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ABSTRACT
When developing new approaches in networking research,
one of the most important requirements is to evaluate the
degree of improvement of a new approach both realistically
and cost-effectively. Wireless networks and their adequate
emulation play an important role in evaluation, but emula-
tion of wireless links and networks is still difficult to handle.
In this paper, we present a low-cost, fixed-network testbed
able to emulate the dynamically changing conditions of wire-
less links caused by client mobility and physical phenomena.
We extend the existing fixed-network testbed for the pur-
pose of wireless network emulation using the Linux tools
tc, iptables, and NetEm in sophisticated ways. Convenient
function blocks are provided to configure wireless network
topologies as well as dynamic link and mobility conditions
to be emulated with modest efforts. We utilize the testbed’s
capabilities to investigate the influence of different mobility
models on streaming SVC-encoded videos in Named Data
Networking (NDN), a novel Information-Centric Networking
architecture. Furthermore, we evaluate the benefits of using
early loss detectionmechanisms for streaming inNDN, by im-
plementing Wireless Loss Detection and Recovery (WLDR).
Our results show that the extended fixed-network testbed
can precisely emulate wireless network conditions and usage.
For instance, the emulation revealed that both the choice of
the mobility model and the use of WLDR have a substantial
influence on the resulting SVC video streaming performance.
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1 INTRODUCTION
The global Internet traffic increases year by year and no end
of this trend is foreseeable. This development triggers re-
search on improvements of our current Internet architecture,
but also on the development of new networking architectures.
In both cases, it is important to analyze newly developed
approaches and to check if they are suited to be used on the
Internet.
For analyzing newly developed approaches, multiple op-

tions are available. One option is theoretical analysis, which
can be used to verify the correctness of an approach or to
calculate its theoretical performance. The results of such
a theoretical analysis can be validated by event-based net-
work simulations, which enrich the theoretical analysis by
adding the basic characteristics and influences of computer
networks. Nevertheless, event-based simulations only in-
clude abstractions of the real world and do not consider
underlying physical phenomena or hardware restrictions. A
network emulation is conducted with real devices and com-
munication over real networks and is thereby a valuable
addition to simulation.
Wireless links are an essential part of today’s networks.

According to Cisco’s Visual Networking Index1, 43% of all
networked devices will be mobile-connected by 2021. There-
fore, an option to emulate wireless links is required, but
difficult to realize because the performance of wireless links
depends on various factors, including, but not limited to, re-
flections, interference, and clients’ movements. In this paper,

1https://www.cisco.com/c/en/us/solutions/service-provider/visual-
networking-index-vni/index.html, last visited: 2018-06-25
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we extend an existing emulation testbed with the aim to be
able to emulate dynamic link properties and thereby enable
the testbed to be used for wireless network emulation.

Another ongoing trend is the change of the Internet’s us-
age from host-to-host communication to content distribution,
which is also reflected by current developments in network-
ing research. Research on Information-Centric Networking
(ICN) aims to better support this content-based communica-
tion. In Named Data Networking (NDN) [14], a promising
ICN architecture, each piece of information is identifiable by
a system-wide unique name. Data is requested by emitting
an Interest packet, carrying the name of the desired informa-
tion. When the Interest reaches a node which holds a copy
of the information, the information is packaged into a Data
packet and sent back to the requester on the reverse path of
the Interest.

More and more real-world applications for NDN are devel-
oped, but a proper way to test these applications in wireless
networks is still missing. Our testbed provides the possibil-
ity to run real-world NDN applications and to test them in
arbitrary networks. From previous work [8, 10], we already
know that NDN is well suited for adaptive video streaming
in fixed network environments. We assume that mobility has
a strong impact on streaming performance, which is why
we now use the presented testbed to analyze the influence
of mobility on video streaming quality.

