
László Böszörményi Distributed Systems Fault-Tolerance - 1

Distributed Systems

5. Fault Tolerant Systems

László Böszörményi Distributed Systems Fault-Tolerance - 2

Fault tolerance
• A system or a component fails due to a fault
• Fault tolerance means that the system continues

to provide its services in presence of faults
• A distributed system may experience and should

recover also from partial failures
• Fault categories in time

Transient
Occurs once and disappear

Intermittent
Occurs many times in an irregular way

Permanent

László Böszörményi Distributed Systems Fault-Tolerance - 3

Different Types of Failures

Type of failure Description
Crash failure A server halts, but is working correctly until it halts

Omission failure
Receive omission
Send omission

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Timing failure A server's response lies outside the specified time
interval

Response failure
Value failure
State transition f.

The server's response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Arbitrary (Byzantine)
failure

A server may produce arbitrary responses at arbitrary
times

László Böszörményi Distributed Systems Fault-Tolerance - 4

Dependable Systems
• Availability

The system is usable immediately at any time
• Reliability

A system works over a long period without error
A system crashing for a millisecond every hour has good
availability but very poor reliability

• Safety
Temporal failures have no catastrophic consequences

• Maintainability
Failures can be repaired quickly and easily

• Security
System can resist attacks against its integrity

László Böszörményi Distributed Systems Fault-Tolerance - 5

Failure Masking by Redundancy
• Information redundancy

Extra bits are added (e.g. CRC)
• Time redundancy

Actions may be redone (e.g. transactions after abort)
• Physical redundancy

Hardware and software components may be multiplied
(e.g. extra disk, extra engine in an airplane)
Triple modular redundancy (TMR)

Uses the principle of building a majority opinion
Each device is replicated 3 times, signals pass all 3 devices
If one device fails, a voter can reproduce the correct value
based on 2 correct signals
At every stage 1 device and 1 voter may fail

László Böszörményi Distributed Systems Fault-Tolerance - 6

Triple modular redundancy

László Böszörményi Distributed Systems Fault-Tolerance - 7

Group Communication
• A group of processes forms a logical unit

This creates redundancy, the basis for fault-tolerance

• One-to-many communication
As opposed to one-to-one communication

• Groups are dynamic
New groups can be created
and destroyed
Processes can join and leave
groups
Membership management is
necessary
The same process maybe
member of many groups
Groups may be overlapped

Sender

László Böszörményi Distributed Systems Fault-Tolerance - 8

Open and closed groups

• Closed Groups
A process must first join the group, otherwise cannot access the
members of the group
Main use in parallel processing

Closed group

No access

Open group

Access allowed

• Open Groups
Non-members can also
access group-members
E.g. in a replicated server
the server instances are the
members and clients can
send messages to the
entire group

László Böszörményi Distributed Systems Fault-Tolerance - 9

Flat and hierarchical groups

• Peer (or flat) groups
All processes are equal, fully symmetric, no single point of failure
Decisions are complicated → voting algorithms

• Hierarchical groups (one “master”)
Simple decisions can be made by the coordinator
Loss of the coordinator brings the entire group halt → needs election

László Böszörményi Distributed Systems Fault-Tolerance - 10

Group Membership

• Controls joining and leaving of groups
• Entering and leaving must be atomic

All members must agree on the actual members atomically
Even in the case of implicit leaving – i.e. by crash of a member

• A group may get inoperable, because most members crash
Group must be recreated in this case

• Central group server
Easy to implement
Single point of failure
Central server easily becomes bottleneck

• Distributed group server
Difficult to implement
No single point of failure
No bottleneck due to central server

László Böszörményi Distributed Systems Fault-Tolerance - 11

Group Addressing
• Unicasting (single network receiver)

The system has to maintain a list of members
For N members N messages are necessary

• Broadcasting (all nodes of a nw. segment get the message)
The kernel may discard those that go to group-members not
available on the given machine

• Multicasting (a selected group of nodes gets the message)
Group addresses can be mapped to multicast address

• Predicate Addressing
The receiver gets a Boolean expression. If this evaluates to true, the
address is valid, otherwise not
The predicate may simply check group membership
It may contain other checks as well

E.g. the message should be accepted by all machines having some
resources available (e.g. big main memory, magnetic tape etc.)

