
László Böszörményi Distributed Systems CORBA - 1

Distributed Systems

6. CORBA
(Common Object Request Broker Architecture)

László Böszörményi Distributed Systems CORBA - 2

CORBA Standardization (1)
• CORBA is a (part of a) standard of OMG (Object

Management Group) – not a software
• Many CORBA-based products are on the market

(partly free-ware)
Over 70 ORBs + hundreds of other products

• Main features
Heterogeneous Distributed Computing
Programming language- and platform-independent
Component/Object-based software development
Internet Inter-ORB Protocol (IIOP)

Enables ORBs of different vendors to cooperate

• Newest version: CORBA 3

László Böszörményi Distributed Systems CORBA - 3

CORBA Objects (1)

• Objects
Objects model an entity or a concept
Objects have a unique identification
Operations

Actions performed by the objects
Signature: name, set of parameters, set of result types
Requests accepted by an object may (but need not to) be
executed in parallel

László Böszörményi Distributed Systems CORBA - 4

CORBA Objects (2)

Interface A

op1(...)
op2(...)

Interface B

op3(...)

Interface C

op1(...)
op2(...)
op3(...)
op4(...)

inherits

• Interfaces
An interface is a
collection of signatures
Inheritance is defined:
If interface C inherits
from interface A, then
C offers all operations
of A and maybe more.
Therefore, C is
substitutable for A
Substitutability is not
symmetrical, but
transitive

László Böszörményi Distributed Systems CORBA - 5

CORBA Reference Model (1)

• Architectural framework for the standardization of
Interfaces to infrastructure
Services that applications can use

• Object Request Broker (ORB)
• Corba Services

Naming, event, persistence, concurrency control etc.
• Common (horizontal) Facilities

Information-, systems-, interface-, task-management etc.
• Domain Facilities

Telecommunications, e-commerce, health-care etc.
• Application Interfaces
• Corba supports 3-tier client/server solutions

View Objects
Server Objects
Legacy Applications

László Böszörményi Distributed Systems CORBA - 6

CORBA Reference Model (2)

Object Request Broker

Application Objects Domain (Vertical) Facilities

CORBA Services Common (Horizontal) Facilities

CORBA Object Legacy Application Wrapper

László Böszörményi Distributed Systems CORBA - 7

Overview of CORBA Services
Service Description
Collection Facilities for grouping objects into lists, queue, sets, etc.

Query Facilities for querying collections of objects in a declarative manner

Concurrency Facilities to allow concurrent access to shared objects

Transaction Flat and nested transactions on method calls over multiple objects

Event Facilities for asynchronous communication through events

Notification Advanced facilities for event-based asynchronous communication

Externalization Facilities for marshaling and unmarshaling of objects

Life cycle Facilities for creation, deletion, copying, and moving of objects

Licensing Facilities for attaching a license to an object

Naming Facilities for systemwide name of objects

Property Facilities for associating (attribute, value) pairs with objects

Trading Facilities to publish and find the services an object has to offer

Persistence Facilities for persistently storing objects

Relationship Facilities for expressing relationships between objects

Security Mechanisms for secure channels, authorization, and auditing

Time Provides the current time within specified error margins

László Böszörményi Distributed Systems CORBA - 8

The ORB message bus (1)

• CORBA specifies of the functionality of the ORB (the
“message bus”).

• Location Transparency
It should be equally easy to invoke operations on an object in a
remote address space as in the same address space

• Programming Language Transparency
Interface Definition Language (OMG IDL) is provided
The client programmer needs only the definitions in IDL
The interface between client and sever is completely independent
from the programming language – even from the actual ORB
technology (at least principally)
The IDL compiler generates

Code, based on the language mappings
Stub code (translates – marshals – the data structures of the
implementation language into serial “wire”-format)
Skeleton code (unmarshals the serialized representation for the
implementation – maybe in a different language)

László Böszörményi Distributed Systems CORBA - 9

The ORB message bus (2)

• Different implementations of the same service are possible
• Different ORBs can cooperate via the

General Inter-ORB Protocol (GIOP), realized over TCP as the
Internet Inter-ORB Protocol (IIOP)

• Trading Service
Tries to find the service, with the best fitting QoS (Quality of
Service) – e.g. performance, cost, location etc.

