

The Challenge of Teaching Foundational Ideas

in a Modern Informatics Curriculum

Roland T. Mittermeir
Institut für Informatik-Systeme

Universität Klagenfurt
Austria

roland@isys.uni-klu.ac.at

Abstract: Teaching informatics at the university level implies teaching most
recent advances in the field. Is there a space for including also concepts that
constituted the foundations of recent methods and technology in a contempo-
rary class? If so, why is it important to make students aware of dated but not
out-dated ideas? And most of all, how can we motivate students to appreciate
the currency of these ideas?

The paper addresses these issues from the vantage point of key concepts in
software engineering.

1. Motivation
Teaching my software engineering class, I regularly sense a barrier of rejection in front of me
when referring to the principle of information hiding [Parn 72] or even detail the concepts of
structured analysis [SMC 74]. “Why should we remember this old stuff in the wealth of topics
we have to master in this course anyway?” might be a rather benign question one can read
from the student’s faces. “Has this old guy forgotten to update his slides? Today we write
Java-Servlets and worry about web-programming!” might be in the minds of others.

The question is, how to deal with such reservations. First of all, we have to understand that
they seem somehow justified. The students in front of me study informatics (computer
science). Hence, they strive for education in a young and very vivid discipline. The laptops
they have in front of them are of a recent generation. A five year old laptop would be
considered already out-dated. They program in Java or in C#, modern object-oriented
languages. They might not know exactly the date of conception of these languages. But it was
not too long ago, that’s for sure. These modern languages are much younger than they are!
They were born past 1980. Hence they might ask, what is the place for concepts conceived in
the late or even early seventies? They are outdated! The storm of history and evolution has
blown them away. We might accept that object-orientation has encompassed information
hiding and made it to the standard of modern software development. Why worry about it?
And how about SA/SD? That’s just historical reminiscence. Leave us alone with it!1

Should we give in to such attitudes? Students are right to the extent that there are many
valuable current concepts that find no room in the course. My in-class reputation would
improve when focussing exclusively on them rather than on some of this old stuff. But there
are reasons why I tend to be stubborn in my attempts making students aware of the roots of

1) The arguments mentioned are not particular to my students. As noted by Haigh, „computing students are
disinclined to accept that study of particular examples now remote in time and space will teach them much of
value“ [Haig 04].

 - 1 -

mailto:roland@isys.uni-klu.ac.at

some of the ideas that constitute the foundations of modern software technology. In the next
section some of them are highlighted. If one considers the arguments raised there to be valid,
the didactical challenge of how to motivate students who are younger than those concepts to
appreciate their value has to be met. Some ideas towards this end are mentioned in section 3.

2. The role of “dated” foundations in current (SE) education
The motivation why to familiarize students not only with contemporary techniques but also
with the roots of these techniques has many reasons. Without striving for comprehensiveness,
a few of them are mentioned

• General educational value: From (future) academics we do not only expect that they
are technically up-to-date. We also expect them to be “well educated”. Thus, it is
important that they do not only know how to proceed in a certain situation but also
why to proceed in the way they proceed. In German one refers to this as Allgemein-
bildung. The root of this word, Bildung, is a holistic concept that can only be approxi-
mated by the English word “education”. A person with Bildung, i.e. ein gebildeter
Mensch, can be considered as a human that incorporates vital elements of human
culture. Culture, however, is a concept that rests on a long established evolutionary
process. It rests on a combination of intellectual penetration and skilful expression of
aspects perceived and (re)created according to the cultivated person’s perception.

One might claim that in an engineering activity there is no room for such conside-
rations. But this would be a far too short-sighted perspective on engineers and on
engineering. An engineers work, hence also a software engineers work, has to fit into
the context were the artefacts produced are to perform. To function properly, they
have to interface well with the context into which they are embedded. For software
this is a physical as well as a societal context. Societal context, however, is always
also a cultural and, hence, a historical context. But wouldn’t it be strange to require
understanding the historical context of the environment into which the artefacts one
produces are to be integrated without knowing the history that brought our own
discipline to its current level?

