
László Böszörményi Distributed Systems Mobile - 1

Distributed Systems

8. Mobile Agents

László Böszörményi Distributed Systems Mobile - 2

Motivation for mobile computation (1)
• Pervasive Networking and Computing

Connectivity and computing is cheap and available
• Ubiquitous Networking and Computing

Connectivity and computing power is available
everywhere (independently from location)

• Mobile Computing
Network nodes can be placed everywhere
Wireless communication

• Easy-to-use Technologies for naive users
World Wide Web

Electronic commerce
Internet phone

László Böszörményi Distributed Systems Mobile - 3

Motivation for mobile computation (2)
• Growing need for scalability
• Diffusion of network services and applications to

large segments of the society
Customizability
Flexibility
Extensibility

• Well-established models and technologies
Essentially RPC-based

CORBA etc.
• Code mobility

The capability to dynamically change the bindings
between code fragments and the location of
execution

László Böszörményi Distributed Systems Mobile - 4

Code Mobility (1)
• A true distributed system is location transparent
• In a Mobile Computing System (MCS),

applications are location-aware
Computational Environment (CE)

Location of the execution

Executions Units (EU)
Sequential flow of computation (e.g. a thread)
Code segment, data space, execution state

Resources
Sharable among EUs (e.g. files)

László Böszörményi Distributed Systems Mobile - 5

Code Mobility (2)

Core OS Core OS Core OS

Network OSNetwork OS Network OS

True Distributed System

Ex. Units

Core OS Core OS Core OS

Network OSNetwork OS Network OS

Comp. Env. Comp. Env. Comp. Env.

T
D
S

M
C
S

László Böszörményi Distributed Systems Mobile - 6

Strong mobility
• Code, data space and execution state of an EU migrate
• Migration

The EU is suspended, moved to the new CE and resumed

• Remote Cloning
Creates a copy of the running EU at the remote CE
The original EU is not detached

• Proactive migration or cloning
Time and destination are determined by the migrating EU

• Reactive migration or cloning
Time and destination are determined by another EU

• Strong mobility is entirely transparent to the user
• The transmitted code just resumes on the new CE
• Expensive

László Böszörményi Distributed Systems Mobile - 7

Weak mobility
• Code and data space can migrate, but not the execution

state
• The migrated code will be restarted at a given procedure

It starts in a similar way as an interrupt-handler

• Fetch or ship
Either an EU fetches the code dynamically or ships code to
execute to another CE

• Stand-alone code or code fragment
Stand-alone code instantiates a new EU
A code fragment is linked to an already running code

• Synchronous or asynchronous mobility
Synchronous: requesting EU suspends execution
Asynchronous: immediate or deferred

László Böszörményi Distributed Systems Mobile - 8

Data Space Management (1)
• Upon migration, bindings to resources must be

rearranged
• Resource = (I, V, T)

I: unique identifier
V: value
T: type
Transferable vs. Not transferable

Principally not transferable is e.g. a printer
Transferable resources maybe

– Free – can be freely migrate to another CE (e.g. a memory
block)

– Fixed –associated to a CE (e.g. a huge file)

László Böszörményi Distributed Systems Mobile - 9

Data Space Management (2)
• Resource binding to an EU may be

By identifier
The EU requires to be bound to a uniquely identified
resource that cannot be substituted
E.g. a connection to a certain database

By value
The value (content) of the resource must not change due to
the migration
The identity of the resource is not relevant
E.g. the value of a variable

By type
Bound resource must be compliant with a given type
Identity and value of the resource are not relevant
E.g. a system resource such as some network connection,
or a block of memory

László Böszörményi Distributed Systems Mobile - 10

Data Space Management (3)
• Different bindings to the same resource is

meaningful. E.g.
An EU makes a binding by identifier to its display
It makes a binding by type to the same resource
After roaming it has actually two displays:

The first one permanently associated to the original CE
The second one at the actual CE, wherever it is

• Two classes of problems in data space
management

Resource relocation
Binding reconfiguration

• Let be U a migrating EU, with binding B(↔) to
resource R

László Böszörményi Distributed Systems Mobile - 11

Data Space Management (4)
• U ↔ R by identifier

Relocation by move
Possible, if the resource is free transferable
May cause problems to other EUs with bindings to R

– The other bindings might be removed
– Or network references can be used to the new CE

Network reference
If the resource is fixed
May cause lot of network traffic

• U ↔ R by value, R is transferable
Migration by copy
A copy R’ of R is created at the new CE
B is changed on the new CE to a B’: U ↔ R’
Migration by move

Possible, but generally inefficient
If R is transferable but fixed

Network reference must be used

László Böszörményi Distributed Systems Mobile - 12

Data Space Management (5)
• U ↔ R by type

Re-binding
B is voided at the old CE
B is re-established at the new CE to a new instance R’
No data transfer is necessary
A corresponding type and a free instance must exist!

