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ABSTRACT

The Internet is nowadays mainly used for streaming of mul-
timedia content, something it was not built for originally. To
guarantee user satisfaction, one of the key concepts of the In-
ternet as we know it is bandwidth sharing. While this concept
is necessary to provide stability in the network, several issues
can arise with adaptive multimedia streaming, e.g., efficiency
and stability. Considering Information-Centric Networking
(ICN) and its network-inherent caching, those issues tend to
become worse. Many researchers have proposed to use traf-
fic shaping on the server to enable fair bandwidth sharing and
stabilize clients. However, existing research does not consider
content popularity and in-network caching. The contribution
of this paper is two-fold. First, we propose a cache-aware traf-
fic shaping policy, in order to guarantee seamless playback of
videos. Second, based on content popularity, we calculate an
average video quality achieved by this traffic shaping policy
for various cache sizes, to show the impact of popularity and
caching for multimedia streaming in ICN.

Index Terms— Content Popularity, Adaptive Multimedia
Streaming, Information-Centric Networking, Traffic Shaping

1. INTRODUCTION

In today’s Internet, real-time entertainment platforms such as
YouTube and Netflix cause over 60% of traffic [1], and ac-
cording to Cisco [2], the relative and absolute amount of mul-
timedia traffic will increase significantly over the next years.
While many platforms already make use of Content Distri-
bution Networks (CDNs), many users are displeased with the
performance of video streaming, and in 2013 about 27% of
users are experiencing video playback stalls [3]. Hoßfeld
et al. [4] studied the effects of such stalls and found out
that user satisfaction drops exponentially with two or more
stalling events per clip.

Video playback stalls are usually caused by network con-
gestion. In adaptive video streaming deployments, clients dy-
namically adapt the video quality based on their local knowl-
edge of the network, e.g., the estimated throughput. If a client
over-estimates the available bandwidth share and requests the

video at a higher bitrate, it will eventually experience a buffer
underflow. [5] showed that this over-estimation usually hap-
pens due to adaptive streaming clients competing for band-
width over a bottlenecked/congested link.

The first thing that comes into mind for bandwidth shar-
ing is TCP’s congestion control. TCP is able to share the
bandwidth fairly between multiple competing players. Using
adaptive video streaming, clients can measure the through-
put and select a representation with a lower or higher bitrate
accordingly, therefore maximizing the Quality of Experience
(QoE). However, the problem of competing clients usually
occurs after clients fill up their local video buffer (e.g., 30
seconds). Once the buffer is filled, the client stops download-
ing until there is enough room (e.g., 2 seconds) to download
the next part of the video. This on-off behaviour causes com-
peting clients to misinterpret the measured throughput [5].

A promising approach to counter this problem is to min-
imize the idle time of clients by using traffic shaping on the
server [6]. The effective throughput is throttled to a rate where
clients will no longer over-estimate their bandwidth share and
not switch to a higher quality, but also not deplete their buffer.
Consider the example depicted in Figure 1. Applying traffic
shaping with 1 Mbit/s per client will be beneficial for both
clients.

However, when traffic shaping is applied on the server, we
need to consider ICN’s network-inherent caching [7]. Popular

sr1r2

u1

u2

1 Mbit/s

2 Mbit/s

5 Mbit/s 2 Mbit/s

Fig. 1: A network with two clients (u1, u2), one server (s) and
two routers (r1, r2). The link between r1 and s is a bottleneck,
and clients will compete for bandwidth on this link.



videos are cached on-path, and when multiple users request
the same video (over the same path), only one request will
arrive at the server. The remaining requests are served from
the cache. The more users are served from the cache, the more
bandwidth is available to serve the remaining users. If we
consider the previous example with the addition of a cache on
r2, then u1 could be served from the cache (without knowing
it), while u2 utilizes the full bandwidth towards s.

Within this paper, we are proposing a model for fair band-
width sharing, based on content popularity and caching. By
using video quality as our utility function, we provide an up-
per bound for the achievable quality over a bottlenecked link,
with and without caching.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an overview of the related work on this topic.
In Section 3 we describe adaptive video streaming and the
problem of multiple users competing for bandwidth. We pro-
vide our model in Section 4, explaining the optimization goal
and restrictions, and show initial results in Section 5. The pa-
per is concluded in Section 6, indicating future work based on
our model.