The main contribution of this paper is the presentation of
our open-source wireless network emulation testbed and a
detailed overview of the function and usage of the testbed.
We further analyze the capabilities of the Linux tools tc and
NetEm and show their suitability to emulate wireless links.
Finally, the influence of mobility patterns on the performance
of video streaming in ICN networks is shown. In addition,
we improve the streaming quality in lossy environments by
including mechanisms such as Wireless Loss Detection and
Recovery (WLDR) [4] and discuss the results.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related testbeds. In Section 3 an overview of
our testbed’s architecture is presented. The approach used
for emulating wireless links is described in Section 4. In
Section 5 we use our testbed to evaluate the benefits of
WLDR when considering different movement patterns of
multimedia streaming clients in wireless networks. Finally,
we conclude with the findings of the paper in Section 6.

2 RELATEDWORK
The evaluation of new networking approaches is generally
done by employing one or multiple of the following methods:
Simulations using event-based simulators are rather gen-

eral tools and allow for testing new ideas without side effects
resulting from physical phenomena or hardware restrictions.

The ns3/ndnSIM network simulator [6] is an example of a
commonly used simulation tool for NDN-related research.

Emulation using virtualization is a more practical method,
where multiple sandboxed runtime environments, either re-
alized as virtualized operating systems or Linux contain-
ers, are interconnected by an emulated network topology.
Depending on the computational requirements, these envi-
ronments can be started either on a single machine or on a
server cluster, and can be used to test sample applications on
arbitrary network topologies. The vICN toolchain [11] for
research on Community ICN (CICN) as well as Mini-NDN2

for NDN-based research are representatives of virtualization
approaches. Although these approaches are closer to realistic
scenarios than simulation, they suffer from the absence of a
real network and real parallelization.
Emulation using a dedicated testbed is the most realistic

evaluation method. This method utilizes real hardware as
well as real network connections. The most prominent rep-
resentative of an ICN testbed is the NDN testbed3, where
research institutions from all around the world participate in
order to allow for experiments over the public Internet.When
conducting experiments on this testbed, the ever-changing
environment, resulting from changing traffic conditions on
the underlying IP network, has to be kept in mind and com-
plicates achieving reproducible results. A more controlled
environment is ensured by the low-cost NDN testbed [9],
which is a local testbed for network emulation purposes. It
utilizes low-performance devices as network nodes, which
can be interconnected by an easily configurable overlay net-
work topology. Resulting from the use of real hardware, this
testbed allows, besides the analysis of network behavior, in-
sights into the computational complexity of evaluated algo-
rithms and applications by CPU load and power consumption
observations.
For the evaluation of wireless links, various testbeds uti-

lizing real wireless channels are available. The NITOS facil-
ity4, the Orbit testbed5, and the PhantomNet infrastructure6
are prominent examples of testbeds which allow to connect
testbed nodes via real wireless links and thereby allow the
optimization of the wireless channels proper, but also of
applications using those channels. Although real wireless
link properties can be studied, the access to these testbeds is
limited in terms of time restrictions and limited control of
testbed nodes.

Analyzing and optimizing applications’ performance based
on the characteristics of a wireless network does not in-
evitably require the use of real wireless channels and can
2https://github.com/named-data/mini-ndn, last accessed: 2018-05-23
3https://named-data.net/ndn-testbed/, last accessed: 2018-05-23
4https://nitlab.inf.uth.gr/NITlab/nitos, last accessed: 2018-08-07
5http://www.orbit-lab.org/, last accessed: 2018-08-07
6https://www.phantomnet.org/, last accessed: 2018-08-07
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be replaced by more flexible emulated wireless channels in
many cases. Although virtualization approaches provide so-
lutions for wireless link emulation, currently no possibilities
to emulate mobility are supported. This is why we aim at
realizing wireless network emulation, including the effects
of mobility, on real hardware. Besides providing a highly
customizable and flexible testbed, we focus on a low-cost
solution, allowing other researchers to easily set up their
own testbed.

3 TESTBED ARCHITECTURE
The testbed’s architecture, as visualized in Figure 1, can be
structured into two main components, namely hardware
components and the execution engine. The hardware of the
testbed actually runs the experiments, while the execution
engine allows for the easy configuration of experiments. In
the following, details on the main components and their
constituting parts are presented.

Wireless Network
Emulation Testbed

Hardware

Gateway

Switches

... ...

...

Banana Pi Routers

Execution Engine

Synchronization

Topology Configuration

Command Scheduling

Artifact Management

Emulation Description 
Interface

Figure 1: Conceptual design and main components of
the wireless network emulation testbed.