• Pseudo Objects
Defined in Pseudo-IDL (PIDL)
They are usually just linked to the CORBA-application
Their operations are called in the same way as those of real
CORBA objects
Their references and data types cannot be passed to real CORBA
objects as parameters

László Böszörményi Distributed Systems CORBA - 10

ORB structure (1)

• Stub/Skeleton
To convey requests and replies over the ORB
Must be static: known at compilation time

• Dynamic Invocation/Skeleton
For interfaces built dynamically at run-time
Provides the generic invoke operation

Object reference, method id, list of in/out parameters

• ORB interface
Mainly for initialization and object reference manipulation

• Object Adapter
Extra facilities, e.g. management of operating system processes,
notification about ready to receive requests

László Böszörményi Distributed Systems CORBA - 11

ORB structure (2)

ORB Core

Dynamic
Invocation
Interface

IDL
Stubs

ORB
Interface

Object
Adapter

Dynamic
Skeleton
Interface

IDL
Skeleton

Client Implementation

Standard Interface Per-Object Type ORB Dependent

Multiple
OAs

possible

László Böszörményi Distributed Systems CORBA - 12

Object Reference Model (1)

• Object Reference
A reference is a handle to an object

A given reference always denotes the same object
Several distinct references may denote the same object

Objects can be passed as parameters or results
Reference semantics
Copy semantics – since CORBA 2.0, as valuetype

References are opaque to their clients
• Object Implementation

Provides actual implementation
The methods are accessed by the skeleton

László Böszörményi Distributed Systems CORBA - 13

Object Reference Model (2)

• Types
Object types are subtypes of the type Object
(inheritance)
Non-object types (numeric, string, Boolean)
Type Any (can store any legitimate value of a CORBA
type in a self-describing manner)
Structured types (structures, arrays, sequences,
unions)

• Interfaces
Inheritance

• Attributes
Attributes in an interface are logically equivalent to an

Accessor and a modifier operation
Similar to C# properties

László Böszörményi Distributed Systems CORBA - 14

Operation execution and semantics

• Synchronous
This is the “normal” way of communication
The client waits until the operation ends
At-most-once semantics

• Deferred Synchronous
Execution is asynchronous, the result can be polled
Only for dynamic invocation

• One-way
The client invokes an operation and the ORB does its
best to deliver it (“best-effort”)
No response, no result

László Böszörményi Distributed Systems CORBA - 15

Event and Notification Services (1)
• Method call alone is too restricted

1:n communication

• Event service allows
n:m communication
Push and pull model is supported

• Drawbacks
No persistence of the events

The partners need to be connected to the channel
Events are lost for non-connected consumers
Event propagation is unreliable

No filtering

• Notification service provides filtering for the events

László Böszörményi Distributed Systems CORBA - 16

Event and Notification Services (2)

László Böszörményi Distributed Systems CORBA - 17

Messaging (1)

• Message exchange
Persistent and asynchronous

• Callback
Client provides additional interface with each request
Response is delivered by a call via this interface
Can be fully implemented by the client

int add(in int i, int j, out int k); ⇒
void send_add(in int i, int j,); // Called by client
void rcv_add(in int k); // Called by client’s ORB

László Böszörményi Distributed Systems CORBA - 18

Messaging (2)

• Polling
The ORB provides an interface with polling operations
The called operation returns a valuetype object
This can be used for polling or waiting for the response
The polling operation is automatically generated by the
client’s ORB

int add(in int i, int j, out int k); ⇒
void sendpoll_add(in int i, in j,); // Called by client
void replypoll_add(out int k); // Called by client, impl. by ORB

László Böszörményi Distributed Systems CORBA - 19

Messaging (3)

Callback Polling

László Böszörményi Distributed Systems CORBA - 20

Naming (1)

• Interoperable Object Reference (IOR)
Provides valid references between (different) ORBs

• Naming service maps readable names to IORs
IOR structure:

DNS name
or IP addr.

