rate-Control Algorithms for Adaptive Internet
Streaming of H.264/SVC. In Proceedings of ACM Multimedia
Systems (ACM MMSYS 2010), February 2010.

[13] R. Kuschnig, I. Kofler, and H. Hellwagner. Improving Internet
Video Streaming Performance by Parallel TCP-based
Request-Response Streams. In Proceedings of the 7th Annual
IEEE Consumer Communications and Networking
Conference (IEEE CCNC 2010), January 2010.

[14] H. Riiser, P. Halvorsen, C. Griwodz, and D. Johansen. Low
Overhead Container Format for Adaptive Streaming. In
Proceedings of ACM Multimedia Systems (ACM MMSYS
2010), pages 193–198, Feb. 2010.

[15] M. Saxena, U. Sharan, and S. Fahmy. Analyzing Video
Services in Web 2.0: A Global Perspective. In Proceedings of
the 18th International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV
’08), pages 39–44, 2008.

[16] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications. RFC
3550, July 2003.

[17] T. Stockhammer, G. Liebl, and M. Walter. Optimized H.264-
AVC-based bit stream switching for mobile video streaming.
EURASIP J. Appl. Signal Process., 2006:1–19, 2006.

[18] W. Feng, M. Liu, B. Krishnaswam, A. Prabhudev. A
Priority-Based Technique for the Best-Effort Delivery of Stored
Video. In Proceedings of the SPIE/IST Multimedia
Computing and Networking 1999 (MMCN’99), 1999.

[19] B. Wang, J. Kurose, P. Shenoy, and D. Towsley. Multimedia
Streaming via TCP: An Analytic Performance Study. ACM
Transactions on Multimedia Computing, Communications
and Applications, 4(2):16:1–16:22, 2008.

[20] Y. Wang, M. Hannuksela, S. Pateux, A. Eleftheriadis, and
S. Wenger. System and Transport Interface of SVC. IEEE
Transactions on Circuits and Systems for Video Technology,
17(9):1149–1163, 2007.

[21] S. Wenger, Y.-K. Wang, T. Schierl, and A. Eleftheriadis. RTP
Payload Format for SVC Video. Internet Draft
draft-ietf-avt-rtp-svc-19, 2009.

[22] T. Wiegand, G. Sullivan, H. Schwarz, and M. Wien, editors.
ISO/IEC 14496-10:2005/Amd3: Scalable Video Coding.
International Standardization Organization, 2007.

[23] A. Zambelli. IIS smooth streaming technical overview.
Technical report, Microsoft Corporation, March 2009.