3.1 Testbed Hardware
The testbed’s hardware is based on the low-cost NDN testbed
of [9]; that paper presents the structure and the configura-
tion options of the testbed in detail. The purpose of the
testbed is to provide a low-budget option to validate the-
oretical concepts and evaluate the performance of ICN on
physical hardware. Besides upgraded software components
(Section 3.2), the low-cost testbed is used as described in [9].
This section provides an overview of the testbed’s hardware
and explains the interplay of its components.
The testbed is based on an IP network interconnecting

20 network nodes, realized as Banana Pi Routers (BPI-R1).
These low-performance devices are used to run the actual

experiments and therefore operate the NDN network stack
and all applications required for a specific experiment.
Each node is connected to two physically separated net-

works. First, the management network, which is mainly used
for logging, artifact management and command scheduling.
Second, the emulation network, which is used for the em-
ulation traffic itself. This separation is needed in order to
ensure that management activities do not influence the em-
ulation activity. The emulation network, physically set up
as a star topology, is converted into an arbitrary emulation
network topology by using Linux tools, such as traffic con-
trol (tc), iptables and Network Emulator (NetEm). These tools
allow to modify the emulation topology without changing
the physical links between network nodes.
The gateway server is used for managing emulations. It

provides all required artifacts, but also manages the execu-
tion of emulations and collects log files produced during
the emulations. Furthermore, it provides a Web interface for
observing the current state of the testbed nodes and network
links.

3.2 Execution Engine
Besides the hardware components, the newly developed Exe-
cution Engine (EE) is the second important component of the
testbed. It is used for the automated execution of network
emulations, including all tasks for preparing the testbed and
its nodes for the emulation process. In the following, a de-
scription of all components of the EE, including the interplay
of the components is presented.

Emulation Description Interface. The Emulation De-
scription Interface (EDI) provides an easy way to de-
scribe network emulations using the programming
language Python. A network emulation is conducted
by executing low-level system commands at prede-
fined points in time on different nodes in the network.
This includes configuring a network topology, but also
starting applications and managing files.
The concept of the EDI’s function blocks combines such
lower-level tasks in self-contained containers, similar
to the class concept in object-oriented programming.
Thereby it becomes easily possible to define high-level
tasks, such as setting up an emulated WiFi connection,
with only a few lines of code.

Synchronization. In order to time emulation events,
such as the start of an emulation run, but also to be
able to calculate the delay between sending a packet
on the sender side and receiving it on the receiver
side, the system clocks of all devices have to be syn-
chronized. Therefore, the Network Time Protocol (NTP)
implementation chrony7 is used. Investigations on the

7https://chrony.tuxfamily.org/, last accessed 2018-05-23
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testbed showed that chrony is capable of keeping the
maximum clock offset between two devices on the
order of tens of microseconds.

Topology Configuration. The topology configuration
component of the EE allows the easy deployment of
arbitrary network topologies on top of the emulation
network. In combination with function blocks of the
EDI, it becomes possible to configure, e.g., random
networks or predefined topologies, such as the Abilene
Core topology [1]. In the background, this component
uses the Linux tools tc and iptables to configure the
desired network behavior.

Command Scheduling. The command schedulingmod-
ule allows to execute commands at predefined times
before and during emulation runs. Basically, command
scheduling can be used to schedule two types of com-
mands. First, initialization commands are executed to
prepare the testbed for an emulation run. This prepa-
ration includes commands needed for the topology
configuration as well as the distribution of configu-
ration files required by various applications. Second,
emulation commands are used to schedule commands
during an emulation. These could effect starting or
stopping an application, but also changing parameters
of a link, e.g., initiating scheduled link failures.
Technically, the command scheduler works as follows.
The EDI structures commands for each node into ini-
tialization and emulation commands and passes them
to the corresponding nodes. The nodes then execute
the initialization commands and thereby prepare the
testbed for the next emulation run. After completion
of the initialization phase, an emulation start time is
set by the EE, which is then used as the reference time
for all scheduled emulation commands.