For each supported
protocol

László Böszörményi Distributed Systems CORBA - 21

Naming (2)

• Binding maps IOR to servant
Direct binding: provides a pointer to the client proxy
Indirect binding: first a direct binding to the repository

László Böszörményi Distributed Systems CORBA - 22

Create a CORBA Application

• Define interfaces
using IDL

• Implement the
CORBA classes

• Develop the
server program

• Develop the client
program(s)

• Start the server
and the client(s)

IDL Interface

IDL compiler

Client Stub Server Skeleton IDL Utility Classes

Lang. compiler

Client Bytecode Server Bytecode

Client
Source

Server
Source

Other Object
Implementation

László Böszörményi Distributed Systems CORBA - 23

Example Application (1) – IDL Interface

• Arithmetic server
• “Adds” two arrays element by element

// Arithmetic IDL interface
module Arith {

interface Add {
const unsigned short SIZE = 10;
typedef long array [SIZE];
void sum_arrays(in array a, in array b, out array c);

};
};

László Böszörményi Distributed Systems CORBA - 24

Example Application (2) – Generated packages

• Modules are mapped to packages (in Java)
• The IDL compiler generates a number of files, e.g.:

Add.java
The Arith interface declaration

AddOperations.java
Declares the sum_arrays method

_st_Add.java Stub
Code for the Arith object on the client side

_sk_Add.java Stub
Code for Arith object implementation on the server side

_example_Add.java
Code you can fill into implement the Arith object

Holder and helper classes
Hold out and inout parameters (instance variable value)

László Böszörményi Distributed Systems CORBA - 25

Example Application (3) – Generated Interface

/**
* Generated by the idl2java compiler.
*/
public interface Add extends org.omg.CORBA.Object {

final public static short SIZE = (short) 10;
public void sum_arrays(

int a[],
int b[],
Arith.AddPackage.arrayHolder c
);

}

László Böszörményi Distributed Systems CORBA - 26

Example Application (4) - Implementation

public class AddImpl extends Arith._AddImplBase {
/** Construct a persistently named object. */
public AddImpl(java.lang.String name) { super(name); }
/** Construct a transient object. */
public AddImpl() { super(); }
public void sum_arrays(

int[] a, int[] b,
Arith.AddPackage.arrayHolder c

) {
c.value = new int[Arith.AddPackage.SIZE.value];
for (int i = 0; i < Arith.AddPackage.SIZE.value; i++) {

// Own interface to hold the constant SIZE
c.value[i] = a[i] + b[i];

} } }

• This can be compiled (javac AddImpl.java)

László Böszörményi Distributed Systems CORBA - 27

Example Application (5) - server class

public class Server {
public static void main(String argv[]) {

try {
ORB orb = ORB.init(); // Initialize the ORB
BOA boa = orb.BOA_init(); // Initialize Basic Obejct Adapter

// Create the AddImpl object and give it an external name
AddImpl arr = new AddImpl(“Arithmetic Server”);

// Export the newly created object.
boa.obj_is_ready(arr);
System.out.println(arr + “ is ready. “);

// Wait for incoming requests
boa.impl_is_ready();

} catch (SystemException se) { se.printStackTrace(); } } }

László Böszörményi Distributed Systems CORBA - 28

Example Application (6) - client class

public class Client {
public static void main(String argv[]) {

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int b[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
Arith.AddPackage.arrayHolder result =

new Arith.AddPackage.arrayHolder();
try { ORB orb = ORB.init(); // Initialize the ORB

// Locate an Add object via the external name
Arith.Add add =

Arith.AddHelper.bind(orb, “ArithmeticServer”);
add.sum_arrays(a, b, result);
System.out.print(“The sum is: “);
for (int i = 0; i < Arith.AddPackage.SIZE.value; i++) {

System.out.print(result.value[i]+" “);
} System.out.println();

} catch (SystemException se) { se.printStackTrace(); } } }

László Böszörményi Distributed Systems CORBA - 29

OMG IDL (1)

• No programming statements, purely declarative
• Identifiers, preprocessing comments as in C++
• Keywords all are lower case, other identifiers may not

differ only in case, because of different mappings
• Modules serve for avoiding name clashes

Both a module and an interface introduce a new scope
Modules can contain interfaces and nested modules

• An interface name in the same scope can be used as a
type name

• Interfaces in other name scopes must be qualified (::)
E.g. RoomBooking::Room is the full name of the following
interface: module RoomBooking { interface Room { . . . }; };

László Böszörményi Distributed Systems CORBA - 30

OMG IDL (2) – Nested modules

module outer {
module inner { // nested module

interface inside {};
}; // module inner

interface outside { // can refer to inner as a local name
inner::inside get_inside();
// returns a reference of type ::outer::inner::inside

}; // interface outside
}; // module outer

László Böszörményi Distributed Systems CORBA - 31

OMG IDL (3) – mutually referential IFs

• An interface type must be forward declared
before use

interface A; // forward declaration – no {}

interface B { // B can use forward declared interface A
A get_an_A();