Re-binding
(network ref.)

Re-binding
(co, n.r.)

Re-binding
(co, mo, n.r.)

By type

network ref.copy
(network ref.)

copy
(mo, nw. ref.)

By value

network ref.network ref.move (nw. ref)By identifier

Not transf.Fixed transf.Free transf.Binding/ Res.

László Böszörményi Distributed Systems Mobile - 13

Data Space Management (6)

Source CE Source CE Dest . CE

R
B

y
m

ov
e

Rvoided

Source CE Source CE Dest . CE

R

B
y

m
ov

e

R
Network ref.

Source CE Source CE Dest . CE

R

N
w

. R
ef

.

Network ref.
R

M
ig

ra
tin

g
ob

j.

László Böszörményi Distributed Systems Mobile - 14

Data Space Management (7)

Source CE Source CE Dest . CE

R

B
y

co
py R R’

Source CE Source CE Dest . CE

R

R
e-

bi
nd R R’

Copy value

László Böszörményi Distributed Systems Mobile - 15

Design Paradigms (1)
• Components

Code components – represents algorithms
Resource components – data or devices
Computational components – processors

• Interactions
Events involving two or more components

• Sites
Hosts computational components
They represent the locations

• Interactions among components on the same site are
cheaper than those located on different sites

• We assume that a computation can be carried out, if the
following are all on the same site

The know-how describing the computation
The resources used during the computation
The corresponding computational component

László Böszörményi Distributed Systems Mobile - 16

Design Paradigms (2)
• The computational component A at site Sa needs a

service. There is a site Sb that is involved in the service
• Louise and Christine interact and cooperate to make a

cake (result of the computation). They need
A recipe (the know-how about the service)
The ingredients (movable resources)
An oven (a not moveable resource)
A person making the cake (computational component)

• The main design paradigms are
Client/Server
Remote Evaluation
Code on Demand
Mobile Agents

László Böszörményi Distributed Systems Mobile - 17

Client-Server

• Louise would like to have a cake
• She does not know the recipe and she has

neither ingredients nor an oven
• She calls Christine and asks her to make a cake

for her
• Christine makes the cake and delivers it to Louise
• The client component A at site Sa sends a

request to site Sb

• The server component B at site Sb performs the
service using its own resources and returns the
result to A

László Böszörményi Distributed Systems Mobile - 18

Remote Evaluation (REV)

• Louise wants to prepare the cake
• She knows the recipe but she has neither

ingredients nor an oven
• She calls Christine, tells her the recipe and asks

her to make such a cake for her
• Christine makes the cake and delivers it to Louise
• The client component A at site Sa sends the

know-how (a procedure) to site Sb

• The server component B at site Sb performs this
procedure using its own resources and returns
the result to A.

László Böszörményi Distributed Systems Mobile - 19

Code on Demand (CoD)

• Louise wants to prepare the cake
• She has both ingredients and oven, but she lacks

the recipe
• She calls Christine, and asks her to tell the recipe
• Louise makes the cake
• The client comp. A at site Sa has the necessary

resources but no procedure to process them
• It asks for the know-how at site Sb
• The server component B at site Sb delivers the

know-how
• The client component A at site Sa executes this

procedure

László Böszörményi Distributed Systems Mobile - 20

Mobile Agent (MA)
• Louise wants to prepare the cake
• She has both ingredients and the recipe, but no oven
• She prepares the cake
• She goes to Christine and completes the cake in her oven
• She eats it there or comes back with the cake
• The client component A at site Sa has the know-how
• Some of the required resources are at site Sb

• A migrates to site Sb, carrying the know-how and maybe
some intermediate results (some data) with