Artifact Management. Applications, configuration files
and log files can be seen as different artifacts which
need to be managed during an emulation run. These
various artifacts can be managed by using function
blocks of the EDI. The idea of artifact management is
that all required applications and configuration files
are distributed to the testbed nodes in the initialization
phase and automatically cleaned up after gathering
log files, when the emulation run is completed.

4 WIRLESS LINK EMULATION
This section presents how the testbed is used to emulate
wireless links. The goal of our work is to not only emulate
static properties, such as a constant loss rate or link delay, but
also to emulate changing network conditions, resulting, e.g.,
from moving network nodes. In reality, the characteristics

of wireless links change continuously over time. For emula-
tion purposes, this continuity is approximated by periodic
adjustments of link properties.

The continuous change of a wireless link can be traced in
two different ways. The first way is to model the properties of
the wireless link by using well-established fading and shad-
owing models, such as Nakagami-lognormal channels [13],
and by combining these models with mobility using models,
such as presented in [3]. The second possibility is to use
real-world data obtained in controlled experiments, such as
provided by [7]. Independent of the researcher’s preference,
the flexibility of our system allows to use both possibilities.
In the following, we model link characteristics by using the
ns-38 implementation of Nakagami-lognormal channels in
order to create network traces, which are then used as input
for our emulation. Nevertheless, real-world traces can form
the basis of an emulation as well.
The testbed uses the Linux tools tc and NetEm9 to con-

trol the properties of emulated wireless links. In order to
approximate the real continuous link changes as accurate as
possible, the intervals between periodic adjustments need
to be as small as possible, but larger as the time needed
for configuring the adjustment. When making the intervals
too small, we run the risk of overwhelming tc and NetEm,
which might result in unwanted behavior. To prevent this,
the capabilities of those Linux tools are analyzed; a represen-
tative part of the results from this analysis is presented in
the following.
Figure 2 visualizes the evaluation results of the switch-

ing lag when switching the link delay of a single link be-
tween two testbed nodes. Switching lag is defined as the time
elapsing between initiating a change of a parameter and the
change becoming effective. In the case of modifying a link’s
delay, we define “becoming effective” such that the delays of
five subsequent packets do not deviate more than 5% from
the targeted delay. For evaluation, we used the delay values
of the DASH Industry Forum (DASH-IF) test vector NP2j [2].
In the upper chart of Figure 2, the blue line (mostly cov-
ered) indicates the test vector; the green line visualizes the
measured link delay between the testbed nodes. The results
indicate that NetEm is capable of adjusting the link delay
values accurately with only small anomalies. The lower chart
of Figure 2 visualizes the average switching lag for adapting
the link delay as defined by the test vector, including 95%
confidence intervals (CI) resulting from 30 emulation runs.
It can be seen that the lag for applying the changes lies con-
sistently below 50 ms and fluctuates only little. In addition,
evaluations for bandwidth shaping and packet loss variation

8https://www.nsnam.org/, last accessed 2018-05-25
9The NetEm tools are used for controlling link delay and packet loss char-
acteristics. For bandwidth shaping, the tc token bucket filter is used.
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Figure 2: Evaluation of the switching lag for link delay
variation using a DASH-IF test vector.

were conducted. The results of these evaluations are very
similar to delay variation; results are published along with
the source code of the testbed.
Having established that the switching lag for adjusting

link conditions is around 50 ms, we are able to search for the
optimal switching interval for emulating wireless links. As
switching interval, we define the time between consecutive
adjustments of link properties. The basis for this evaluation
are network traces generated by the network simulator ns-3.
The simulation scenario includes two nodes connected via
a 802.11g WiFi link, one walking straight away from the
other and back, while consuming the available bandwidth
by sending UDP packets in both directions. Based on the
simulation traces, values for packet loss, bandwidth and link
delay are extracted and used as input for the wireless link
emulation. Changes of a link’s characteristics are applied
once per switching interval. The single target value for a in-
terval is calculated by averaging all measured delay, loss and
bandwidth values in the corresponding switching interval.

