
An Evaluation of Dynamic Adaptive Streaming
over HTTP in Vehicular Environments
Christopher Müller, Stefan Lederer and Christian Timmerer

Alpen-Adria-Universität Klagenfurt
Universitätsstraße 65-67

9020 Klagenfurt am Wörthersee, Austria
+43 (0) 463 2700 3600

{firstname.lastname}@itec.aau.at

ABSTRACT

MPEGs' Dynamic Adaptive Streaming over HTTP (MPEG-

DASH) is an emerging standard designed for media delivery over

the top of existing infrastructures and able to handle varying

bandwidth conditions during a streaming session. This

requirement is very important, specifically within mobile

environments and, thus, DASH could potentially become a major

driver for mobile multimedia streaming. Hence, this paper

provides a detailed evaluation of our implementation of MPEG

DASH compared to the most popular propriety systems, i.e.,

Microsoft Smooth Steaming, Adobe HTTP Dynamic Streaming,

and Apple HTTP Live Streaming. In particular, these systems will

be evaluated under restricted conditions which are due to

vehicular mobility. In anticipation of the results, our prototype

implementation of MPEG-DASH can very well compete with

state-of-the-art solutions and, thus, can be regarded as a mature

standard ready for industry adaption.

Categories and Subject Descriptors

D.5.1 [Multimedia Information System]: Video.

General Terms

Algorithms, Measurement, Standardization, Documentation.

Keywords

Dynamic Adaptive Streaming over HTTP, MPEG-DASH,

Microsoft Smooth Streaming, Adobe HTTP Dynamic Streaming,

Evaluation, Apple HTTP Live Streaming, Mobile Networks,

Vehicular Mobility.

1. INTRODUCTION
Media streaming over the hypertext transfer protocol (HTTP) and

in a further consequence streaming over the transmission control

protocol (TCP) has become omnipresent. Content providers such

as Netflix, Hulu, and Vudu do not deploy their own streaming

equipment but use the existing Internet infrastructure as it is and

they simply utilize their own services over the top (OTT). This

streaming approach works surprisingly well without any particular

support from the underlying network due to the use of efficient

video compression, content delivery networks (CDNs), and

adaptive video players. The assumption of earlier video streaming

research, which mostly recommended the user datagram protocol

(UDP) and the real time transport protocol (RTP), that it would

not be possible to transfer multimedia data smoothly with TCP,

because of its throughput variations and large retransmission

delays, could be seen as a delusion from today’s point of view.

HTTP streaming and especially its most simple form which is

known as progressive download has become very popular over the

past few years because it has some major benefits compared to

RTP streaming. As a consequence of the consistent use of HTTP

for this streaming method the existing Internet infrastructure,

consisting of proxies, caches and CDNs could be used. Originally

this architecture was designed to support best effort delivery of

files and not real time transport of multimedia data. Nevertheless,

also real time streaming based on HTTP could take advantage out

of this architecture, in comparison to RTP which could not utilize

any of the aforementioned components. Another benefit that

results from the use of HTTP is that the media stream could easily

pass firewalls or network address translation (NAT) gateways

which was definitely a key for the success of HTTP streaming.

However, HTTP streaming is not the holy grail of streaming as

introduces also some drawbacks compared to RTP. For example,

as HTTP is based on TCP an overhead is introduced that is

approximately twice the media bitrate [1].

Akhsabi et al. [2] evaluated Microsoft Smooth Streaming, Adobe

HTTP Dynamic Streaming, and the Netflix Player using simulated

bandwidth traces. They used different test content for each system

in question and, thus, the results are difficult to compare. Yao et

al. [3] evaluated the possibility of using HTTP streaming under

vehicular mobility with 3rd generation mobile networks. The

evaluation is based on real world bandwidth traces using their

own, proprietary client. However, their evaluation focused on the

comparison of their system with non-adaptive HTTP streaming,

i.e., progressive download whereas our evaluation is based on

systems already deployed by the industry and standards under

development such as ISO/IEC MPEG and 3GPP. Therefore, the

results of this evaluation [3] demonstrate that dynamic HTTP

streaming is more suitable for mobile networks than non-adaptive

HTTP streaming. In their previous work [4] they have also

introduced bandwidth road maps to increase the adaption of their

TCP based video streaming system, which can also be used to

increase the precision of rate-adaption algorithms in dynamic

HTTP streaming.