• The historical trail as didactical avenue was suggested recently by Böszormenyi
[Bösz 05]. His claim is that teaching about the famous masters of our discipline would
not only stimulate interest (teaching people about people) but that a didactical
approach that follows the maturing of the ideas one wants finally arrive at will help
comprehension. In this approach current techniques are not presented as still-image of
the state-of-the-art but rather as the climax of a movie that presents the whole story
how the state-of-the-art came about in a quick-motion.

The arguments for this approach seem convincing. The problem is though, that it is
quite time consuming. Hence, given the curricular constraints of engineering curricula
one might not find the time and tranquillity to develop all key concepts in this manner.
Nevertheless, the suggestion warrants further consideration.

• Becoming capable for dealing with legacy software is an argument that cannot be
shelved away easily. While the arguments raised so far are founded on non-technical
arguments, it is mandatory to empower students for maintaining and evolving legacy
software. While COBOL will be hardly taught at university level CS-curricula, it is
still a dominant language in legacy applications and hence in their maintenance. As
there are very effective compilers, contemproary students are astonished about the
efficiency of code generated by a good COBOL compiler [Kand 06].

 - 2 -

But the issue is not that of a particular (dated) programming language. When need
arises, graduates should be capable of learning a new programming language, even if
this subjectively new language might look archaic from today’s perspective. They will
find books or other sources for learning the language. But the issue is to understand
the legacy programmers reasoning. The driving ideas behind a design following
SA/SD principles are quite different from the driving ideas behind a design following
object-oriented principles. The programming language is strictly defined. Hence,
learning on the job will lead to correct work. But given all the problems in maintaining
legacy software, one should not expect that the young maintainer would also invest in
learning the dated methodology. Hence, “training on the job” with high likelihood will
result in a mixed-style solution. Thus, the system to be maintained by software
engineers who do not understand the original principles of design will deteriorate in
structure more than it would according to the general laws of software evolution
[Lehm 80].

• Besides this, most concepts have also still contemporary technical value. E.g. the
notion of coupling and cohesion introduced with structured design still holds when
writing new software. It just needs to be interpreted in the proper way. Assuming
object-oriented design, one has to decide on the proper structuring of state spaces. The
argument that implementation objects stem from application objects identified during
requirements analysis holds for the key objects of an application system. However,
each system has further classes where the proper design of the state space rests with
the designer. Too large a state space would lead to stamp-coupling, a notion discussed
in [SMC 74] or at length at [YoCo 79]. Alternatively, one might reach a good design
by reflecting on data base normalization theory [Codd 70, 72] as it was mapped to
software engineering in [Mitt 91].

Likewise, other principles of coupling and cohesion are still valid in class design, with
the only side consideration that the state space managed by the various methods leads
to a very special form of coupling.

• This shows, that the deep foundations provided by some now already historic seminal
papers, sometimes need to be transferred to the new problem spaces. As example of
such a transfer one might quote Dijkstra’s “Go To considered harmful” [Dijk 68]. If
students understand this concept not only verbatim but in principle, they should be
capable of mapping it directly to data structures connected by pointers or even more
general as a warning for producing entangled structures of any kind.

But one might even stay closer to the original problem. Neat usage of exception
handling constructs provided by modern languages will be easy to teach and to
comprehend if one can refer to the goto-issue and the various kinds of problems
caused by different versions of forward and backward jumps.

• Finally, projection into the future is an important issue. Educators should strive to
familiarize students with durable concepts. In a discipline characterized by rapid
technological change, this is a real challenge. Of course, even when considering that
the professional life of current students will last into the next forty years, we cannot
teach today those methodologies that will be current twenty or forty years from now.
We have to stick to current knowledge. But we should empower students to master the
shifts to be foreseen throughout the duration of their professional life. How can we do
this better than by explaining shifts of paradigms caused by great ideas in the past?
How can we do better than by showing them, that most of these ideas did not pop up
out of the void but were rooted in the problems of their time and having them
understand the technological milieu that helped these ideas to ripen?