Figure 3 visualizes the influence of the switching interval
on delay and packet loss deviation. The deviation is calcu-
lated between the WiFi network trace from simulation and
the traces generated by sending traffic over the emulated
WiFi testbed link. The blue line visualizes the absolute de-
lay difference in milliseconds, the green line the packet loss
difference in percent. In general, we can see that shorter
switching intervals lead to smaller deviations, as long as the
switching interval is well above the switching lag. With a
switching interval of 100 ms, a delay difference of less than
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Figure 3: Visualization of emulation accuracy when
emulatingwireless linkswith varying switching inter-
vals.

2 ms can be achieved. Regarding packet loss, a deviation of
less than 5% is measured when setting the switching inter-
val to 100 ms. Based on these results, we assume that the
optimal switching interval for emulating wireless links is
100 ms, which is why this interval is used for further evalua-
tions. Configuring a switching interval of less than 100 ms
means that the adjusted property is effective for just a few
milliseconds before it is adjusted again, which leads to fewer
delivered packets with correct parameters and a higher de-
viation, as visible when focusing on the 50 ms switching
intervals. Depicted error bars represent 95% CIs after 40 em-
ulation runs.
Besides the calculated deviations visualized in Figure 3,

we can examine the emulation precision visually in Figure 4.
The emulation of the wireless link includes adjustments of
the link delay and the packet loss rate. When packet loss
is high, fewer packets arrive; when the delay is high, the
transmitted packets arrive later at the receiver. Combining
these characteristics already leads to a reduced bandwidth,
without the need of shaping it separately. Figure 4 visualizes
target and actual delay (upper chart) and packet loss (lower
chart) values, measured during a single emulation run based
on the previously explained simulated network trace. The
emulated distance between the two nodes increases until
second 50, where hardly any packets are transmitted suc-
cessfully. From second 50 onwards, the distance between the
nodes is reduced until second 100, which leads to reduced
packet loss and delay values.
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Figure 4: Progression of link delay and packet loss on
an emulatedWiFi link including a trivialmobility pat-
tern.

The underlying mobility of the simulated network trace
used for the presented evaluations may seem artificial, but
besides the good suitability for demonstration purposes, the
characteristics of this trace regarding the progression of
packet loss and delay values follow the well-established
model for Nakagami-lognormal channels [13]. Therefore,
the results of this evaluation, showing that the testbed is
capable of emulating wireless links accurately, become valid
for other scenarios as well. Changing the emulation scenario
is trivial, the only required step is to create a network trace
by simulation or by conducting real-world measurements.
Besides the emulation of channel-specific properties, the
flexibility of this trace-driven approach also allows to em-
ulate different types of handovers as well as interferences,
provided that a given network trace includes such events.

5 ADAPTIVE VIDEO STREAMING OVER
ICN IN WIRELESS NETWORKS

After having explained the structure of our testbed and the
process of wireless link emulation in detail, in this section
we demonstrate the testbed in action. We investigate the in-
fluence of mobility when streaming MPEG-DASH-compliant
multimedia content [12] encoded with the scalable video
codec (SVC). SVC allows to encode a video into multiple lay-
ers, including a base layer and multiple enhancement layers.
The base layer provides a low-quality representation of the
video. Enhancement layers can be stacked upon the base

layer in order to improve the quality in terms of higher tem-
poral resolution, spatial resolution, or visual quality (SNR).

Furthermore, we investigate the improvements achievable
by the Wireless Loss Detection and Recovery (WLDR) tech-
nique [4] in this streaming scenario. WLDR is a technique
used for the early detection of packet loss on wireless links.
When requesting video segments in NDN, a video segment
is split up into multiple Data packets, having the same name
prefix and increasing sequence numbers. If e.g. Interest pack-
ets for sequence numbers 0–10 and an Interest packet for
sequence number 12 are received on a WiFi access point, it
is very likely that the Interest for sequence number 11 was
lost. When using WLDR, the access point recognizes the gap
in sequence numbers and forces the consumer to re-issue
an Interest packet for the lost sequence number. The same
principle is used for lost Data packets: when a gap in the
sequence numbers of incoming Data packets is recognized,
a retransmission of the lost Data packet is initiated. The
benefits of WLDR for dynamic adaptive streaming without
scalable codecs and static client positions was already identi-
fied by Samain et al. [10]. We now use the wireless network
emulation testbed to analyze whether these benefits also
hold true for scalable video codecs and analyze how different
mobility models influence the performance of WLDR.
In Section 5.1, we show how the testbed, especially its

execution engine, can be used to set up an evaluation scenario
using predefined function blocks. Details on the evaluation
scenario and results of our evaluation are given in Section 5.2.