One of the first standards on how to handle varying bandwidth

conditions with HTTP streaming has been proposed by 3GPP as

Adaptive HTTP Streaming (AHS) [5]. The basic idea is to break

up the media file into segments of equal length which can be

encoded at different resolutions, bitrates, etc. The segments will

be stored on an ordinary Web server and can be accessed through

HTTP GET requests from the client. As a consequence, this

streaming system is pull based and the entire streaming logic is on

the client side. This means that the client fully controls the bitrate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MoVid’12, February 24, 2012, Chapel Hill, North Carolina, USA.

Copyright 2012 ACM 978-1-4503-1166-3/12/02...$10.00.

37

of the streaming media on a per segment basis which has several

advantages, e.g., the client knows its bandwidth requirements and

capabilities such as codecs, resolution, and language best.

Furthermore, this system scales very well because the content can

be simply distributed utilizing CDNs. In order to describe the

relationship between the media segments and the corresponding

bitrate, resolution, and timeline, 3GPP introduced the Media

Presentation Description (MPD). The MPD is an XML document

comprising HTTP uniform resource locators (URLs) which point

to segments with individual capabilities, e.g., bitrate, resolution

that correspond to an exact point in time. The MPD is typically

the first object that will be downloaded for a dynamic HTTP

streaming session and provides means to initialize the session.

With the information provided through the MPD the client is able

to start the session and dynamically adapt to bandwidth

fluctuations, if needed. In addition to standardized solutions, a lot

of proprietary solutions have been deployed by the industry, e.g.,

Microsoft Smooth Streaming [6], Adobe HTTP Dynamic

Streaming [7] and Apple HTTP Live Streaming [8], but

interestingly all of them utilize some kind of MPD and follow

nearly the same architecture where the logic is located at the client

side and the media will be chopped into segments and encoded at

different bitrates or resolutions. Finally, ISO/IEC MPEG has

started a new work item referred to as Dynamic Adaptive

Streaming over HTTP (DASH) [9][10] which aims to combine the

features of the above mentioned systems within a single standard.

Such HTTP streaming systems are designed to handle varying

bandwidth conditions which are very valuable, specifically within

mobile environments due to the fact that these conditions could

change dramatically from one moment to another. As DASH is a

recent standard it is currently not clear how these systems perform

in mobile environments and, thus, this paper evaluates the

behavior of dynamic HTTP streaming systems in mobile – i.e.,

vehicular – environments. Hence, in the following the terms

mobile and vehicular are used synonymously. Vehicular

environments are more challenging than traditional mobile

environments (e.g., pedestrians) because bandwidth fluctuations

will occur more frequently and with higher amplitudes. Therefore,

if a dynamic, HTTP streaming system performs well in vehicular

environments it will also perform well in the traditional mobile

environments.

In order to understand the problems and requirements of this

highly specialized use case, this paper experimentally evaluates

four streaming systems, i.e., Microsoft Smooth Streaming, Adobe

Dynamic Streaming, Apple Live Streaming and our prototype

implementation of MPEG-DASH. This paper addresses three

fundamental questions:

1. How do these systems react on the high frequency bandwidth

fluctuations?

2. Do they guarantee a smooth playback under these highly

restricted bandwidth conditions?

3. Could they utilize the maximum available bandwidth with a

minimum number of quality switches?

In anticipation of the results we can conclude that none of the

systems achieves the maximum available bandwidth with a

minimum number of quality switches. Furthermore, not all of

them guarantee a smooth playback which is definitely the

minimum criteria for a streaming system in that case.

