
László Böszörményi Distributed Systems DFS - 1

Distributed Systems

9. Distributed File Systems and 
Overlay Networks (CDN and P2P)



László Böszörményi Distributed Systems DFS - 2

Importance of DFS
• Oldest and most important kind of Dist. Sys.
• NFS (Network File System, SUN)

Set of protocols providing a unified view to the FS, no 
matter how the local implementation works
Oldest DFS with largest installation base

• Coda (Carnegie Mellon University)
Successor of AFS (Andrew FS), main goal: scalability
Works even if some (mobile) clients are disconnected
Transactional-like session semantics

• xFS (UC at Berkely, NOW project)
Has no servers, clients implement the DFS
Not to confuse with XFS (Silicon Graphics)



László Böszörményi Distributed Systems DFS - 3

NFS

The remote access model The upload/download model

• The upload/download model copies files into the local FS (e.g. FTP)
• The remote access model (NFS) leaves the files on the server

Can be combined with caching



László Böszörményi Distributed Systems DFS - 4

NFS Architecture

• The VFS layer hides the differences and locations
A client request is automatically forwarded to the proper FS
The local files systems may be different (MSDOS, Windows, Unix …)



László Böszörményi Distributed Systems DFS - 5

Unix-like File System Model

Write data to a file (n bytes at given offset), maybe also stable storageYesYesWrite

Read the data contained in a file (n bytes at given offset)YesYesRead

Set one or more attribute values for a fileYesYesSetattr

Read the attribute values for a fileYesYesGetattr

Read the path name stored in a symbolic linkYesYesReadlink

Read the entries in a directoryYesYesReaddir

Look up a file by means of a file nameYesYesLookup

Close a fileYesNoClose

Open a file (or create a new file) with certain attributes (e.g. write)YesNoOpen

Decrement hard link count, remove file, if cnt=0 (also directories in v4)YesYesRemove

Change the name of a fileYesYesRename

Create a special file (device files, sockets, named pipes)NoYesMknod

Create a subdirectory in a given directoryNoYesMkdir

Create a symbolic link to a fileNoYesSymlink

Create a hard link to a fileYesYesLink

Create a nonregular file (incl. symbolic links, directories, special files)YesNoCreate

Create a regular fileNoYesCreate

Descriptionv4v3Operation



László Böszörményi Distributed Systems DFS - 6

States

• NFS used originally (up to v3) stateless servers
Makes fault tolerance easy
Usual file system semantics is sometimes hard
Locking and concurrency control are hard

• In NFS v4 (a few) states were introduced
Explicit open necessary
Locking can be implemented easily
Completion of operations can be signaled to the client
Server may call back the client
Enables effective cache consistency protocols

E.g. a lease based protocol cannot be implemented over a 
stateless server



László Böszörményi Distributed Systems DFS - 7

Communication

a) In NFS v3 each operation requites an own RPC
b) In v4 compound procedures can group several operations 

Concurrency is not handled, on failure just abort: this is not a transaction



László Böszörményi Distributed Systems DFS - 8

Naming (1)

• A uses path “/remote/vu/mbox”, B “/work/me/mbox “for the same
• This makes sharing difficult – many different “names” for the same file

Well-defined, “standardized” naming conventions can help (e.g. /usr/bin)



László Böszörményi Distributed Systems DFS - 9

Naming (2) – nested mounting

• In v3, name resolution is iterative, i.e. the client has to handle nesting
• In v4, recursive path resolution and lookup is supported



László Böszörményi Distributed Systems DFS - 10

Automounting

• Directories can be mounted on demand, via automounting
On each access to e.g. “home”, a lookup is forwarded to the automounter process
The automounter creates dir. “alice” locally and mounts the remote dir. “alice” to it



László Böszörményi Distributed Systems DFS - 11

File Attributes (1) – Mandatory attributes

• In v3 the set of attributes was fixed
• In v4 two sets of attributes

Mandatory (12 altogether) and recommended (43 altogether)

Attribute Description
TYPE The type of the file (regular, directory, symbolic link)
SIZE The length of the file in bytes

CHANGE If and/or when the file has changed

FSID Server-unique identifier of the file's file system
. . . 



László Böszörményi Distributed Systems DFS - 12

File Attributes (2) – Recommended attributes
Attribute Description
ACL Access control list associated with the file
FILEHANDLE The server-provided file handle of this file
FILEID A file-system unique identifier for this file
FS_LOCATIONS Network-locations where this file system may be found
OWNER The character-string name of the file's owner
TIME_ACCESS Time when the file data were last accessed
TIME_MODIFY Time when the file data were last modified
TIME_CREATE Time when the file was created
. . .

