
László Böszörményi Distributed Systems Replication - 1

Distributed Systems

7. Replication and Consistency Models



László Böszörményi Distributed Systems Replication - 2

Moving Data – What?
• Migration

A data block is moved from one place to the other
Advantage: enhanced access can be provided
Disadvantage: Block-bouncing

Similar to thrashing
Two (or more) processors play ping-pong with a block
Can be avoided by replication

• Replication
A copy of data is moved form one place to the other
Replication is 

More general
More important
More difficult



László Böszörményi Distributed Systems Replication - 3

Moving Data – Who, When, How?
• Who initiates the data movement?

The owner processor: Push
E.g. replicated file server

The user processor: Pull
E.g. POP3-Mail client

• When is data movement initiated?
On demand: Reactive

E.g. Web cache
In advance: Proactive

E.g. replicated database server

• How is consistency guaranteed?
1. Data-Centric Consistency Models 
2. Client-Centric Consistency Models 



László Böszörményi Distributed Systems Replication - 4

Replication
• Reliability

Several copies of data make the loss of one harmless
• Performance and Scalability

A single server could become a bottleneck; Several 
copies make the system scalable
Remote data can be placed near to the client

• Disadvantages
The content of instances of the same data must be 
kept identical: data must remain consistent
The price for consistency management may be higher 
than the gain: If more write than read access
Consistency management may destroy the enhanced 
scalability features



László Böszörményi Distributed Systems Replication - 5

1. Data-Centric Consistency Models (1)
• Relevant are: competing accesses
• A read operation may return a stale value
• Write operations maybe observed in different order
• Coherence is the most strict requirement for consistency

Coherence is related to data items in isolation
Consistency is related also to different data items
Often used just as synonyms

• Ideal definition of coherence
A read always returns the value produced by the latest write
Which is the latest? – no global time

• We have to choose a consistency model
The programmers must know and accept it

• Concurrency vs. ease of programming
No concurrency at all: no programming difficulty
Full concurrency: all difficulties at the programmer



László Böszörményi Distributed Systems Replication - 6

Data-Centric Consistency Models (2)
• Models grouped in two categories

1. General access models (based on general read/write 
accesses)

2. Synchronization Access Consistency (based on 
synch/acquire/release accesses)

• Synchronization access
synch(S)
acquire(S); release(S)

• Notation
R(X)v: A read operation on X results in value v
W(X)v: A write operation assigns the value v to X
Pi: Process(or) i
Variables are initialized to 0



László Böszörményi Distributed Systems Replication - 7

1.1. General Access Consistency Models

• Atomic (strict) Consistency
• All reads and writes appear as they were executed 

atomically and sequentially
Like a centralized shared memory system
E.g. X:= 1; X:= 2; print(X); outputs always 2

• Cannot be implemented reasonably in a distr. sys. 
We ought to serialize every resource access
The propagation of values between nodes takes time 
(e.g. the assignment X:= 2 could happen 1 ns later)

R(X)1P2

W(X)1P1

R(X)1R(X)0P2

W(X)1P1strict Non-strict



László Böszörményi Distributed Systems Replication - 8

Sequential Consistency - Lamport (1)

1. The result of any execution is the same as if the 
operations of all the processors were executed in 
some sequential order and 

2. The operations of any process are observed in 
the order, as stated in the program code

• Operations may intertwine, in the same way for all
• Costs are high and have a theoretical limit. 
• If 

Read-time=r, Write-time=w, Min-pack.-transfer-time=t
r + w ≥ t always holds
Faster reads make writes slower and the way around



László Böszörményi Distributed Systems Replication - 9

Sequential Consistency - Lamport (2)

R(X)1R(X)2P4
R(X)1R(X)2P3

W(X)2P2
W(X)1P1

R(X)2R(X)1P4

R(X)1R(X)2P3

W(X)2P2

W(X)1P1

sequential

Non-sequential



László Böszörményi Distributed Systems Replication - 10

Sequential Consistency - Lamport (3)
• Sequential Consistency is similar to the serialization 

problem in transactions
However, with much finer, single read/write level granularity

a:= 1;
print(b, c)

b:= 1;
print(a, c)

c:= 1;
print(a, b)

a:= 1;
print(b, c);
b:= 1;
print(a, c); 
c:= 1;
print(a, b);

00 10 11

b:= 1;
a:= 1;
c:= 1;
print(b, c);
print(a, c); 
print(a, b);

11 11 11

print(b, c);
print(a, c); 
print(a, b); 
b:= 1;
a:= 1;
c:= 1;