László Böszörményi Distributed Systems Fault-Tolerance - 12

Failure Masking and Replication

• Groups may help in fault-tolerance
We replicate identical processes
Some of them may fail, the rest still works

• K fault tolerance
A system is k fault tolerant, if it “survives” the failure of k
components
If k components simply stop

At least k+1 components are needed
If k components may produce wrong answers

At least 2k+1 components are needed to form a majority
In realistic cases we may need more – see later

We usually do not know, how many components will fail

László Böszörményi Distributed Systems Fault-Tolerance - 13

Distributed agreement with faulty channels

• On an unreliable channel, in an asynchronous system,
no agreement is possible, even with non-faulty processes

• The two-army problem

The divided dark army needs
an agreement
Endless sequence of
acknowledgments were
necessary
If there was a last message,
the sender of it still would not
know, whether his message
has arrived

Messages go through the enemy
(unreliable channel)

László Böszörményi Distributed Systems Fault-Tolerance - 14

Distributed Agreement with faulty processors

• Given is a set of processors P = {p1, ... pN}
• A subset F ⊂ P is faulty, P – F is not
• ∀ pi ∈ P stores a value Vi

• During the agreement protocol, the processors
calculate an agreement value Ai

• After the protocol ends the following two conditions
hold:

∀ (pi, pj) ∈ (P – F): Ai = Aj (the agreement value)
The agreement value is a function of {Vi} ∈ (P – F)

László Böszörményi Distributed Systems Fault-Tolerance - 15

Model of failure for distributed agreement

• An “adversary” (an “enemy”) tries to make the protocol fail
• Most executions maybe correct but a few, unlikely

executions are not
• The adversary may

Examine the global state
Schedule the execution protocol
Destroy or modify messages
Change the protocol at some of the processors

• For synchronous systems
• There are some protocols to achieve a consensus

• For asynchronous systems a consensus is impossible
There is no algorithm that can guarantee that all non-failed
processors agree on a value within finite time

László Böszörményi Distributed Systems Fault-Tolerance - 16

Byzantine Agreement (1)

• Byzantine generals must coordinate their attacks against
the army of the Turkish sultan

• K of them maybe treacherous (paid by the sultan)
• 1 commanding and N lieutenant generals
• If the loyal generals agree, they win, otherwise they loose
• Failed processors may send arbitrary messages or none
• The system is synchronous

Non-faulty procs respond within T, non-answering procs are faulty
• The sender of a message can be identified by the receiver
• If each loyal general can agree on the opinion of the others

(loyal or disloyal), loyal generals reach the same decision
• This needs a protocol for a reliable broadcast

Messages are seen in the same order by all procs – see later

László Böszörményi Distributed Systems Fault-Tolerance - 17

Byzantine Agreement (2)

• Interactive consistency
If a loyal ps sends Vs, all loyal generals agree on Vs
If the sender is treacherous, all loyal generals agree on the same
value

• Suppose we know that only 1 general is treacherous
No consensus for 3 participants

There are not enough participants to form a majority
Either the commandant or one of the lieutenant is lying, the other two
cannot figure out a consensus
Consensus for at least 4 participants

• If there are t traitors among N generals
An agreement cannot be reached if N ≤ 3t

2t+1 were only sufficient, if we knew, which one is the traitor!
An agreement can be reached if N > 3t, and if

The system is synchronous
Senders can be identified

László Böszörményi Distributed Systems Fault-Tolerance - 18

Byzantine Agreement (3)

• Assume we have 3 generals, at most 1 of them is a traitor
• In one case the commander is disloyal in the other case L2
• L1 receives in both cases 1 attack and 1 retreat message –

no agreement is possible
• Further communication does not help – no new information