The reminder of this paper is organized as follows. Section 2

describes our methodology while the results are presented and

discussed in Section 3. The paper is concluded in Section 4.

2. METHODOLOGY
This section provides information about the experimental

methodology and the metrics that are used in this paper. All

experiments have been performed using Big Buck Bunny [11].

The content has been encoded using x264 [12] at 14 different

bitrates (100, 200, 350, 500, 700, 900, 1100, 1300, 1600, 1900,

2300, 2800, 3400, and 4500 kbit/s). For the encoding a GOP size

of 48 frames has been used, which is necessary to chop the video

into segments of 2 seconds length which is required by Microsoft

Smooth Streaming. The experimental setup for each evaluation

comprises four devices: the client, the bandwidth shaping, the

network emulation, and the Web server. These components will

be further described in Section 3. All systems have been evaluated

under three different network emulation settings that have been

recorded during separate freeway car drives with a HUAWEI

E169 HSPDA USB Stick using a SIM-card of the Austrian

cellular network provider A1. Therefore, we used the A2 freeway

in Carinthia/Austria shown in Figure 1 which has speed limits

between 100 and 130 km/h:

 Experiment 1 / Track 1 (601 seconds): Drive on the freeway

A2, passing by the city of Villach in the direction to

Klagenfurt.

 Experiment 2 / Track 2 (575 seconds): From the Alpen-

Adria-Universität Klagenfurt on the freeway A2 until the

service area around Techelsberg.

 Experiment 3 / Track 3 (599 seconds): From the service area

around Techelsberg on the freeway A2 to the exit of

Klagenfurt.

Wireshark has been used to capture the behavior of each system in

a consistent way which simply records the HTTP GET requests

and marks them with timestamps. Furthermore, four metrics have

been used that utilize the data provided by Wireshark in order to

make each system comparable: average used bitrate, number of

quality switches, buffer level, and stalls. Each system will be

evaluated using the traces from the three tracks and compared

with the metrics briefly introduced in the following.

The average bitrate could be seen as the overall

performance of the system at a particular test setup and will be

computed with the equation below:

∑ ()

 []

 ()

The number of quality switches is another metric that describes

the variance of the session. High values indicate very frequent

switching which can lead to a decreased Quality of Experience

(QoE) [13]. The following formulas have been used to calculate

the number of bitrate switches:

 ∑ ()

 () {

 () ()

Figure 1. Bandwidth Traces

38

The buffer level must be estimated as a consequence that not all

systems provide this information through an interface. The

estimation used in this paper is based on two timestamps namely

the download timestamp (DTS) and the presentation timestamp

(PTS). The current buffer level in seconds can be estimated with

the following formula:

 []

Where [] denotes the maximum of x or 0. The DTS could be

observed on the network emulation component, which uniformly

captures and marks all request with a timestamp. This timestamp

is called DTS. The PTS of each segment could be calculated as a

consequence that the length of each segment is known (i.e., 2

seconds in our case).

The number of unsmooth seconds metric describes the

smoothness of the session and will immensely influence the QoE.

It could be derived from the buffer level metric and describes the

time when the buffer is empty. Therefore, a high value of

unsmooth seconds indicates a more jerky session.

3. EXPERIMENTS
The architecture of the experimental setup is depicted in Figure 2

and consists of four devices, i.e., evaluation client, bandwidth

shaping, network emulation, and HTTP server. The main

components of this architecture are the bandwidth shaping and the

network emulation nodes which are both based on Ubuntu 11.04.

The bandwidth shaping node controls the maximum achievable

bandwidth for the client with the Linux traffic control system (tc)

and the hierarchical token bucket (htb) which is a classfull

queuing discipline (qdisc). The available bandwidth for the client

will be adjusted every 2 seconds due to the recorded bandwidth

traces. The 2 seconds interval has been chosen as a consequence

of the segment length which is required by Microsoft Smooth

Streaming. The network emulation node controls all network

related parameters such as round trip time (RTT). Based on our

measurements the RTT has been set to 150 ms [14] with the Linux

Network Emulator (netem). The client and server components of

this architecture as well as the content generation tools vary from

one evaluation to another simply because not every system is

platform independent and there is no universal tool to generate

content for each individual system.