00 00 00

ValidValid Invalid

6! = 720 
different, 
90 valid
orders

26 patterns



László Böszörményi Distributed Systems Replication - 11

Causal Consistency
• Relaxation of sequential consistency

Only causally related writes must be observed in the same order

• This allows disjoint writes to be overlapped
• Example (causally consistent, but not sequentially)

W(X)1 and W(X)2 are causally related
P2 read X before writing it, it may rely on its previous value

W(X)2 and W(X)3 are causally not related
They can be seen by P3 and P3 in different order

R(X)3R(X)2P4

R(X)2R(X)3P3

W(X)2R(X) 1P2

W(X)3W(X)1P1



László Böszörményi Distributed Systems Replication - 12

Processor (FIFO) Consistency

• Only writes from the same processor are 
observed in the same order as issued

• Easy to implement, difficult to use 
See client-centric consistency models

• Example (processor consistent, but not causally)

R(X)1  RX(2)    RX(3)      P4

R(X)2  RX(1)    RX(3)P3

W(X)3W(X)2R(X)1P2

W(X)1P1



László Böszörményi Distributed Systems Replication - 13

Slow Memory Consistency
• Only writes to the same location issued by the same 

processor are observed in the same order
• Writes immediately visible locally and propagated slowly
• A write operation is actually a non-blocking send
• Must be used carefully, efficient even with slow connections
• Example

Slow memory consistent, but not processor consistent
W(Y)2 can be issued immediately after W(X)1
W(X)3 must wait, until W(X)1 is completed

same location
P2 may observe R(Y)2 before R(X)1 and R(X)3

R(X)3R(X)1 R(Y)2P2

W(X)3W(Y)2W(X)1P1



László Böszörményi Distributed Systems Replication - 14

1.2. Synchronization Access Consistency
• It suffices to guarantee consistency at 

synchronization points
• Two categories of memory access

Synchronization access
Read/write operations to synchronization 
(S-)variables

General competing read/write access
For all other shared variables



László Böszörményi Distributed Systems Replication - 15

Weak Consistency
• Access to S-variables is sequentially consistent
• All previous read/write must have been completed before 

an access to an S-variable is issued
• Any previous S-access must have been completed before 

any further read/write access

R(X)2SP3
R(X)2SP2

SW(X)2W(X)1P1
SR(X)1R(X)2P3
SR(X)2R(X)1P2

SW(X)2W(X)1P1

R(X)1SP2
SW(X)2W(X)1P1

valid

invalid 

S stands for
synchronization



László Böszörményi Distributed Systems Replication - 16

Release Consistency
• In a critical section access is limited to 1 process anyway
• It suffices to make the memory consistent at leaving the CS 
• We are able to distinct the start and the end of a CS
• A CS guards specific shared, protected variables
• Acquire (enters the critical region, via a lock L)

All local copies of the protected variables are consistent
Before release, modifications can be done locally

• Release (exits the critical region, defined by lock L)
Modified protected variables are broadcasted to all

• Acquire, release must be processor (not seq.) consistent

R(X)1P3
r(L)R(X)2a(L)P2

r(L)W(X)2W(X)1a(L)P1



László Böszörményi Distributed Systems Replication - 17

Lazy Release and Entry  Consistency

• Lazy Release Consistency
Updating is postponed until the next acquire
If the same process requires the same lock: no action 
is necessary
Advantageous for acquire-release pairs in a loop

• Entry Consistency
Each shared variable is associated with an S-variable

Even elements of an array have a different S-variable

Shared data pertaining to a critical region are made 
consistent when a critical region is entered
The granularity of parallelism is much higher – not for 
free



László Böszörményi Distributed Systems Replication - 18

Summary of Data-Centric Consistency

Updating is postponed until the next acquireLazy release
Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a 
synchronization is done

Weak
DescriptionConsistency

All processes see writes from each other in the order they were 
used.  Writes from different processes maybe seen in diff. orderFIFO

All processes see causally-related shared accesses in the same 
order.Causal

All processes see all shared accesses in the same order.  
Accesses are not ordered in timeSequential

Absolute time ordering of all shared accesses mattersStrict
DescriptionConsistency



László Böszörményi Distributed Systems Replication - 19

2. Client-Centric Consistency Models
• Often simultaneous updates

Do not happen or are easy to resolve
In case of databases most users only read
In a DNS update is made only by administrators
In the WWW most pages are updated only by the 
owner

• Eventual Consistency
Clients may get copies that are not the newest

E.g. Web Caches often return some older version

If for a certain object for a longer time no updates 
take place then at the end – eventually – all replicas 
become consistent



László Böszörményi Distributed Systems Replication - 20

Eventual Consistency (1)

• Problems arise if 
A client accesses different replicas
E.g. the client moves to another place, where another 
replica is seen
The client does not see her own changes!