2. RELATED WORK

Plenty of related work exists about traffic shaping. Houdaille
et al. [8] studied two concurrent adaptive video streams over
a bottlenecked gateway, and showed that two concurrent
streams can already negatively influence each other. By us-
ing simple traffic shaping on a residential broadband router,
bitrate and quality fluctuations were reduced significantly.

Akhshabi et al. [5] identified the root cause of oscillations
and unfairness: after HTTP-adaptive streaming clients fill up
their buffer, they stay in a steady state. Periods of activity are
followed by periods of inactivity (on-off behaviour), which
can cause the client to misinterpret the measured throughput.
[5] further introduced an instability metric based on the band-
width and determined a fair share for each client. [6] im-
plemented traffic shaping on the server-side to stabilize the
client based on metrics defined in [5]. The authors were able
to significantly improve the switching behaviour in the case
of multiple competing clients. [9] investigated the problem
of fairness even further and described a stateful bitrate selec-
tion scheme to ensure convergence of bitrates. [10] proposed
a QoE-aware traffic shaping method by using Structural Sim-
ilarity (SSIM) [11]. A linear program was used to calculate a
shaping policy based on SSIM and profit per user.

In addition to traffic shaping, some related work exists
about proxy effects. Mueller et al. [12] described negative
effects that can occur when multiple DASH clients com-
pete over a bottlenecked proxy server. They performed
experiments which show that a proxy server can have a
negative impact on the throughput estimation, potentially
causing a high number of quality switches and even playback
stalls. [13] implemented an intelligent shaping algorithm

for in-network caches and reduced oscillations caused by
in-network caching.

None of the mentioned works considered content popu-
larity for their caching or shaping decisions. [10] used grades
and profit of users to determine throughput per client, but did
not consider content popularity. In terms of modelling the
problem, Toni et al. [14] formulated a linear program, de-
termining the number of representations and the bitrates for
them. In addition they studied a satisfaction metric to deter-
mine the user’s satisfaction based on bitrate and spatial reso-
lution. However, they also did not consider content popular-
ity, but assumed a uniform distribution.

Our model distinguishes itself from existing research
since we introduce content popularity and in-network caching
to the idea of traffic shaping. Our model also uses SSIM as
the primary optimization goal, and by using traffic shaping
we are trying to prevent quality fluctuations and stalls – the
model is therefore QoE-aware.

3. CONCURRENT ADAPTIVE STREAMING

In this section we describe problems occurring when multi-
ple users stream varying videos at the same time, especially
in the case of Information-Centric Networking. When using
a pull-based approach, such as DASH, the client adaptation
logic is responsible for selecting a certain representation of
the requested video. Each video has several representations,
characterized by the spatial resolution, frame-rate and the bit-
rate. Therefore, clients can use local information, such as the
estimated network throughput and current video buffer state,
as well as the display resolution, to determine which repre-
sentation should be requested.

The main goal of adaptive streaming is to provide excel-
lent QoE by selecting an optimal representation. As network
conditions might change over time, the client’s adaptation
logic has the possibility to change to a higher or lower rep-
resentation at specified borders. For instance, in the begin-
ning the client usually starts requesting a representation with
a low bitrate to fill up the buffer to a certain threshold (e.g.,
10 seconds). Once this threshold is met, the adaptation logic
could decide to request a higher representation (e.g., based on
the measured throughput), while keeping the buffer above or
near this threshold. However, the client’s buffer is often sub-
ject to limitations (e.g., 30 seconds), and once it is full, the
client enters the so called steady state.

When a client is in steady state, the next couple of sec-
onds of the video are only requested once there is more room
in the buffer, which leads to an on-off behaviour [5]. While
in the case of a single client this behaviour is expected and
working as intended, [5] depicted several cases for concur-
rent multimedia streams where this on-off behaviour causes
instabilities and oscillations at the client side.