C

L 2L 1

disloyal

attack retreat

attack

retreat1 attack
1 retreat

C

L 2L 1
disloyal

attac attack

attack

retreat1 attack
1 retreat

László Böszörményi Distributed Systems Fault-Tolerance - 19

Byzantine Agreement (4)

• Assume we have 4 generals, at most 1 of them is a traitor
• In one case the commander is disloyal, in the other case L3
• The loyal generals can agree in both cases on attack

In the first case L1 – L3 will attack
The loyal generals win, even if the commander wanted to “fool” them

In the second case C and L1 and L2 will agree
• If a general does not answer, a default is assumed – retreat

C

L 3L 1

disloyal

a

2 attacks
1 retreat

L 2

a r

a a

a r
a

r

C

L 3L 1 disloyal

a

2 attacks
1 retreat

L 2

a a

a a

a r
a

r

László Böszörményi Distributed Systems Fault-Tolerance - 20

Byzantine Agreement (5)

• If not just a Boolean value is to agree (e.g. the strength of
the troops): Value vector

a) The generals announce their troop strengths (in battalions)
b) The vectors that each general assembles based on (a)
c) The vectors the loyal generals receive

László Böszörményi Distributed Systems Fault-Tolerance - 21

Byzantine Broadcast Algorithm (1)

• The algorithm BG(k) works for k (or less) traitor
• Performing a broadcast that can tolerate k traitors

requires that the lieutenants perform a broadcast
that can tolerate k-1 traitors (recursive algorithm):

If the commander is a traitor the loyal lieutenants have to
agree – having max. k-1 disloyal lieutenants

• Voting vectors contain the votes of all
• Correctness of the algorithm can be proved by

induction
• Complexity: O(Nk) for BG(k)

Unpractical, but can be improved

László Böszörményi Distributed Systems Fault-Tolerance - 22

Byzantine Broadcast Algorithm (2)

Base Case
BG_Send(0, v, li)

The commander broadcasts v to every lieutenant on li,
with k = 0 faulty processors – everybody gets the message

BG_Receive(0)
Return the value sent to you or retreat if no message is received

Recursive Case
BG_Send(k, v, li)

Send v to every lieutenant on li
BG_Receive(k)

Let v be the value sent to you, or retreat if no value is sent
Let li be the set of lieutenants who have never broadcast v (i.e. the delivery list
of this message)
BG-Send(k – 1, v, li – self)
Use BG_Receive(k-1) to receive vi ∀ i ∈ li – self
return majority(v, v1, ... v|li|-1)
or retreat, if no majority exists (half is attack, half is retreat and n is even)

László Böszörményi Distributed Systems Fault-Tolerance - 23

C

L1 L2 L3 L6L4 L5

V1 V2 V6

L1

L2 L3 L6L4 L5

L1 :V1

L2

L3 L6L4 L5

L2 : L1 : V 1

Same for L 2 . . . L 6

Same for L 3 . . . L 6

• Example:
7 generals, 2 traitors

• Virtual tree
Shows, who thinks
what of whom
The voting vectors
can be seen as
well

Byzantine Broadcast Algorithm (3)

László Böszörményi Distributed Systems Fault-Tolerance - 24

Byzantine Broadcast Algorithm (4)

• Commander broadcasts its order to 6 lieutenants
• Each lieutenant sends it to the 5 other lieutenants
• Each lieutenant broadcasts to the other 4 what he heard the other

lieutenants say
• Vi represents the value sent to Li, Li:Vi is Li’s rebroadcast, Lj:Li:Vi is

Lj’s rebroadcast of what Li said
• After L1 finishes its rebroadcast L1:V1

Each processor has a consensus of what the other processors think that
L1 broadcast
E.g. L2 has seen: (L3:L1:V1, L4:L1:V1, L5:L1:V1, L6:L1:V1)
L2 can compute the majority function for L1’s value

• After BG(1) finishes, each processor has a consensus of what the
other processors received for their commands

E.g. L1 has seen: (L2:V2, L3:V3, L4:V4, L5:V5, L6:V6)
It may decide on the commander’s order by taking the majority opinion of
the majority opinions

László Böszörményi Distributed Systems Fault-Tolerance - 25

Reliable Multicast
• Reliable multicast

Each member of the group should get the message
Reliable point-to-point (TCP) channels don’t suffice
What, if the sender crashes, or a new process joins
during message delivery?