• A completes the computation at site Sb, using its resources
• As opposed to REV and CoD, a whole computational

component (incl. state and some resources) is moved

László Böszörményi Distributed Systems Mobile - 21

Selection of the paradigm
• There is no best paradigm nor a best technology
• Paradigm and technology are principally orthogonal
• In practice, they must conform to each other and

application
• So, we have to clearly distinguish

The application or application domain (e.g. a system to control a
remote telescope)
The design paradigm (e.g. Remote Evaluation)
The technology used (e.g. Java Aglets)

• Mobile code applications are still rare
• Performance

Mobile code is usually executed by an interpreter

László Böszörményi Distributed Systems Mobile - 22

Security issues
• If code can move easily, malicious code can this as well
• Authentication of the sender of mobile code

A server may want to authenticate the client
The client may also want to authenticate the server

• Which rights has the migrated code at the destination
• Sandbox

Dangerous calls are restricted by security control components
• Organizational approach

Allow mobile agents only to trustworthy institutions
Maybe to institutions with “good reputation”

• Manipulation detection
Does not protect again read attacks

• Blackbox
Obfuscate and invalid code before the attacker has time to crack it

László Böszörményi Distributed Systems Mobile - 23

Key benefits of mobile code (1)
• Service customization

Traditional Client/Server systems provide a fixed set of services –
that is regularly upgraded by new versions
An alternative way is a simple server with dynamically extensible
functionality provided by the client

• Deployment and maintenance
The new version of the software is installed on a server
Clients may load and dynamically link code fragments on demand
– lazy propagation

• Autonomous Components
Communication channels have often low-bandwidth and low-
reliability (e.g. wireless)
Constant connection is therefore not available (no C/S)
The user sends a single request to a stationary agent
The stationary agent makes the job, while e.g. the mobile
equipment might be switched off

László Böszörményi Distributed Systems Mobile - 24

Key benefits of mobile code (2)
• Fault tolerance

In the client/server model the global state is distributed
Mobile agents just take their local state with themselves

• Protocol Encapsulation
Traditionally communication protocols must be installed at both
peer entities
With mobile code one basic protocol suffices
Additionally, more sophisticated protocols can be downloaded with
the help of the basic protocol

• Software Engineering
Mobile agents are well-suited to make rapid prototypes of a
distributed system
Instead of a full installation, only a basic environment is installed
Prototyping code is distributed as mobile agents

László Böszörményi Distributed Systems Mobile - 25

Application Domains (1)
• Distributed Information Retrieval

Classical example for the MA paradigm
A mobile agent visits different hosts
It applies dynamic routing based on actual information
It performs search and filtering at the source of information, such
decreasing network traffic

• Active Documents
Traditionally passive documents (as e-mail or Web pages) may be
turned to be active by taking some code with
E.g. an e-mail takes the presentation software with it, thus allowing
a presentation close to the original
E.g. an application that uses graphic forms to express queries to a
remote database

The user requests the active document (CoD) and uses it as an
interface (e.g with WWW+Java applets)

László Böszörményi Distributed Systems Mobile - 26

Application Domains (2)
• Advanced Telecommunication Services

Videoconference, video on demand, telemeeting etc.
They need dynamic reconfiguration and customization
E.g. the setup, signaling and presentation services could be
dispatched to the users by a broker (REV)

• Remote Device Control and Configuration
E.g. network management
Configuration and monitoring code can be shipped (REV)

• Workflow Management
A mobile agent leads the workflow document through all stages of
its processing in a distributed environment

• Active Networks (CoD)
E.g. routers can be dynamically “reprogrammed”

• Electronic Commerce
User transactions are carried out by a mobile agent

László Böszörményi Distributed Systems Mobile - 27

Mobile Agents
• Autonomous objects with behavior, state and location

Can but need not to be “intelligent“ (in the sense of AI)

• Mobile Agent ↔ Service Agent Interaction
Client/server like
Ideally an RPC-like mechanism is provided

• Mobile Agent ↔ Mobile Agent Interaction
Peer-to-peer, rather than client/server like
Often not just request/response, general message passing

• Anonymous Agent Group Interaction
The sender often does not know the receiver

E.g. a group of agents is working on a problem
The sender knows the group but not the individual agent
Group communication can be used to this purpose
Event channels can be used as well – additional level of indirection