When multiple users stream videos from the same server
at the same time, they need to share the link’s capacity some-



how. In the case of TCP, congestion control protocols try to
equally distribute the available bandwidth to all consumers.
This behaviour is well studied and fairness is guaranteed.
However, with the on-off behaviour described above, [5]
shows that while bandwidth might be shared in a fair way,
clients experience different throughput and choose different
representations. To stabilize clients and guarantee fair shar-
ing in terms of video bitrate, [6] proposed traffic shaping on
the server. With fair traffic shaping, the authors were able to
control the on-off behaviour and reduce idle times of clients,
which led to more accurate throughput measurements and
similar qualities among all clients.

Last but not least, the problem of concurrent adaptive
streaming and fair bandwidth sharing is an important topic
within the ICN community. In ICN, intermediate nodes have
the ability to serve cached versions of the content. However,
clients do not know whether they receive content from a cache
or from the original source. Therefore, when a client requests
content which is stored on an intermediate node, it experi-
ences a higher throughput. While this is intended, it creates
issues with adaptive streaming, since the adaptation logic
might then decide to switch to a higher representation, which
might not be cached. [12] showed that clients experience
oscillations when consuming cached content. [13] proposed
to apply traffic shaping at the cache to prevent clients from
over-estimating the available bandwidth. In addition, [15]
showed that popularity of content plays an important role
when multimedia clients compete for bandwidth in ICN.

4. MODELLING CONCURRENT STREAMS

In this section we are going to detail the process of mod-
elling concurrent adaptive multimedia streams. First, a sim-
ple approach is used for modelling multiple clients compet-
ing for bandwidth over a bottlenecked link, leading to a fair
traffic shaping policy (based on video quality), but without
considering caching. This approach will be used as the refer-
ence model we want to improve. We then introduce a novel
model, based on an optimization problem which considers the
server’s network capacity, content popularity and in-network
caching. By calculating the average video quality for both ap-
proaches, we determine the impact of caching and popularity.

4.1. Videos, Users and Traffic Shaping

The content catalogue, a set of videos available for streaming
at the server, is denoted as V . We denote the set of (equidis-
tant) bitrates as BR, and each video v ∈ V is available at
all bitrates b ∈ BR. Furthermore, let bmin = min BR be
the smallest bitrate representation available, therefore also the
minimum required bandwidth to stream a video without ex-
periencing playback stalls.

Let U be the set of users. For the purpose of this paper,
each user u ∈ U represents a unique user requesting exactly

Bottleneck

bw(s)

Server s

Users U

“Cache”

Fig. 2: Idealized network model - the network consists of
nodes with a cache, we assume that the bottleneck is on the
ingress/egress link towards the content server.

one video v ∈ V . Furthermore, we are assuming an idealized
network model as displayed in Figure 2, where all users are
requesting content from a single content server s, and the net-
work acts as a large cache. The bottleneck capacity of the link
between the last router and server s is denoted as bw(s). We
now define a traffic shaping policy π as follows:

∀u ∈ U : π(u) ∈ BR ∪ {0}. (1)

4.2. Naive Approach

The naive approach for calculating a fair traffic shaping pol-
icy π would be to use the available bandwidth bw(s) and dis-
tribute it equally across |U| users (like it would happen in
TCP), therefore π(u) = bavg = bw(s)/|U| (∀u ∈ U). To
analyze this approach for adaptive multimedia streaming, the
following two cases need to be distinguished for now:
(i) bavg ≤ bmin and (ii) bavg > bmin.

In case (i), all clients will experience video playback
stalls, until some (possibly only a few) users decide to stop
streaming and bavg increases above bmin. This behaviour
leads to a poor QoE [4] for all users, and could have nega-
tive long-term effects on the streaming service (e.g., loss of
subscribers). While this situation should not occur in theory,
in practice it can (and does), and our model needs to handle
this case by dropping some users from the system (by setting
π(u) = 0). However, it remains to be determined which users
should be dropped. Eventually, after dropping enough users,
this case will lead to case (ii).

Case (ii), which should occur more often, allows stream-
ing without playback stalls for all clients (contrary to case (i)).
The solution is fair, as every user receives the same share of
bandwidth. However, in general, bavg 6∈ BR. If bavg is used,
clients might experience problems due to the on-off behaviour
described in Section 3. Instead, we could use the smallest fol-
lowing bitrate:

bfeasible := max{b ∈ BR : b ≤ bavg}. (2)

This approach is feasible, but does not fully utilize the link’s
capacity. The questions that remain are, which users to aban-
don in case (i), and how to properly select bitrates in case (ii),



to fully utilize the bottlenecked link’s capacity bw(s). One
solution could be to randomly decide or work on a first-come
first-serve basis, though we want to go one step further and
use content popularity as input.