};
interface A{

B get_a_B();
};

László Böszörményi Distributed Systems CORBA - 32

OMG IDL (4) – re-opening of modules

module X {
interface A; // forward declaration of A

}; // close X to allow interfaces A needs to be declared
module Y {

interface B; { // B can use X::A as a type name
X::A get_an_A();

}; // B
}; // Y
module X { // re-open X

interface C; { // C can use A unqualified – same scope
A get_an_A();

}; // C
interface A; { // A can use Y::B as a type name

Y::B get_a_B();
}; // A

}; // X

László Böszörményi Distributed Systems CORBA - 33

OMG IDL (5) – Inheritance

• The derived interface inherits from the base
interface. Syntax:

derived interface : base interface
• All interfaces implicitly inherit from

CORBA::Object
• E.g. in Java-mapping an interface A maps to a

Java interface A, which extends
org.omg.CORBA.Object (provided by the ORB)

• Data types are also inherited
• Non-object types can be re-declared in derived

interfaces.
Do not use this feature – it is a bug in the design!

László Böszörményi Distributed Systems CORBA - 34

OMG IDL (6) – Inheritance example

module InheritanceExample {
interface A {

typedef unsigned short ushort;
ushort op1();

}; // A

interface B : A { // B extends A – by op2
boolean op2(ushort num);

}; // B

}; // InheritanceExample

László Böszörményi Distributed Systems CORBA - 35

OMG IDL (7) – Multiple Inheritance

• An interface may inherit from several interfaces
• Syntax

The base interfaces separated by commas
interface C : A, B, Y::X { // extends A, B and Y::X . . . };

• The names of the operations in each of the
inherited interfaces (including the operations they
inherit from other interfaces)

must be unique and
must not be re-declared
exception: diamond inheritance

László Böszörményi Distributed Systems CORBA - 36

OMG IDL (8) – Diamond Inheritance
• Diamond Inheritance

The operations are inherited into two or more classes from the
same base class, without ambiguity
The inheritance graph is the shape of a diamond

Base

Left Right

Derived

László Böszörményi Distributed Systems CORBA - 37

OMG IDL (9) – Diamond Example
module DiamondInheritanceExample{

interface Base {
string BaseOp();

}; // Base
interface Left : Base {

short LeftOp(in long LeftParam);
}; // Left
interface Right : Base {

any RightOp(in long RightParam);
}; // Right
interface Derived : Left, Right {

octet DerivedOp(in float DerivedInParam,
out unsigned long DerivedOutParam);

}; // Derived
}; // DiamondInheritanceExample

László Böszörményi Distributed Systems CORBA - 38

OMG IDL (10) – Types and Constants

• Basic Types
[unsigned] short, long, float, double, char, boolean,
string, octet, enum, any
With typedef aliases can be created
For template types typedef is required (e.g. bounded
strings):

interface StringProcessor {
typedef string <8> octstring; // max. 8 octets
typedef string <100> centastring; // max. 100 octets
. . .

}; // StringProcessor

László Böszörményi Distributed Systems CORBA - 39

OMG IDL (11) – Any Type

• A container that can contain a value of any IDL type
• It identifies the type of its contents for type safe

extraction of the value
• The pseudo-ID TypeCode is used for identification
• It is left to each language mapping to define mechanisms

for inserting and extracting values from Anys
• In Java it is mapped to org.omg.CORBA.any
• This provides insert/extract method pairs for predefined

IDL types (e.g. insert_long, extract_long etc.)
• Helper classes generated by the IDL compiler may use

them. E.g. for a type usertype, in class usertypeHelper:
public static void insert (Any a, usertype t) { . . .}
public static usertype extract (Any a) { . . .}

László Böszörményi Distributed Systems CORBA - 40

OMG IDL (12) – Structures

• Similar to C and C++ structures or
• Pascal / Modula records
• Example:

interface HardwareStore {
struct window_spec {

glass_color color;
float height;
float width;

} // HardwareStore ;

László Böszörményi Distributed Systems CORBA - 41

OMG IDL (13) – Discriminated unions

• Exactly one declaration branch will be selected
depending on a switch value

• Storage is allocated for the largest case
• The value is undefined, if neither a legal switch

value, nor a default is available
enum fitting_kind {door_k, window_k, shelf_k};

union fitting switch (fitting_kind) {
case door_k: door_spec door;
case window_k: window_spec window;
default: float width;