• Client-centric consistency guarantees that the 
same client sees always consistent data

• Notation
xi[t]: version of data item x at local copy Li at time t
Maybe the result of a series of writes at Li: WS (xi[t])
WS (xi[t1]; xj[t2])

If operations of a series WS (xi[t]) are also executed at a 
later time t2 on a local copy of x at Lj



László Böszörményi Distributed Systems Replication - 21

Eventual Consistency (2)



László Böszörményi Distributed Systems Replication - 22

Monotonic Read Consistency (1)

• If a process reads the value of item x, any 
subsequent read returns the same or a more 
recent value

• E. g. distributed e-mail database
Mails can be inserted at different locations
Changes are propagated “lazy”, on demand
A user reads her mail in Klagenfurt

Assume that she does not change the mailbox, only reads 
the mails

She flies to New York and opens her mailbox
Monotonic read consistency guarantees that she 
sees all mails in her mailbox, she saw in Klagenfurt



László Böszörményi Distributed Systems Replication - 23

Monotonic Read Consistency (2)

R(X2)WS(X1; X2)L2

R(X1)WS(X1)L1

WS(X1; X2)R(X2)WS(X2)L2

R(X1)WS(X1)L1

Mails have been propagated from L1

Mails not propagated from L1: no mon. read cons.



László Böszörményi Distributed Systems Replication - 24

Monotonic Write Consistency (1)

• A write by a process on an item x is completed 
before any successive write on x by the same 
process

A write is executed only if the result of a previous 
write has been propagated to all replicas
Similar to data-centric FIFO consistency
The difference is that here we are interested only on 1 
process

• An update of an x may be only a partial change
E.g. updating (parts) of a software library
Monotonic write guarantees that previous updates 
have been already done



László Böszörményi Distributed Systems Replication - 25

Monotonic Write Consistency (2)

W(X2)W(X1)L2

W(X1)L1

W(X2)L2

W(X1)L1

X1 has been propagated before W(X2)

X1 not propagated before W(X2): no mon.wr. cons



László Böszörményi Distributed Systems Replication - 26

Read Your Writes Consistency (1)

• The effect of a write by a process on an item x will 
be seen by any successive read on x by the same 
process

A write is always completed before a successive read 
of the same process, regardless the location

• Examples for missing this consistency
We change a web page but we still get the old 
version from the cache – we have to push reload
We change the password but the propagation takes 
time



László Böszörményi Distributed Systems Replication - 27

Read Your Writes Consistency (2)

Read-your-writes consistency

R(X2)WS(X1; X2)L2

W(X1)L1

R(X2)WS(X2)L2

W(X1)L1

No read-your-writes consistency



László Böszörményi Distributed Systems Replication - 28

Write Follows Reads Consistency (1)

• A write by a process on x following a previous 
read of the same process, is guaranteed to take 
place on the same or a more recent value of x.

Any successive write on an item x will be performed 
on a copy of x that is up-to-date with the value most 
recently read by the same process

• Examples for missing this consistency
In a network discussion group we get the answer to 
some articles we have not read yet



László Böszörményi Distributed Systems Replication - 29

Write Follows Reads Consistency Consistency (2)

Write-follows-Reads consistency

No Write-follows-Reads consistency

W(X2)WS(X1; X2)L2

R(X1)WS(X1)L1

W(X2)WS(X2)L2

R(X1)WS(X1)L1



László Böszörményi Distributed Systems Replication - 30

Implementing Client-centric Consistency (1)

• Each write operation is assigned a globally 
unique identifier

Such an identifier (id) can be generated locally
E.g. based on Lamport time stamps, including processor 
numbers

The id is assigned by the server that initiates the 
operation

• For each client 2 sets of write identifiers are 
managed

The read set contains the write ids relevant for reads
The write set contains the ids of the writes performed 
by the client



László Böszörményi Distributed Systems Replication - 31

Implementing Client-centric Consistency (2)
• Implementing monotonic-read consistency

When a client performs a read at a server, this gets the client’s 
read-set to check whether all writes have taken place locally
If not, it contacts the other servers and gets and replays the 
missing writes – with help of corresponding log infos
Alternatively, it forwards the read to an up-to-date server
After performing the read, the read-set is updated
The algorithm requires that 

The write-id contains the server id who made the write
The order of the write operations is also recorded (Lamport TS)