4.3. Content Popularity

To improve the initial approach and to answer the two open
questions, we are going to look at content popularity. Many
types of ranked data studied in science can be explained by us-
ing the power law [16]. In the case of content popularity, stud-
ies have shown that Video on Demand content can be charac-
terized by a Zipf distribution [17]. By varying the param-
eters of the distribution, several cases, such as viral videos,
80-20 principle or almost uniformly distributed content can
be covered. However, we are aware that it has been shown
by [18] that the power law does not necessarily apply to all
cases of content distribution. Due to space constraints, we
will stick to the Zipf distribution. Our model will however
not be tied to the Zipf distribution, and any other distribution
can be plugged in.

Given a ranked content catalogue V = {v1, v2, . . . , vN},
where vi is more popular than vi+1, the popularity of each
video is characterized by the Zipf distribution’s density,

Pop(vi) =
1

iα

/ |V|∑
k=1

1

kα
, (3)

whereα denotes the popularity parameter and i ∈ {1, 2, . . . , |V|}
denotes the content rank. For α > 0 the distribution is long
tailed, and by increasing α, the popularity of content with low
ranks will slightly increase. By decreasing α, the distribution
will become more balanced and for α → 0 it approaches a
uniform distribution.

We now modify the initial approach, by simply sorting the
user base U according to their requests (with users requesting
the most popular videos at the beginning). For case (i), we
start by satisfying the first γ = bbw(s)/bminc users. We jus-
tify this decision with the following argument: users consum-
ing content with high popularity are more important as those
consuming unpopular content. Popular content could be what
keeps customers interested in the service. As expected, this
simple solution leads to a shaping policy, satisfying as many
users as possible, and consuming as much bandwidth as pos-
sible on the bottlenecked link.

For case (ii), where every user u ∈ U receives a certain
share of bandwidth bavg > bmin, we can apply a similar
logic as above. Algorithm 1 determines a bandwidth alloca-
tion which maximizes the bitrate of all users. The algorithm
works as follows. Starting with the smallest feasible bitrate
bfeasible, satisfy as many users – denoted as γb – as possible
and decrease the remaining capacity c. Consecutively, switch
to the next higher bitrate b and try to satisfy as many users
as possible again, but take into account users who were al-

π(ui)← 0, ∀i ∈ {1, 2, . . . , |U|}: . Initialize policy
blast ← 0 ; γlast ← 0 . Helper variables
c← bw(s) . Remaining capacity
BR′ ← {b ∈ BR : b ≥ bfeasible}
for all b ∈ Sorted(BR′) do . Iterate over sorted bitrates

if c < b then
break . Not enough capacity remaining

end if
γb = min

{
|U|,

⌊
c

b− blast

⌋}
. Satisfy

c← c+ γb · (blast − b) . Update remaining capacity
π(ui)← b, ∀i ∈ {1, 2, . . . , γb} . Update policy
blast ← b ; γlast ← γb

end for

Algorithm 1: Determine a bandwidth allocation which
prefers users consuming popular content, and maximizes the
quality for all users.

ready satisfied with the previous bitrate blast. Stop when the
remaining capacity c is less than bitrate b.

4.4. Video Quality

While the preceding algorithm is easy to implement and pro-
vides a fair solution (in terms of bitrate), it does not consider
the video quality. Especially when videos of different cate-
gories (e.g., sports, animation, movie) are viewed, the video
quality differs significantly. In general, the primary goal when
looking at adaptive streaming is to maximize the QoE for all
users. We have already ensured that as many users as possible
can stream the video without playback stalls. Traffic shaping
will also help stabilize the clients in terms of quality switch-
ing.

The remaining task is to maximize the video quality for
each user, e.g., by using an objective metric such as SSIM.
SSIM can be calculated by encoding a video at a certain target
bitrate b ∈ BR, and then comparing it to the original source
video. Therefore, SSIM is usually a function of the bitrate
and the video, denoted as SSIM(v, b).