• Weak reliable multicast
We assume that the groups remains unchanged during
the given message delivery
We assume also that the sender knows all receivers
Message numbering + history buffer at sender suffices

László Böszörményi Distributed Systems Fault-Tolerance - 26

Weak reliable multicast

All receivers are known and are assumed not to fail
a) Message transmission
b) Reporting feedback

László Böszörményi Distributed Systems Fault-Tolerance - 27

Scalability in Reliable Multicast

• Scalability problem
With many receivers the positive acknowledgments
may generate too high load on the network + sender

• Negative acknowledgments (NAKs)
Load is smaller
Sender must store messages principally forever

• Nonhierarchical feedback control
Scalable Reliable Multicasting (SRM)
Feedback suppression

After a random delay T, NAKs are multicast to all members
NAK of the same message is transmitted only once – further
load reduction

László Böszörményi Distributed Systems Fault-Tolerance - 28

Nonhierarchical Feedback Control

• Several receivers have scheduled a request for retransmission
• The first retransmission request leads to the suppression of others

László Böszörményi Distributed Systems Fault-Tolerance - 29

Hierarchical Feedback Control

• The local coordinators form a tree
Tree creation may be difficult

• Local coordinator handles retransmission requests, own
history buffer

On demand it requires message from father

László Böszörményi Distributed Systems Fault-Tolerance - 30

Atomic Multicast
• All members of a group get all messages, even in

the case of failures
• If the groups changes (join or leave): view change
• Virtual Synchrony

All multicast messages are delivered between view
changes
Similar to the idea of consistent cuts
If a sender crashes, either all members get the
message or nobody

• If in a virtual synchronous system all messages
are received by all members in the same order:
atomic multicast

László Böszörményi Distributed Systems Fault-Tolerance - 31

Virtual Synchrony (1)

• The communication layer buffers out-or-order messages
• Delivery to the application may be deferred

László Böszörményi Distributed Systems Fault-Tolerance - 32

Virtual Synchrony (2)

• Message m from P3 could not be delivered m to P1:
• the communication layer discards m in P2 and P4

László Böszörményi Distributed Systems Fault-Tolerance - 33

Message Ordering
1. Unordered multicast

Arbitrary message order is accepted
2. FIFO-ordered multicast

Messages from the same sender are received in the
same order

3. Causally-ordered multicast
Causal chains are preserved

Totally-ordered multicast
All messages are received by all members in the same
order
This is an additional requirement to the basic ordering
Combined with virtual synch: atomic multicasting

László Böszörményi Distributed Systems Fault-Tolerance - 34

Unordered and FIFO-ordered multicast

Process P1 Process P2 Process P3

sends m1 receives m1 receives m2

sends m2 receives m2 receives m1

Process P1 Process P2 Process P3 Process P4

sends m1 receives m1 receives m3 sends m3

sends m2 receives m3 receives m1 sends m4

receives m2 receives m2

receives m4 receives m4

László Böszörményi Distributed Systems Fault-Tolerance - 35

Versions on virtual synch. reliable multicast

Multicast Basic Message
Ordering

Total-ordered
Delivery?