 - 3 -

With this requirement, which is based on the assumption that understanding our past will help
us to properly shape the future, my arguments are somehow back at the initial argument.
Appreciating the work that shaped our discipline has to be part of general education in order
to get into the backpack of any computer scientist who wants to be considered well educated.

3. Attempts to overcome the motivational barrier
The arguments raised above, although only expressed in an exemplary manner, should suffice
to strive for an approach that gives room for historic reflections even in a course focussing on
most contemporary technology. But how to overcome the motivational barrier?

I consider three approaches that might help to achieve even the attention of those who expect
from a modern informatics course to be taught just directly applicable technology.

a) How did it start all about? People interested in the mechanics of a device are usually
interested in knowing how to get the thing started. Here, the issue is not starting up
some device but the originating of a thinking process. Some investment is needed to
have these students understand the transfer of ideas from starting an engine to con-
ceiving an idea and have it mature. Nevertheless, this analogy can be built upon.

The advantage of this approach is that it takes little time, since the transitory phase
where the idea evolved can be traversed rather quickly. The disadvantage is that this is
rather an ad-hoc approach. The individual concepts get rooted, but one might fear that
the roots are not sufficiently deep for a given idea to network with other fundamental
ideas that are somehow related to the concept just elaborated, e.g., because they
matured in the same intellectual-technological biotope.

b) Selected historic spots. Alternatively, one might try to weave historic sprinkles into a
highly up-to-date course. On the first glance, this approach appears to be even more
ad-hoc than the approach to show the initiation of shifts of paradigms. It has, however,
the advantage that less time is needed for the individual concept.

If presented sporadically only, this form of reaching back into CS (or SE) history
might go almost unnoticed by students. While this might be desirable for the
educator’s reputation as modern teacher, it is less desirable from the perspective of the
overall educational aim. But if these historic sprinkles are systematically woven into
the course, it offers the chance to set cross-references. This allows at least those who
have fine sensory to realize that below the current wisdom of the discipline there is a
network of fundamentals and a set of interacting trends. Hence, what is presented as
individual colourful spot of historic evidence merges to a coherent concept. Thus, if
persistently followed, this approach might well be superior over the approach showing
for just a few concepts how they emerged.

In comparison, one might classify the how-did-it-start approach as one striving for
selective depth while a systematic historic-spot approach rather aims at covering the
breadth of the course by some shallow historic underpinning.

c) An explorative course. With this approach, I’d finally acknowledge that it might be too
hard for those who consciously lived already at the time some inventions crucial for
the further development of informatics took place, to convincingly convey the merit of
these former inventions to those who take such notions or even concepts built upon
them for granted or even as already bypassed by the state-of-the-art. As contemporary
witness, the “old” teacher might be ideal to tell an interesting story. But he or she is
not sufficiently trustworthy in terms of the value one might currently attach to any

 - 4 -

deeper understanding of this idea. The still young student will use the state-of-the-art
concept and considers this to be sufficient.

As the arguments raised above demonstrated that just using and just knowing state-of-
the-art concepts and techniques is insufficient for many reasons, one has to strive for
an alternative approach. To arrive there, I propose to separate the role of the
contemporary witness from the advocate. Why not let the students themselves delve
into the past and identify in a seminar-type course, where concepthist bears in
conceptcontemp. This course would require them to firstly, identify elements where the
historical concept is directly applicable in a modern computing scenario. Secondly, the
task might be to enlarge the scope and identify, where the historic concept still bears
(and will persist to bear) outside of the concept that is generally considered as its
direct ancestor.

The advantage of this proposal is apparently that it allows a leisurely approach.
Consequently, it takes time and basically requires a distinct course. In special
situations one might give related assignments in a conventional topics-based course.
However, these assignments will require ample discussion and support from the side
of the lecturer. Hence, I am doubtful whether anything that falls short of a distinct
seminar on historic foundations of, in my case, software engineering (or any other well
defined topic) will achieve the intentions defined in section 2. This however weakens
this proposal to some extent as most places would relegate such a seminar to the pool
of electives. Thus, only a minority of students will participate directly in this course.
However, the material produced in such a course can be used in the actual topics
course as supplementary reading material.

