Static vs. Dynamic Content Descriptors for Video Retrieval in Laparoscopy (bibtex)
@InProceedings{Muenzer2017c, title = {Static vs. Dynamic Content Descriptors for Video Retrieval in Laparoscopy}, author = {Münzer, Bernd and Primus, Manfred Jürgen and Kletz, Sabrina and Petscharnig, Stefan and Schoeffmann, Klaus}, booktitle = {IEEE International Symposium on Multimedia (ISM2017)}, year = {2017}, address = {Taichung, Taiwan}, editor = {Chang, Kang-Ming and Chang, Wen-Thong}, month = {dec}, pages = {8}, publisher = {IEEE}, abstract = {The domain of minimally invasive surgery has recently attracted attention from the Multimedia community due to the fact that systematic video documentation is on the rise in this medical field. The vastly growing volumes of video archives demand for effective and efficient techniques to retrieve specific information from large video collections with visually very homogeneous content. One specific challenge in this context is to retrieve scenes showing similar surgical actions, i.e., similarity search. Although this task has a high and constantly growing relevance for surgeons and other health professionals, it has rarely been investigated in the literature so far for this particular domain. In this paper, we propose and evaluate a number of both static and dynamic content descriptors for this purpose. The former only take into account individual images, while the latter consider the motion within a scene. Our experimental results show that although static descriptors achieve the highest overall performance, dynamic descriptors are much more discriminative for certain classes of surgical actions. We conclude that the two approaches have complementary strengths and further research should investigate methods to combine them.}, language = {EN}, location = {Taichung, Taiwan}, talkdate = {2017.12.12}, talktype = {registered} }
Powered by bibtexbrowser (with ITEC extensions)