5.1 Using the Testbed’s Function Blocks
In this section, we describe how the testbed can be used to
define an emulation scenario and to conduct evaluations. We
use the video streaming scenario described in the previous
section to showcase the testbed’s capabilities.
The Emulation Description Interface (EDI) allows to use

function blocks which combine logically connected low-level
tasks to form a larger task. One example of a function block
is the configuration of an emulatedWiFi connection between
two nodes. An emulated WiFi connection consists of two
physical nodes, including an access point (AP), and a mobile
client. The function block applies changes in the wireless
link’s performance caused by client mobility, by periodic ad-
justments of connection properties. Pre-recorded connection
properties resulting from different mobility scenarios can be
used to configure the wireless connection.

Besides theWiFi block, other function blocks are available,
which together allow to define a complete emulation scenario.
Figure 5 depicts the interplay of individual function blocks
to define the structure of our video streaming scenario. In
the following, this interplay is explained in greater detail.
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Figure 5: Structure of an emulation topology for video
streaming, created by combining function blocks.

The network topology is set up by combining two different
types of function blocks. The Abilene Core Topology block is
used to form the Abilene Core network [1] between eleven
physical devices. The WiFi block connects two nodes via an
emulated WiFi link. One of those nodes acts as an AP and
gateway to the Abilene network. The second node represents
a mobile client connected to the network via WiFi.

The NDN Stack function block can be used to manage the
NDN stack on the devices of the emulation topology. Besides
starting the required NDN services, forwarding information
is disseminated to all nodes. NDN is only one example of an
ICN or even a general network architecture that is deployable
on the testbed.

The Node function block allows to access a single physical
device. The block can be used to copy files or to schedule
commands to be executed before the emulation starts, or at
predefined points in time during the emulation.
Management of application life-cycle can also be per-

formed by using specialized function blocks. Besides starting
the streaming application, the DAS Client and DAS Server
blocks configure the applications and collect log files after
the completion of the emulation. Thereby, consumer logs
containing information about Quality of Experience (QoE)
are collected on a single place on the gateway server.

5.2 Influence of Consumer Mobility on
Video Streaming Quality

We now use the wireless network emulation capabilities of
our testbed to evaluate the influence of different mobility
patterns on video streaming performance as well as the ben-
efits of early loss detection provided by WLDR. Our findings
are based on the streaming quality reported by the client
applications, as experienced in various settings involving
different mobility patterns and deployments of WLDR.

5.2.1 Emulation Scenario. The underlying network topol-
ogy used in the evaluation consists of the Abilene Core topol-
ogy [1] which is extended by wireless access networks host-
ing the video consumer applications. The wireless access
networks are realized as emulated 802.11g WiFi networks

containing a mobile consumer (client) and a static access
point which is a member of the Abilene network. The posi-
tion of the access networks on the Abilene network as well
as the position of the video producer (server) is selected ran-
domly. Wireless links are modeled as Nakagami-lognormal
channels [13]. A link’s performance is obtained by simulation
using ns-310 and depends on consumer mobility, following
three well-established mobility models: Constant Position,
Random Direction and Random Walk [3]. In case of Constant
Position, the consumer is positioned directly below the ac-
cess point and does not move during the emulation. In case
of Random Direction and RandomWalk, the consumer walks
around the access point in a pattern similar to those depicted
in Figure 6 at a constant walking speed of 1.4 meters per sec-
ond. Although these mobility models do not model human
behavior accurately and have been criticized [3], they can
be used to demonstrate the testbed’s capability to emulate
various mobile scenarios.
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Figure 6: Consumer mobility patterns based on the
random direction and random walk mobility models.