The three proposals mentioned can certainly be augmented by further suggestions2. They
might point instructors to avenues how to achieve some historic grounding without giving in
too much of their course-time and without loosing too much of the motivation and
expectations students have with respect to a course intended to teach them contemporary
skills. Which of the proposals is to be followed depends on the particular circumstances (and
perceived mission) of the school and the curriculum where historic grounding is to be
integrated.

4. Conclusion / Summary
Computer science topics in general and software engineering in particular are subjects that
require teaching in a most timely manner. Nevertheless, there are convincing arguments that
call for familiarizing students with the fundamentals of the ideas which constitute the
contemporary discipline.

In spite of the arguments raised, there are substantial motivational barriers to be overcome
before reaching the goal to ground modern methodology and concepts in their historic roots.
The paper presents three approaches how these barriers might be overcome.

2) Lee is considering the issue from a broader, curricular perspective [Lee 04]. His proposals are distinct from
the issues raised here in so far, as I am struggling with motivational issues of presenting roots of current notions
in a general, topics oriented course, while the problems raised in this paper rather concern curricular constraints
as well as problems of scheduling (“While you are away”-module) and staffing with qualified computer-science
historians.

 - 5 -

5. References
[Bösz 05] Böszörmenyi L.: Teaching: People to People – About People: A Plea for the

Historic and Human View; in Mittermeir R.T.: From Computer Literacy to
Informatics Fundamentals; Proc. ISSEP 2005, LNCS 3422, Springer Verlag, 2005,
pp. 93 – 103.

[Codd 70] Codd F.E.: A Relational Model for Large Shared Data Banks; Comm of the acm,
Vol 13(6), June 1970, pp. 337 – 387.

[Codd 72] Codd F.E.: Further Normalization of the Data Base Relational Model; in Rustin R.
(ed.): Data Base Systems; Courant Computer Science Symposium, May 24-25,
1971, Vol. 6, Prentice Hall 1972, pp. 33 – 64.

[Dijk 68] Dijkstra E.W.: Go To Statement Considered Harmful; Comm. of the acm, Vol. 11
(3), March 1968, pp 147 – 148.

[Haig 04] Haigh T.: The History of Computing: An Introduction for the Computer Scientist;
in: Akera A., Aspray W. (eds.): Using History to Teach Computer Science and Re-
lated Disciplines, Computing Research Association, 2004, pp. 5 – 26.

[Kand 06] Kandutsch H.A.: Bubble Challenge: Über Legacy-Systeme, eine Gegenüber-
stellung neuer Technologien und ob Paradigmenwechsel in Softwaretechnologie
zwingend Verbesserung bedeuten muss; Seminar a. Software Engineering, Jan.
2006, Univ. Klagenfurt, 2006.

[Lee 04] Lee J.A.N: History in the Computer Science Curriculum; in: Akera A., Aspray W.
(eds.): Using History to Teach Computer Science and Related Disciplines,
Computing Research Association, 2004, pp. 33 – 38.

[Lehm 80] Lehman, M. M.: Programs, life cycles and laws of software evolution; Proceedings
of the IEEE, 68(9):1060 – 1076, September 1980

[Mitt 91] Mittermeir R. T.: Design-Aspects Supporting Software Reuse; Chapter 11 in:
Dusink E. M.; Hall P. A. V. (eds.): Software Reuse, Springer Verlag 1991, pp.
115 - 119.

[Parn 72] Parnas D.L.: On the Criteria to be Used in Decomposing Systems into Modules;
Comm. of the acm, Vol. 15 (12), Dec 1972, pp. 1053 – 1058.

[SMC 74] Stevens W., Myers G., Constantine L.: Structured Design; IBM Systems Journal,
Vol. 13, No. 2, May 1974, pp 115 - 139.

[YoCo 79] Yourdon E., Constantine L.L.: Structured Design - Fundamentals of a Discipline
of Computer Program and Systems Design"; Prentice Hall, 1979.

 - 6 -