3.1 Microsoft Smooth Streaming
The evaluation setup for Microsoft’s Smooth Streaming (MSS) is

based on Windows 7 and Microsoft Silverlight. Furthermore,

Mozilla Firefox 7 has been used consistently on the client within

all experiments. The server component is based on Windows

Server 2008 and the Internet Information Service (IIS) with Media

Services 4.0. The multiplexing of the previously encoded content

is performed through the IIS Transform Manager (IISTM) 1.0

Beta [15] which transforms .mp4 files to so-called “H.264 Smooth

Streams”, i.e., segmented .mp4 files. Additionally, it generates the

corresponding metadata client and server manifest files) which are

XML-based and comparable with the MPD that has been

described in the introduction. Unfortunately, Microsoft’s manifest

files do not contain fully qualified URLs which restricts MSS to

IIS Web servers. Hence, the IIS Web server must transform all

requests for media segments that will be sent during a dynamic

HTTP streaming session. Each request that will be produced by

the MSS client contains the video bitrate and a timestamp that

corresponds to the presentation time of the segment (PTS). The

bandwidth emulation server provides the download timestamp

(DTS) and the buffer level is estimated as described in the

previous section.

Due to page count limit, Figure 3 shows the behavior of the MSS

client for experiment 3 / track 3 only. For the results of the other

experiments/tracks, the interested reader is referred to [16]. Figure

3(a) shows the captured and, thus, available bandwidth compared

to the throughput, i.e., utilized bandwidth at the client

(adaptation) and Figure 3(b) shows the buffer fill state.

Interestingly, MSS maintains the same maximum buffer level

over all experiments/tracks which is approximately 30 seconds.

All experiments start with a very high bandwidth that is around or

over 4Mbit. The adaptation process seems to recognize this and

starts to increase the quality in a stepwise manner. The advantage

of this stepwise approach is that the quality will be increased

much more smoothly which could potentially increase the QoE.

This stepwise state transition is typical for Microsoft’s system

only if the measured bandwidth decreases dramatically, e.g.,

around second 100, where the adaption process decreases the

quality with bigger steps to guarantee a smooth playback.

Generally speaking, MSS acts very conservative which is not a

Figure 3. Microsoft Smooth Streaming

Figure 2. Experimental Setup

39

bad idea especially for our experiments which have high

bandwidth fluctuations but it does not react on very short notice,

e.g., experiment 2 / track 2 around second 300 [16]. Furthermore,

it seems that the adaptation process maintains something like a

safety margin. This means that the measured bandwidth must be

significantly and continuously above the bitrate of a

representation until the client will eventually choose this

representation.

3.2 Adobe HTTP Dynamic Streaming
The client for Adobe HTTP Dynamic Streaming (ADS) is based

on Ubuntu 11.04, Firefox 7, and the Open Source Media

Framework (OSMF) Player [17]. The server component hosts the

Flash Media Server in development edition [18] and content

generation has been achieved through Adobe’s File Packager for

ADS. The video that has been used for MSS has been encoded at

the same bitrates and resolutions for ADS to be consistent.