The video consumer and producer applications use the
NDN stack for the video streaming process. NDN routing
information in the core network is based on the shortest
path; Interests are forwarded using the Best Route forwarding
strategy [6].
During an emulation run, two clients stream the same

video published by a single producer. The video itself is a 21
minute long concatenation of two animation videos, encoded
in three representations with bitrates ranging from 640 kbps
for the base layer, 1 Mbps for medium quality and 1.4 Mbps
for the best quality, taken from the scalable video coding
dataset of [5]. The consumer and producer applications are
based on the work done by Rainer et al. [8] and use the
therein mentioned buffer-based adaptation logic with an
Interest lifetime of 500 milliseconds. For transmission, video
segments are divided into several Data packets, each carrying
2048 bytes.
10https://www.nsnam.org/, last accessed 2018-05-25

Session: Testbeds, Measurements and Experimentation WiNTECH’18, November 2, 2018, New Delhi, India

52



WLDR [4] is implemented by an additional service observ-
ing all incoming packets logged by the NDN Forwarding
Daemon (NFD). Once detected, packet loss is reported to
the sender via a notification using UDP. In emulations using
WLDR, the WLDR service is only running on the pairs of
nodes in the WiFi access networks.

5.2.2 Streaming Performance on WiFi Links. In order to rate
the streaming performance, we focus on QoE characteristics
which are perceivable for users watching the multimedia
streams. Besides the average played out representation, the
number and length of stalling events as well as the number of
quality variations are of particular interest. A stalling event
occurs if the video player does not receive the base layer of
a video segment in time and the playout of the video gets
suspended. We define a quality variation as change of the
consumed video quality between two consecutive segments.
When focusing on the influence of mobility, we see that

the consumer’s mobility has a strong impact on the stream-
ing performance, as visualized in Figure 7. The left part of the
figure displays the average segment’s representation after 15
emulation runs. The solid orange lines in the boxplots repre-
sent the median values, the dashed green lines illustrate the
average over all emulation runs. The upper and lower bor-
ders of a box depict 25% and 75% quartiles, whiskers show the
variability outside the quartiles, individual points illustrate
outliers. The available representations range from Represen-
tation 0, which requires the SVC base layer only, up to the
highest available bitrate with Representation 2, requiring the
base layer and both enhancement layers. In the case of Con-
stant Position scenarios, which do not involve packet loss
on the WiFi channel, the highest average played out repre-
sentation is achieved. The average consumed representation
is about 1.5, which means that most segments were played
out in one of the two higher representations. With moving
consumers, the average representation drops significantly
to 0.6 in case of Random Direction mobility, and 0.8 in case
of Random Walk mobility.
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Figure 7: Average played out video representation and
stalling time under different mobility models.

The right part of Figure 7 displays the average stalling time
of consumers, where again the best results were achieved

in the Constant Position scenario. In this case, virtually no
stalls were observed at all. In case of Random Walk mobility,
where it could happen that clients stay at the edge of the
AP’s coverage area for a longer period of time, the stalling
time during playing the video sums up to a total of more
than 30 seconds per client in some cases. Consumers moving
according to the Random Direction model perform signifi-
cantly better. In this case, a maximum of 16 seconds stalling
time was observed. Nevertheless, none of the clients was
able to retrieve the video without playout interruption.
Figure 8 shows the progression of the consumed repre-

sentations and the number of encountered stalling events
per segment for different mobility scenarios. The greyscale
intensity indicates the average streamed representation of
a segment, while the number of clients stalling at a certain
segment is illustrated by the height of the red bars in the
lower part of the charts.
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Figure 8: Progression of retrieved SVC layers and num-
ber of stalls per segment.