• Attributes are sent as an array of pairs:
(attribute: string, value: sequence-of-bytes)

• The application is free to interpret them



László Böszörményi Distributed Systems DFS - 13

Semantics of File Sharing (1)

• Usual “Unix semantics” can be easily 
implemented, if no caching is allowed

• If caching is allowed, we either need to
Propagate all changes back immediately or
Relax the “Unix-semantics”



László Böszörményi Distributed Systems DFS - 14

Semantics of File Sharing (2)

• NFS implements session semantics (as many other DFS)
In case of concurrent accesses, the most recently closed value wins 
Concurrency can be restricted by locking

• Immutable files: Files cannot be changed, but directories can
On any change a new file must be created
The new file may replace the old file (under the same name)
Concurrent replacement is still a problem – similar as by session semantics

Method Comment
UNIX semantics Every file-operation is instantly visible to all processes
Session semantics No changes are visible to other procs until the file is closed
Immutable files No updates are possible; simple sharing and replication
Transaction All changes occur atomically



László Böszörményi Distributed Systems DFS - 15

File Locking in NFS via lock operations

• In a stateless server locking is complicated – extra daemon process
• In v4 states make locking simpler

Different locks for read and write (e.g. for many readers 1 writer)
Locks are granted for a required byte range for a specific time (lease)
Locks are removed, if the lease expires
Failure of server or client remains a problem

Operation Description
Lock Creates a lock for a range of bytes
Lockt Test whether a conflicting lock has been granted
Locku Remove a lock from a range of bytes
Renew Renew the lease on a specified lock



László Böszörményi Distributed Systems DFS - 16

File Locking in NFS via sharing (for Windows)

• At opening the client may specify
Type of access (read, write, both)
Type of denial against others (none, read, write, both)

Current file denial state
NONE READ WRITE BOTH

READ Succeed Fail Succeed Fail

WRITE Succeed Succeed Fail Fail

BOTH Succeed Fail Fail Fail

Requested file denial state
NONE READ WRITE BOTH

READ Succeed Fail Succeed Fail

WRITE Succeed Succeed Fail Fail

BOTH Succeed Fail Fail Fail

Request
access

Current
access
state

(by an other)



László Böszörményi Distributed Systems DFS - 17

Client Caching (1)
• In v3 caching is implementation dependent
• In v4 on-demand and delegated caching

1. On-demand caching
• The blocks, read by the client, are cached
• Updates must be propagated back, at the end of the session
• On opening a file, data in cache maybe invalidated (revalidation)

Data, attributes
and handles
may be cached



László Böszörményi Distributed Systems DFS - 18

Client Caching (2)
2. Delegated caching
• The server may delegate – and later recall – some rights
• Open delegation: the client may handle open and close for others

- E.g. file locking on the same node can be handled in this case locally
- Remote locks must be refused



László Böszörményi Distributed Systems DFS - 19

NFS Reliability (1)

• NFS does not specify the exact RPC semantics
Implementation over TCP or UDP are possibke (duplicates may occur)
Client requests get a unique “transaction identifier” (XID)
Servers store client requests and own replies for a while in a duplicate-request cache

a) The request is still in progress – ignore the same request
b) The reply has just been returned – ignore the same request
c) The reply has been sent some time ago, but was lost – resend the answer



László Böszörményi Distributed Systems DFS - 20

NFS Reliability (2)

• File locking and failures
• With stateful servers fault tolerance is harder
• Client – holding a lock – crashes

The grants expire after a certain time (lease)
Server removes a lock, unless client renews the lease
The lack of global time makes expiration-handling hard
False removal, if renew does not reach the server

• Server – having granted locks – crashes
After recovering, the server accepts lock reclaims – and 
rejects all other lock requests – during a grace period
With this, it can recreate the original locking state



László Böszörményi Distributed Systems DFS - 21

NFS Reliability (3)

• Open delegation and failures
• Client – holding open delegation – crashes

Full recovery will be impossible, unless the client saves 
all changes to stable storage
Client is partially responsible for the recovery

• Server – having granted open delegation – crashes
Similar procedure as with lock recovery
Clients may reclaim their open delegations
The server forces the clients to flush back all 
modifications and thus recalls the delegation
Clients may apply again for delegation



László Böszörményi Distributed Systems DFS - 22

Overlay Networks (1)
• An overlay is a logical network on top of the physical 

network
• Routing Overlays

The simplest kind of overlay
Virtual Private Networks (VPN), supported by the routers
If no router support – we can apply end system routing

• End System Multicast
Naive multicasting wastes resources
End system multicast: compromise without router support

• General solution: multiple level of overlay networks
Web caches
Content Distribution Networks
Peer-to-Peer file sharing



László Böszörményi Distributed Systems DFS - 23

Overlay Networks (2)

A

B

C

D
R1 R2

5

5

5
5

50

A

B

C

D
R1 R2

5

5

5
5

50

A

B

C

D
R1 R2

5

5

5
5

50

A

B

C

D
R1 R2

5

5

5
5

50

Physical topology

Naive Multicast

Router level Multicast

End level Multicast



László Böszörményi Distributed Systems DFS - 24

Content Distribution Networks (1)
• The paying clients are the content providers, not 

the ISPs
A content provider (e.g. Yahoo) pays a CDN provider 
(e.g. Akamai) to get its contents to the user