László Böszörményi Distributed Systems Mobile - 28

S
om

e
av

ai
la

bl
e

m
ob

ile
 a

ge
nt

 s
ys

te
m

s

freeUni WashingtonStrong migrEmeraldEmerald

freeTLAB, TorinoWeak migrJavaJade

freeUni KaiserslautStrong migrTcl, C, JavaAra

freeDartmouthStrong migrTclAgentTcl

binaryObjectSpacWeak migrJavaVoyager

binaryGeneral MagicWeak migrJavaOdyssey
freeUni StuttgartWeak migrJavaMole

binaryIBMWeak migrJavaAglets

binaryMicrosoftCODC, C++, ...?Active X

binarySunCODJavaJ. Applets

binarySunREV(push)
COD (pull)

JavaJ. Servlets
freeUni CornellREVTcl, C, ...Tacoma

Avail.SourceMobilityLanguages

László Böszörményi Distributed Systems Mobile - 29

Example MA, TicTacToe (1)
• The TicTacToe class is located statically at the client sites

It may emit askToplay calls, on user demand
• The sever site accepts and answers these calls

The 1. player must wait until a second is coming
If the 2. request arrives, the sever creates an agent and passes it
to the 1. player (Player0), via the goTo method

• The players send the agent back and forth with the actual
state of the game, via the goToPlayer method

• The agent starts running at the destination site at a
method specified by the source site

• The selection of the method depends on state of the game
(e.g. printRemis for undecided)

• If the game is over (one player wins resp. remis) they shut
down the voyager daemon

László Böszörményi Distributed Systems Mobile - 30

Example MA, TicTacToe (2)

Server (pl2)

Player0 (on pl0) Player1 (on pl1)

TTTServer TTTAgent
1) askToPlay

2) askToPlay

3) create agent

4) goTo: Moves Agent to Player 0

goToPlayer

isRemis

isWinning

printFieldArrival |
printLooser |
printRemis |

TicTacToe TicTacToe

printFieldArrival |
printLooser |
printRemis |

5) Agent plays “ping-pong ball”

László Böszörményi Distributed Systems Mobile - 31

Example MA, TicTacToe (3)
public class TTTAgent implements ITTTAgent, Serializable {

public void goTo() {
//Called by the server. It sends the agent to player0

try { // Agent’s execution there starts at printFieldArrival
Agent.of(this).moveTo(players[0], "printFieldArrival");

. . . } }

public void printFieldArrival() { . . . make own move … playTurn(); }

public void playTurn() // Checks input and the effect of it
{ . . .

if (game not ended yet) {
goToPlayer("printFieldArrival");
else if (remis) { isRemis() }
else if (winner) { isWinning() }

} }

László Böszörményi Distributed Systems Mobile - 32

Example MA, TicTacToe (4)
public void isWinning() //Print winning message

{ goToPlayer("printLooser");
Voyager.shutdown(); }

public void printLooser() //Print losing message
{ Agent.of(this).setAutonomous(false);
Voyager.shutdown(); }

public void goToPlayer(String callback) {
// Agent is moved – incl. instance variables (state of the game)!
// The actual value of callback depends on the state of the game.
// For normal case, printFieldArrival, for remis printRemis ...
try {

Agent.of(this).moveTo(players[actual++ % 2], callback);
. . . } }

László Böszörményi Distributed Systems Mobile - 33

Example CoD, Server-Defined Policy (1)

• Server communicates with the clients via RMI and
with a relational database via JDBC.

• Clients
Create expense records
Check the validity of the expense records
Send the proper reports to the server

• Server
Stores them in the database
The validation policy may change
The computation for validation the expense record can
be offloaded from the server to the client
The policy for this check can be changed without any
change in the client code

László Böszörményi Distributed Systems Mobile - 34

Example CoD, Server-Defined Policy (2)

Server

Client

Client
Client

RMI

RMI

RMI

JDBC

László Böszörményi Distributed Systems Mobile - 35

Example CoD, Server-Defined Policy (3)
• The client may use the following interface remotely:

public interface ExpenseServer extends Remote {
Policy getPolicy() throws RemoteException;
void submitReport(ExpenseReport report)

throws RemoteException, InvalidReportException;
} // ExpenseServer

• The policy interface itself is non-remote, a policy object will
be copied to the client, who may use the checkValid
method locally
public interface Policy {

void checkValid(ExpenseEntry entry)
throws PolicyViolationException;

} // Policy

László Böszörményi Distributed Systems Mobile - 36

Example CoD, Server-Defined Policy (4)