In the Constant Position scenario, all clients are able to
retrieve Layer 0 and Layer 1 after a ramp-up phase at the
start of the stream, which is caused by the clients’ adaptation
logic11. The adaptation logic tries to fetch Layer 2, if the
playout buffers for the lower layers are sufficiently filled.
This results in oscillations of Layer 2, which indicates a too
low bandwidth for fetching the best provided representation.
Regarding the scenarios involving movement, we can see
small bursts of stalls in case of Random Direction mobility.
This differs from Random Walk mobility, where longer stalls
can be noticed, which is because clients stay longer on the
edge of the AP’s coverage area, where packet loss can exceed
40%. At RandomDirection, only short time intervals are spent
at the edge of the AP’s coverage area.
11The adaptation logic is a client-side component deciding which layers to
retrieve when streaming multimedia content.
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5.2.3 Streaming Performance Benefits of using WLDR. To
quantify the benefits of WLDR, we enhance the wireless
access networks by adding the WLDR service and repeat
the evaluations from the previous section. Comparing the
results without WLDR in Figure 7 to the results including
WLDR in Figure 9, no significant improvement in the av-
erage consumed representation is measured, although the
number of stalls decreased significantly. The difference in the
average consumed representation and stalling time between
the different mobility models persists. Examining the worst
case setting regarding stalls, Random Walk, we quickly see
that the use of WLDR reduced the maximum stalling time
from almost 50 seconds to only 31 seconds. Besides the im-
provements of the maximum stalling time in both scenarios
considering mobility, the average stalling times were signifi-
cantly reduced as well. In the case of Random Direction, both
clients are in some emulation runs even capable of streaming
the video without stalls when using WLDR.

Keeping the characteristics of the mobility models in mind,
we find the use of WLDR particularly beneficial in situations
of prolonged higher packet loss such as in the Random Walk
scenario. Short-term spikes in packet loss as prevalent in the
Random Direction scenario can be compensated using the
client’s playout buffer, diminishing the impact of WLDR.
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Figure 9: Average played out video quality and stalling
time under differentmobilitymodels and withWLDR
enabled.

Comparing the results of this evaluation to the findings of
a previous evaluation [10], where the influence of WLDR on
the streaming quality for non-scalable codecs was investi-
gated, we noticed slightly different results. Although WLDR
improved the quality of experience in both evaluations, [10]
observed improvements in the average streaming quality
in terms of bitrate, while we observed an improvement in
respect to the stalling behavior. One possible reason for this
difference is the layered quality improvement concept uti-
lized by scalable codecs. While low quality representations
with non-scalable codecs require a low bitrate, the base layer
in SVC already requires a relatively high bitrate compared to
the enhancement layers. In lossy environments, this could
result in situations where not even the base layer can be

successfully retrieved, which makes it impossible to play out
a higher quality. In these situations, WLDR helps to retrieve
the base layer and thereby reduces stalling events.

6 CONCLUSION
The main part of this paper focuses on the presentation
of a testbed for wireless network emulation. We extended
an existing low-cost testbed for fixed networks with the
functionality to change link properties dynamically. This
allows to emulate wireless networks, as well as link failures
and recoveries or other events concerning links. In addition,
we developed the testbed’s Execution Engine (EE), which
allows to perform network emulations as conveniently as
with event-based simulators.

We demonstrated the capabilities of the testbed by inves-
tigating the influence of different mobility models on MPEG-
DASH SVC video streaming performance and the benefits
of explicit loss detection and notification (WLDR) in lossy
wireless networks. Our results show the importance of con-
sidering client mobility in investigations involving wireless
networks. Furthermore, the results underline the benefits of
early loss detection in NDN, realized by WLDR.

For future research, we plan to use the testbed for evalua-
tions involving real-world network traces featuring various
mobile scenarios, such as vehicular mobility as published
in [7], complementary to evaluations with synthetic mobility
models. Furthermore, we plan to use the testbed’s execution
engine without ICN deployment for investigations on fog
computing. From a more technical point of view, the support
of containerized applications, abstracting the underlying soft-
ware stack to amore general environment is planned. Besides
providing a clean-slate environment, containerization would
ease the development and deployment of apps applicable on
a broad range of different testbed environments.
The ease of use of the testbed’s EE for setting up emula-

tions makes us believe that other researchers could benefit
from using such a tool as well. Generic concepts, not focusing
on specific hardware platforms, allow the use of the EE for
arbitrary testbed platforms. To allow the community to adopt
the EE for their purposes, we published the open-source li-
censed source code and provide installation instructions12.
Along with the source code, we additionally publish the func-
tion blocks and the emulation scenarios, which allows for
the reproduction of the presented results.
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