To analyze the results of Algorithm 1, we need to define
the average video quality based on SSIM as follows. Let vu ∈
V be the video requested by user u, then the average quality
is given by:

Ω =

|U|∑
i=1

SSIM(vui
, π(ui))

|U|
. (4)

4.5. Introducing Caching

The preceding algorithm is nice, but has three issues: (i) it
does not scale well with a growing user-base, (ii) it can not
consider caching properly and, (iii) it does not consider video
quality. To overcome these problems, we modify our problem



such that we do not consider a shaping policy π per user, but
per video. Therefore we define π(v) ∈ BR∪{0} as the bitrate
available for each user requesting video v ∈ V . In addition,
we introduce the idea of caching k items/videos (0 ≤ k ≤
|V|) on an intermediate node (k = 0 means no caching).

Ω = max
∑
v∈V

Pop(v) · SSIM(v, π(v)) (5)

s.t.
k∑
j=1

π(vj) +

|U| ·
|V|∑

j=k+1

Pop(vj) · π(vj) ≤ bw(s) (6)

∀v ∈ V : π(v) ∈ BR ∪ {0} (7)

This model maximizes the average SSIM Ω of all users
(Equation 5) based on popularity of videos, by assigning an
appropriate bitrate π(v) ∈ BR ∪ {0} for each video (Equa-
tion 7). In addition, Equation 6 guarantees that the avail-
able capacity bw(s) is not exceeded. The first k videos are
requested only once from the origin server, while the other
videos are still requested as if there were no cache. For each
video v ∈ V that is not cached, the required capacity is given
by |U| · Pop(v) · π(v).

The model can easily be converted into an assignment
problem with |V| · |BR| variables. As 0 ≤ SSIM(v, b) ≤ 1
holds for any video and bitrate, the problem is bounded (0 ≤
Ω ≤ 1). A trivial feasible solution exists (either π(v) = 0
or π(v) = bfeasible), therefore an optimal solution exists and
can be found using the Simplex method.

5. RESULTS

We evaluated our model for a fixed content catalogue with
|V| = 10, different values of α and different cache sizes
0 ≤ k ≤ 10. Existing literature [19, 20] suggests differ-
ent values for α. As we wanted to investigate only certain
cases, we decided to follow [20] (α ∈ {0.8, 1.2}) and also
evaluate the cases of α = 0 and α = 2. The user base was
set to 1000 users. We varied bw(s) between 100 and 1500
Mbit/s in steps of 10 Mbit/s. We used fixed bitrates BR =
{500, 1000, 1500, . . . , 9500, 10000} (kbit/s) and SSIM val-
ues {0.75, 0.85, 0.88, . . . , 0.988, 0.989} for each video.

Figure 3 visualizes our results by plotting the capacity
bw(s) against the average video quality (SSIM). The thick
red line shows the results from Algorithm 1, and therefore
the theoretical maximum without caching, and therefore also
a feasible solution of our model. The thick blue line on top
shows the SSIM value of the highest-quality representation
available, therefore the upper bound. The results show the
potential impact of caching in ICN in terms of quality im-
provement and bandwidth savings. Figure 3a shows the im-
pact of caching for α = 0.8. Clearly, just by caching the most
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(a) Impact of caching for α = 0.8 and various cache sizes. The lowest
red line shows the case of caching disabled, using Algorithm 1.
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Algorithm 1.

Fig. 3: Impact of popularity and cache size

popular item, a significant improvement of video quality can
be achieved. Figure 3b shows the impact of different α values
for the Zipf distribution, therefore the impact of popularity,
under a constant cache size k = 1. Even for α = 0.0 (uni-
form distribution), the model suggests that there is a benefit
of caching one item.

6. CONCLUSION

As the amount of traffic related to multimedia streaming is
growing rapidly, traffic shaping is used as a solution. In this
paper we proposed a novel model to determine shaping band-
widths per video, under varying popularities and cache sizes.
The results show that even in the case of uniformly distributed
content, a proper selection of shaping bitrates is able to im-
prove the average video quality of all users. Future work will
consist of evaluations of this model in test-beds and simula-
tions, as well as comparisons with different approaches.
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