The Adobe adaptation process is very unpredictable and is

depicted in Figure 4 for experiment 3 / track 3. In comparison to

Microsoft’s system ADS is very aggressive and does not act in a

stepwise manner. Interestingly, it switches most of the time

between the highest and the lowest representation even if the

bandwidth for the highest representation is not available over a

longer time span, e.g., between second 300 and 450 or for

experiment 1 / track 1 between second 100 and 350 [16]. Even if

the bandwidth for the highest representation is available, e.g., at

the beginning of the session, ADS does not use this representation

continuously due to the small buffer size at the beginning. ADS

handles such stalls by simply increasing the playback buffer in a

linear way. Every time when a stall occurs, e.g., jerky playback,

the buffer will be increased by a fixed value. This idea of a

“learnable” buffer is smart but from our point of view not

consequently implemented, i.e., it would be better to use an

exponential increase rather than a linear one. However, ADS with

the OSMF player is definitely not suitable for mobile networks

due to the fact that it behaves unpredictable and more binary,

switches between the highest and the lowest representation, than

smooth. Furthermore, it does not guarantee a smooth playback

and introduces a serious number of stalls followed by re-buffering

which potentially annoys the user and, therefore, decrease the

QoE tremendously.

3.3 Apple HTTP Live Streaming
The Apple HTTP Live Streaming (HLS) client is based on Mac

OS X Snow Leopard 10.6 and the Safari 5 Web browser.

Fortunately, the Microsoft Transform Manager offers a possibility

to transform “H.264 Smooth Streams to Apple HTTP Live

Streams” which trans-multiplexes the .mp4 based smooth streams

to MPEG-2 Transport Streams (TS). The TS will be chopped into

segments with a length of 2 seconds, instead of 10 seconds which

is usually required by HLS. HLS is the only system that uses

MPEG-2 TS instead of .mp4 files or another ISO Base Media File

Format (IBMFF) based container which will add a significant

overhead of approximately 25% in relation to the audio/video data

Figure 4. Adobe Dynamic Streaming

Figure 5. Apple Live Streaming

40

[19]. The server for this experiment is based on Windows Server

2008 which hosts the IIS Web server that provides the Apple HLS

streams. In contrast to the other systems Apple HLS has been

especially designed for mobile environments and can also bundle

requests. This means that it could request more than one segment

with one request which is a kind of pipelining. These features

could definitely lead to a more efficient use of the connection and

should be considered by new adaptation logics. The results of the

Apple HLS experiment 3 / track 3 are depicted in Figure 5. Apple

HLS also uses the stepwise approach for representation transitions

like Microsoft but it seems that the step size is larger compared to

MSS. Furthermore, also the buffer size seems to be very large

(approx. 200-250 seconds). When the buffer reaches its maximum

Apple HLS issues a bundle request for 75 segments (i.e., 150

seconds) which corresponds to second 100 to 250 in Figure 5

(experiment 1 / track 1 second 300 to 450, experiment 2 / track 2

second 100 to 250). This bundled request always leads to buffer

decrease in the three experiments as a consequence that Apple

HLS does not consider the bandwidth fluctuations in-between this

bundled request. However, due to the huge buffer size it can

compensate this “false prediction” during periods with extremely

low bandwidth.

3.4 Dynamic Adaptive Streaming over HTTP
The MPEG-DASH experiment is based on our implementation

[20] comprising a DASHEncoder [21], which generates the

content and a DASH compliant MPD, and the DASH VLC Plugin

(DCP) [22]. The server for this experiment is based on Ubuntu

11.04 which hosts an Apache Web server. The DCP has been

modified by adding a 30 second buffer (i.e., 15 segments) to

compensate high bandwidth fluctuations. In order to avoid the

reconnection after each segment the DCP uses HTTP/1.1

persistent connections. The adaptation algorithm that is used by

the DCP simply measures the download time of each segment and

build an adaptation decision out of this download time and the

average measured bitrate of the whole session. This process is

depicted in the following formulas where maxbw(si) returns the

maximum bandwidth that is available for segment i, as a

consequence the maximum quality that also guarantees a smooth

playback:

 ()

{

 ()

 ()

 ()

 ()
()

 []

 ()

In comparison to Microsoft and Apple the DCP uses the non-

stepwise approach, depicted in Figure 6, like Adobe which leads

to more representation transitions but could potentially utilize a

higher average bitrate. Furthermore, the DCP guarantees a smooth

playback with a more or less constant bitrate. A potential

improvement which has been tested is the use of HTTP/1.1

pipelining that could compensate the relatively high RTTs in

mobile networks. Our experiments have shown that such an

improvement could increase the average bitrate of the DCP by

approximately 35%.