• A typical client looks like
Policy curPolicy = server.getPolicy();
// start a new expense report
// show the GUI to the user
while (user keeps adding entries) {

try {
curPolicy.checkValid(entry);
// add the entry to the expense report

} catch (PolicyViolationException e) {
// show the error to the user

} // try
} // while
server.submitReport(report);

László Böszörményi Distributed Systems Mobile - 37

Example CoD, Server-Defined Policy (5)

• Implementation of the server:
class ExpenseServerImpl

extends UnicastRemoteObject,
implements ExpenseServer {

ExpenseServerImpl() throws RemoteException { … }

public Policy getPolicy() {
return new TodaysPolicy();

}

public void submitReport(ExpenseReport report) {… }
} // ExpenseServerImpl

László Böszörményi Distributed Systems Mobile - 38

Example CoD, Server-Defined Policy (6)

• The actual policy is defined by the following class
public class TodaysPolicy implements Policy {

public void checkValid(ExpenseEntry entry)
throws PolicyViolationException

{
if (entry.dollars() < 20) {

return; // no receipt required
} else if (entry.haveReceipt() == false) {

throw new PolicyViolationException;
} // if

} // checkValid
} // TodaysPolicy

László Böszörményi Distributed Systems Mobile - 39

Example CoD, Server-Defined Policy (7)
• To change the policy

Provide a new implementation of the interface Policy
Server returns TomorrowsPolicy instead of TodaysPolicy objects

public class TomorrowsPolicy implements Policy {
public void checkValid(ExpenseEntry entry)

throws PolicyViolationException {
if (entry.isMeal() && entry.dollars() < 20) {

return; // no receipt required
} else if (entry.haveReceipt() == false) {

throw new PolicyViolationException;
} // if

} // checkValid
} // TomorrowsPolicy

László Böszörményi Distributed Systems Mobile - 40

Example REV, Compute Server (1)

• We want to delegate some computations to a
special compute (e.g. very fast) server

• Task is a non-remote interface, with a run method
that can be overridden by any computation. The
signature of run is as “generic” as possible
public interface Task { Object run(); }

Compute Server

Task Task

Client Client

Task

Result

Data
Set

• The remote server
takes a task from a
client, executes it and
returns the result.

László Böszörményi Distributed Systems Mobile - 41

Example REV, Compute Server (2)
public interface ComputeServer extends Remote {

Object compute(Task task) throws RemoteException;
} // ComputeServer
public class ComputeServerImpl

extends UnicastRemoteObject, implements ComputeServer {
public ComputeServerImpl() throws RemoteException { . . . }

public Object compute(Task task) { return task.run(); } // comp.+result

public static void main(String[] args) throws Exception {
System.setSecurityManager(new RMISecurityManager());
ComputeServerImpl server = new ComputeServerImpl();
Naming.rebind("ComputeServer", server);
System.out.println("Ready to receive tasks");
return;

} // main
} // ComputeServerImp

	Distributed Systems
	Motivation for mobile computation (1)
	Motivation for mobile computation (2)
	Code Mobility (1)
	Code Mobility (2)
	Strong mobility
	Weak mobility
	Data Space Management (1)
	Data Space Management (2)
	Data Space Management (3)
	Data Space Management (4)
	Data Space Management (5)
	Data Space Management (6)
	Data Space Management (7)
	Design Paradigms (1)
	Design Paradigms (2)
	Client-Server
	Remote Evaluation (REV)
	Code on Demand (CoD)
	Mobile Agent (MA)
	Selection of the paradigm
	Security issues
	Key benefits of mobile code (1)
	Key benefits of mobile code (2)
	Application Domains (1)
	Application Domains (2)
	Mobile Agents
	Some available mobile agent systems
	Example MA, TicTacToe (1)
	Example MA, TicTacToe (2)
	Example MA, TicTacToe (3)
	Example MA, TicTacToe (4)
	Example CoD, Server-Defined Policy (1)
	Example CoD, Server-Defined Policy (2)
	Example CoD, Server-Defined Policy (3)
	Example CoD, Server-Defined Policy (4)
	Example CoD, Server-Defined Policy (5)
	Example CoD, Server-Defined Policy (6)
	Example CoD, Server-Defined Policy (7)
	Example REV, Compute Server (1)
	Example REV, Compute Server (2)

