@InProceedings{Beecks2017,
author = {Beecks, Christian and Kletz, Sabrina and Schoeffmann, Klaus},
booktitle = {Proceedings of the Third IEEE International Conference on Multimedia Big Data (BigMM 2017)},
title = {Large-Scale Endoscopic Image and Video Linking with Gradient-Based Signatures},
year = {2017},
address = {Laguna Hills, California, USA},
editor = {Chen, Shu-Ching and Sheu, Philip Chen-Yu},
month = {apr},
pages = {5},
publisher = {IEEE},
series = {BigMM},
abstract = {Given a large-scale video archive of surgical interventions and a medical image showing a specific moment of an operation, how to find the most image-related videos efficiently without the utilization of additional semantic characteristics? In this paper, we investigate a novel content-based approach of linking medical images with relevant video segments arising from endoscopic procedures. We propose to approximate the video segments' content-based features by gradient-based signatures and to index these signatures with the Minkowski distance in order to determine the most query-like video segments efficiently. We benchmark our approach on a large endoscopic image and video archive and show that our approach achieves a significant improvement in efficiency in comparison to the state-of-the-art while maintaining high accuracy.},
doi = {10.1109/BigMM.2017.44},
keywords = {feature signatures, laparoscopic video, medical endoscopy, motion analysis, similarity search, video retrieval},
language = {EN},
location = {Laguna Hills, California, USA},
talkdate = {2017.04.19},
talktype = {registered},
url = {
http://ieeexplore.ieee.org/document/7966709/}
}