3.5 Comparison
Table 1 depicts from left to right the average bitrate, average

number of representation switches, and the average number of

unsmooth seconds of all systems. The average bitrate has been

calculated over all three experiments and shows that Microsoft

Smooth Streaming (MSS) performs very well. Furthermore

Microsoft’s adaptation logic achieves these results with fewer

switches than Adobe or our prototype implementation of MPEG-

DASH. Only Apple HTTP Live Streaming (HLS) has a lower

switch count but it could not utilize the same bitrate as MSS.

Adobe Dynamic Streaming (ADS) is the only system that did not

guarantee a smooth playback. The average number of unsmooth

seconds column shows that Adobe introduces more than 60

seconds which is over 10% of the session where the playback is

Figure 6. MPEG DASH with Pipelining

Table 1. Comparison

Name
Average

Bitrate

Average

Switches

Average

Unsmoothness

Unit [kpbs]
[Number of

Switches]
[Seconds]

Microsoft 1522 51 0

Adobe 1239 97 64

Apple 1162 7 0

DASH 1045 141 0

DASH

Pipelined
1464 166 0

41

unsmooth. Moreover this unsmoothness is spread over the whole

sessions and occurred once per minute which simply makes the

streaming session unwatchable. Our prototype implementation of

MPEG-DASH performs surprisingly well especially with

HTTP/1.1 pipelining it achieves the second best average bitrate.

The improvement of our implementation will be part of our

further research.

4. CONCLUSION
This paper provides a detailed evaluation of state-of-the-art

proprietary dynamic HTTP streaming solutions: Microsoft

Smooth Streaming, Adobe Dynamic Streaming, Apple HTTP

Live Streaming, and our prototype implementation of the

emerging MPEG-DASH standard. We have evaluated these

systems under real world mobile network conditions using

bandwidth traces that have been captured under vehicular

mobility. Microsoft Smooth Streaming performs very well in this

scenario and achieves the highest average bitrate as well as the

second lowest number of stream switches. Apple Live HTTP

Steaming has been especially designed for video transmission to

Apple devices such as iPhone and iPad. Interestingly, it is the only

system that uses MPEG-2 TS which adds an additional overhead

in comparison to the ISOBMFF-based containers that have been

used by the other evaluated systems. Furthermore, it utilizes the

lowest overall bitrate compared to the other commercial systems.

Adobe’s Dynamic Streaming is the only system that does not

achieve a smooth playback. Additionally, the adaptation process

does not behave very predictable as it is more a binary decision

between the highest and the lowest representation which lead in

combination with several stalls and long re-buffering periods to

low QoE. Our prototype implementation of MPEG-DASH shows

promising results indicating the capabilities of the standard and

could definitely compete with the commercial systems.

Furthermore, it achieves the minimum criterion which is a smooth

playback and the second best overall bitrate. Improving this

adaptation process with the aim to maximize the QoE will be part

of our future work.

5. ACKNOWLEDGMENTS
This work was supported in part by the EC in the context of the

ALICANTE (FP7-ICT-248652), SocialSensor (FP7-ICT-287975),

and QUALINET (COST IC 1003) projects.

6. REFERENCES
[1] B. Wang, J. Kurose, P. Shenoy, D. Towsley, “Multimedia

Streaming via TCP: An Analytic Performance Study”, ACM

Transactions on Multimedia Computing, Communication and

Applications, vol. 4, no. 2, May 2008, pp. 16:1-16:22.

[2] S. Akhshabi, A. Begen, C. Dovrolis, „An Experimental

Evaluation of Rate-Adaptation Algorithms in Adaptive

Streaming over HTTP”, ACM Multimedia Systems, San Jose,

California, USA, Feb. 2011, pp. 157-168.