• A CDN company 
Provides many CDN servers throughout the Internet

Typically at an Internet hosting center, (e.g. Worldcom)
Runs often on servers of a server vendor (e.g. Inktomi)

Replicates the content at the CDN servers
When the content provider changes the content the CDN 
redistributes the fresh content to the CDN servers

Provides mechanisms that the clients get the content 
from the best located CDN server – relying on DNS 
redirection



László Böszörményi Distributed Systems DFS - 25

Content Distribution Networks (2)
• Steps of content distribution

1. Provider determines which objects (e.g. all its gif files) should be 
distributed via a CDN company (e.g. cdn.com)

2. Provider prefixes the gif files with http://www.cdn.com
3. The browser of the client sends the request (e.g. 

www.content.com/sports/goal.gif) to the original server. 
4. At parsing the HTML file it finds the link: http://www.cdn.com/ 

www.content.com/sports/goal.gif
5. The browser makes a DNS lookup for www.cdn.com
6. The DNS server sends the request to the CDN’s authoritative 

server, which extracts the clients IP address
7. Using an internal network map the DNS server finds the best 

located CDN server (e.g. geographically the closest)
8. The DNS in the client receives a DNS reply with the IP address of 

the best CDN server
9. The browser obtains goal.gif from this
10. For subsequent requests for www.cdn.com the same CDN server 

is used (IP address is in the DNS cache)



László Böszörményi Distributed Systems DFS - 26

Peer-to-Peer File Sharing (1)
• Instead of installing CDN servers use the clients’ computer

E.g. Napster, Gnutella, Freenet, KaZaA/FastTrack, Bittorrent ...

• Usage model
Client Alice has installed a peer-to-peer software
Alice wishes to get the MP3 file for „Hey Jude“
She contacts the internet and asks for this file
She gets a list of clients storing „Hey Jude“

Additional information, such as bandwidth may be included
Alice selects Bob’s computer and loads the file

If Bob disconnects in between, she (her software) may select an 
alternative supplier

From now Alice is also a supplier of „Hey Jude“

• For the file transfer usually HTTP is used
The clients are both Web clients and transient Web servers



László Böszörményi Distributed Systems DFS - 27

Peer-to-Peer File Sharing (2)
• Advantages

Unlimited resources, thousands of clients may 
participate
Scales well – at least principally

• Difficulties
Clients may spontaneously disconnect – bad for a 
server
How can the clients be found, who have the desired 
object?
Possible solutions

Centralized Directory
Decentralized Directory
Query Flooding



László Böszörményi Distributed Systems DFS - 28

P2P with Centralized Directory (1)
• Simple to implement 

Napster used this technique

• The P2P file sharing service uses a large server (farm)
• The P2P software at each client sends its P2P directory 

information to the server and keeps this info up-to-date
• Disconnections must de noticed at the server

Send probe messages to the clients or
Maintain a TCP connection with each peer

• Main drawbacks
Single point of failure
Performance bottleneck at the server
Copyright infringement

Easy to shut down – advantage or disadvantage?



László Böszörményi Distributed Systems DFS - 29

P2P with Centralized Directory (2)

Centralized
Directory Server

Bob

Alice2. Query 
for content

1. Inform and update

3. File transer



László Böszörményi Distributed Systems DFS - 30

P2P with Decentralized Directory (1)

• Implementation based on hierarchical overly 
networks

KaZaA/FastTrack uses this approach
• A number of peers are designated as group 

leaders
• A new P2P client is assigned to a group leader
• The client gets the IP address of the leader and 

informs it about its own P2P contents
• The leader maintains a database of contents of its 

group



László Böszörményi Distributed Systems DFS - 31

P2P with Decentralized Directory (2)

Ordinary peer

Group leader
peer



László Böszörményi Distributed Systems DFS - 32

P2P with Flooding

join

Peer joining the overlay network

query

Query flooding in the network


	Distributed Systems
	Importance of DFS
	NFS
	NFS Architecture
	Unix-like File System Model
	States
	Communication
	Naming (1)
	Naming (2) – nested mounting
	Automounting
	File Attributes (1) – Mandatory attributes
	File Attributes (2) – Recommended attributes
	Semantics of File Sharing (1)
	Semantics of File Sharing (2)
	File Locking in NFS via lock operations
	File Locking in NFS via sharing (for Windows)
	Client Caching (1)
	Client Caching (2)
	NFS Reliability (1)
	NFS Reliability (2)
	NFS Reliability (3)
	Overlay Networks (1)
	Overlay Networks (2)
	Content Distribution Networks (1)
	Content Distribution Networks (2)
	Peer-to-Peer File Sharing (1)
	Peer-to-Peer File Sharing (2)
	P2P with Centralized Directory (1)
	P2P with Centralized Directory (2)
	P2P with Decentralized Directory (1)
	P2P with Decentralized Directory (2)
	P2P with Flooding