Reliable multicast None No

FIFO multicast FIFO-ordered delivery No

Causal multicast Causal-ordered
delivery No

Atomic multicast None Yes
FIFO atomic
multicast FIFO-ordered delivery Yes

Causal atomic
multicast

Causal-ordered
delivery Yes

László Böszörményi Distributed Systems Fault-Tolerance - 36

Broadcast in ISIS
• The ISIS group communication system

Implements different kinds of broadcast semantics
Assumes TCP based reliable point-to-point communication

• ABCAST
Loosely synchronous communication

All messages are delivered in the same order
Used for data transmission between members
Implemented by a two-phase commit protocol
Correct, but expensive

• GBCAST
Similar to ABCAST
Used for group management

• CBCAST
Virtually synchronous communication
Ensures causally ordered reliable multicast
Implementation is based on vector time stamps

László Böszörményi Distributed Systems Fault-Tolerance - 37

CBCAST in ISIS
Each process maintains a vector of size n (n members)
containing the last message-number from memberi

Each message also delivers such a vector
If processi sends a message it increments sloti
If processi receives a message “too early” then it
buffers the message, until the missing messages arrive
Vi : ith number of the vector in the incoming message
Li : ith number of the vector stored at the receiver
A message, sent by memberj is immediately accepted if
Vj = Lj + 1 (this is the next message from nodej) and
Vi ≤ Li (∀ i ≠ j, i.e. the sender has not seen any
message that the receiver has missed)

László Böszörményi Distributed Systems Fault-Tolerance - 38

Example CBCAST in ISIS
Process0: sent a message with vector (4, 6, 8, 2, 1, 5)
Process1: V0 = L0 + 1, ∀ i ≠ j: Vi ≤ Li → accept
P2: missed message6 sent by P1 (V1 > L1),; P3: has seen
everything the sender has seen; P4: missed the previous message
from P0,; P5: slightly ahead of P0

P0 (V) P1 (L) P2 (L) P3 (L) P4 (L) P5 (L)
4 3 3 3 2 3
6 7 5 7 6 7
8 8 8 8 8 8
2 2 2 3 2 3
1 1 1 1 1 1
5 5 5 5 5 5

sent accept delay accept delay accept

László Böszörményi Distributed Systems Fault-Tolerance - 39

Handling of crashed senders in ISIS
• If the sender process crashes during multicast

Some processes may not get the message m from it
They may get m from elsewhere

• Every process stores m until all members in a group G
have received it

• If m has been received by all members: stable
An arbitrary process may send m to ensure stability

• Let call the current view Gi, the next veiw Gi+1

• If a process P receives a view change request
P forwards all unstable messages from Gi to every process in Gi+1

P sends a flush message to every process in Gi+1 at the end
The point-to-point channels are reliable and keep order (TCP)
This protocol cannot handle process failures during view change

László Böszörményi Distributed Systems Fault-Tolerance - 40

Handling of sender crash in CBCAST

a) P4 notices that P7 has crashed → sends a view change
b) P6 sends out all its unstable messages, followed by a flush message
c) P6 installs the new view when it has received a flush message from

everyone else

	Distributed Systems
	Fault tolerance
	Different Types of Failures
	Dependable Systems
	Failure Masking by Redundancy
	Triple modular redundancy
	Group Communication
	Open and closed groups
	Flat and hierarchical groups
	Group Membership
	Group Addressing
	Failure Masking and Replication
	Distributed agreement with faulty channels
	Distributed Agreement with faulty processors
	Model of failure for distributed agreement
	Byzantine Agreement (1)
	Byzantine Agreement (2)
	Byzantine Agreement (3)
	Byzantine Agreement (4)
	Byzantine Agreement (5)
	Byzantine Broadcast Algorithm (1)
	Byzantine Broadcast Algorithm (2)
	Byzantine Broadcast Algorithm (3)
	Byzantine Broadcast Algorithm (4)
	Reliable Multicast
	Weak reliable multicast
	Scalability in Reliable Multicast
	Nonhierarchical Feedback Control
	Hierarchical Feedback Control
	Atomic Multicast
	Virtual Synchrony (1)
	Virtual Synchrony (2)
	Message Ordering
	Unordered and FIFO-ordered multicast
	Versions on virtual synch. reliable multicast
	Broadcast in ISIS
	CBCAST in ISIS
	Example CBCAST in ISIS
	Handling of crashed senders in ISIS
	Handling of sender crash in CBCAST