};

László Böszörményi Distributed Systems CORBA - 42

OMG IDL (14) – Sequences

• Sequences are template types
• They can grow at run-time
• Their elements are accessed by an index
• Sequences may be bounded or unbounded
• Characterized by a maximum length and a current length
• Only the current number of elements are transmitted

typedef sequence <fitting> HWOrderSeq;
// unbounded sequence of orders

typedef <fitting, 10> HWOrderSeq10;
// sequence of max. 10 orders

typedef sequence <sequence <fitting>, 3> ThreeSeq;
typedef sequence <sequence <fitting> > ManySeq;

László Böszörményi Distributed Systems CORBA - 43

OMG IDL (15) – Arrays

• Fixed length, the entire array will be transmitted
• Arrays can be declared by the help of typedef, or as a

part of a union or struct
typedef window [10] WindowVec10; // 10 Elements
typedef fitting [3] [10] FittingGrid; // 3*10 Elements

• Exceptions
Syntactically similar to structures
Standard exceptions + user-defined exceptions
Generic handler can test the actual arguments

exception OrderTooLarge {
long max_items;
long num_items_submitted;

};
• Constants

László Böszörményi Distributed Systems CORBA - 44

OMG IDL (16) – Operations
• Syntactically similar to C++ function prototypes
• Name, return type (or void), parameter list

(maybe empty)
• Raises – specifies exceptions that may be raised
• Context – describes the caller’s environment

Similar to Unix environment variables
Must be used with care – free interpretation

• Parameter passing mode: in, out, inout
• One-way operations

No result type, no exception, no out or inout
parameters – just starts an action and hopes the best
oneway void printAccount(in short customer_id);

László Böszörményi Distributed Systems CORBA - 45

Dynamic Invocation Interface - DII (1)

• Enables clients to invoke operations on an interface for
which it has no compiled stub code

• It is less efficient, but more flexible
• Requests

A request has an object reference and a target operation name,
associated with it
Operations to add arguments
Call the operation via invoke (blocks the caller)

• Deferred Synchronous Invocation
The send operation returns immediately
Eventual result can be got via get_response

• Using DII (use the –portable flag of the idl2java compiler)

László Böszörményi Distributed Systems CORBA - 46

1. Obtain a reference for the target object
CORBA.Object object;
object = orb.string_to_object(ior);
// ior: Internet object reference: name of the object

2. Create a Request object for the request
CORBA.Request request = object._request("open");

3. Initialize the request parameters and the results
request.arguments().add_value("name",

new CORBA.Any().from_string(acctName),
CORBA.ARG_IN.value);

request.result.value().from_Object(null);
4. Invoke the request

request.invoke();
5. Get result

float balance = request.result().value().to_float();

Dynamic Invocation Interface - DII (2)

	Distributed Systems
	CORBA Standardization (1)
	CORBA Objects (1)
	CORBA Objects (2)
	CORBA Reference Model (1)
	CORBA Reference Model (2)
	Overview of CORBA Services
	The ORB message bus (1)
	The ORB message bus (2)
	ORB structure (1)
	ORB structure (2)
	Object Reference Model (1)
	Object Reference Model (2)
	Operation execution and semantics
	Event and Notification Services (1)
	Event and Notification Services (2)
	Messaging (1)
	Messaging (2)
	Messaging (3)
	Naming (1)
	Naming (2)
	Create a CORBA Application
	Example Application (1) – IDL Interface
	Example Application (2) – Generated packages
	Example Application (3) – Generated Interface
	Example Application (4) - Implementation
	Example Application (5) - server class
	Example Application (6) - client class
	OMG IDL (1)
	OMG IDL (2) – Nested modules
	OMG IDL (3) – mutually referential IFs
	OMG IDL (4) – re-opening of modules
	OMG IDL (5) – Inheritance
	OMG IDL (6) – Inheritance example
	OMG IDL (7) – Multiple Inheritance
	OMG IDL (8) – Diamond Inheritance
	OMG IDL (9) – Diamond Example
	OMG IDL (10) – Types and Constants
	OMG IDL (11) – Any Type
	OMG IDL (12) – Structures
	OMG IDL (13) – Discriminated unions
	OMG IDL (14) – Sequences
	OMG IDL (15) – Arrays
	OMG IDL (16) – Operations
	Dynamic Invocation Interface - DII (1)
	Dynamic Invocation Interface - DII (2)