[3] J. Yao, S. Kanhere, I. Hossain, M. Hassan, “Empirical

evaluation of HTTP adaptive streaming under vehicular

mobility”, Proceedings of the 10th international IFIP TC 6

conference on Networking (Networking'11), Valencia, Spain,

May 2011, pp. 92-105.

[4] J. Yao, S. Kanhere, M. Hassan, “Quality Improvement of

Mobile Video Using Geo-Intelligent Rate Adaptation”,

Wireless Communications and Networking Conference

(WCNC 2010), Sydney, Australia, April 2010, pp. 1-6.

[5] 3GPP TS 26.234, “Transparent end-to-end packet switched

streaming service (PSS)”, Protocols and codecs, 2010.

[6] Microsoft Smooth Streaming, http://www.iis.net/download/

smoothstreaming (last access: Dec., 2011).

[7] Adobe HTTP Dynamic Streaming,

http://www.adobe.com/products/httpdynamicstreaming/ (last

access: Dec., 2011).

[8] R. Pantos, W. May, “HTTP Live Streaming”, IETF draft,

http://tools.ietf.org/html/draft-pantos-http-live-streaming-07

(last access: Dec, 2011).

[9] ISO/IEC DIS 23001-6. 2011, Information technology –

MPEG systems technologies – Part 6: Dynamic adaptive

streaming over HTTP (DASH), http://mpeg.chiariglione.org/

working_documents/mpeg-b/dash/dash-dis.zip (last access:

Dec, 2011).

[10] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP

– Standards and Design Principles”, ACM Multimedia

Systems, San Jose, California, USA, Feb. 2011, pp. 133-143.

[11] Big Buck Bunny Movie, http://www.bigbuckbunny.org (last

access: Dec. 2011).

[12] X264, http://www.videolan.org/developers/x264.html, (last

access: Dec. 2011).

[13] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, P. Halvorsen,

“Spatial Flicker Effect in Video Scaling”, Proceedings of the

third international Workshop on Quality of Multimedia

Experience (QOMEX’11), Mechelen, Belgium, Sept. 2011,

pp. 55-60.

[14] P. Romirer-Maierhofer, A. Coluccia, T. Witek, “On the Use

of TCP Passive Measurements for Anomaly Detection: A

Case Study from an Operational 3G Network”, Traffic

Monitoring and Analysis Workshop TMA 2010, Zürich,

Switzerland, April 2010, pp. 183 – 197.

[15] Transform Manager 1.0 Beta, http://www.iis.net/

download/TransformManager, (last access: Dec. 2011).

[16] Additional Results, http://www-itec.uni-

klu.ac.at/dash/movid/additional_results.pdf (last access: Dec.

2011).

[17] Getting Started with OSMF for Developers,

http://www.osmf.org/developers.html, (last access: Dec.

2011).

[18] Flash Media Server Developer Center,

http://www.adobe.com/devnet/flashmediaserver.html, (last

access: Dec. 2011).

[19] H. Riiser, P. Halvorsen, C. Griwodz, D. Johansen, “Low

Overhead Container Format for Adaptive Streaming”, ACM

Multimedia Systems, Phoenix, Arizona, USA, Feb. 2010, pp.

193-198.

[20] DASH at Alpen-Adria-Universität Klagenfurt,

http://www.itec.uni-klu.ac.at/dash (last access: Dec. 2011).

[21] S. Lederer, C. Mueller, C. Timmerer, “Dynamic Adaptive

Streaming over HTTP Dataset”, ACM Multimedia Systems,

Chapel Hill, North Carolina, USA, Feb. 2012.

[22] C. Müller, C. Timmerer, “A Test-Bed for the Dynamic

Adaptive Streaming over HTTP featuring Session Mobility”,

ACM Multimedia Systems, San Jose, California, USA, Feb.

2011, pp. 271-276.

42