• Monotonic-write, read your writes and write follows reads
MW: The server gets the write-set before write
RYW: The server gets the write-set before read
WFR: The server gets the read-set before write



László Böszörményi Distributed Systems Replication - 32

Improved Implementation of Client-centric Cons. (1)

• The read and write sets may become huge
The naïve algorithm described above becomes slow

• Sessions
The read and write operations are grouped into sessions
E.g. each application starts a new session
The sets are cleared after a session

• Representation of the id sets by vector timestamps
The first write at a server gets an write id WID and a timestamp 
TS(WID)
Further writes get only a new timestamp
Each server Si maintains a vector timestamp RCVD(i), where 
RCVD(i)[j] = TS of the latest write initiated at Sj and seen 
(received and processed) by Si
After a read or a write, a server returns beside the result the 
timestamp
Read and write sets are represented by vector timestamps



László Böszörményi Distributed Systems Replication - 33

Improved Implementation of Client-centric Cons. (2)

For such a set A, VT(A)[i] = max. timestamp of all operations in A 
that were initiated at Si

This is more efficient than storing the entire set
The union of two sets A and B is represented as 
VT(A+B); | VT(A+B)[i] = max{VT(A)[i], VT(B)[i]}
A is contained in B, iff VT(A)[i] ≤ VT(B)[i] for all i
When a server passes its current timestamp to the client, the client 
adjusts the vector timestamps of its own r-w sets

• Example for monotonic read
The client gets RCVD(i) from Si

Vector timestamp of the client’s read set: VT(Rset)
∀ j: VT(Rset)[j] := max {VT(Rset)[j], VT(RCVD)[j]}
VT(Rset) now reflects the latest writes the client has seen
It will sent along with the next read, possibly to a different server Sj



László Böszörményi Distributed Systems Replication - 34

Implementation of Data-Centric Replication

1. How should be the replicas distributed?
2. How should be they kept consistent?

• Replica Placement, three main types
1. Permanent replicas
2. Server-initiated replicas
3. Client-initiated replicas



László Böszörményi Distributed Systems Replication - 35

Permanent replicas

• Initial set of replicas
• Typically a small set, set up statically
• Server group on a local network

Important data (e.g. Web pages) are replicated 
“manually”
Requests are served by one of them – e.g. round robin

• Mirroring
Replication of sites at locations of great geographical 
distance
Requests are served by the nearest replica

E.g. mirroring French data in Berlin and Vienna



László Böszörményi Distributed Systems Replication - 36

Server-initiated replicas (1)
• If the server is overloaded, it pushes replicas to places 

where the requests come from – push cache
Especially popular for Web hosting services (high read/write ratio)

• Definitions and a simplified algorithm
Requests for file F from clients C1 and C2 sharing the same 
“closest” server node P are counted together at server node Q:
cntQ(P, F) (as if they would come from P)
Total number of requests for a file F: req(F)
Replication threshold on server S for file F: rep(S, F)
Deletion threshold: del(S, F) (del(S, F) <  rep(S, F))
If req(F) > rep(S, F): try to replicate
If del(S, F) < req(F) < rep(S, F):

Maybe try to migrate: Replication is unnecessary but finding a better 
place can provide better response time



László Böszörményi Distributed Systems Replication - 37

Server-initiated replicas (2)
Replica placement at server node Q

If req(F) < del(S, F): delete F, unless this is the last
If  req(F) > rep(Q, F) & cntQ(P, F) > req(F)/2: 
ask P to take over a copy
If P is too busy: check further nodes, starting with the farthest

C1

C2

P

QHas a copy of F

No copy of F yet



László Böszörményi Distributed Systems Replication - 38

Client-initiated replicas

• Data required by the client are cached 
At the client or 
In a proxy

Many clients on the same LAN can share the same data
Useful for Web pages, not so much for usual files

Consistency – see later
• Update propagation

What to propagate?
How to propagate?



László Böszörményi Distributed Systems Replication - 39

What to propagate?
• Propagate only a notification (invalidation protocol)

The replicated data are marked as invalid
Before the next use, the new version must be loaded
Useful if read/write ratio is low

Don’t update large data items, maybe without a reader

• Transfer new data to all replica places
Useful if read/write ratio is high
Partial update 

We re-send only a certain part of the data
Differential update

We re-send only a log of the changes

• Active replication
Propagate only the update operations
We let the replica holders to “replay” the changes
Needs less bandwidth, for the price of CPU power



László Böszörményi Distributed Systems Replication - 40

How to propagate? (1)

• Push-based (or server-based) protocols
The replicas are pushed by the server, without a 
request
Keeps the replicas always identical

Needs to manage a list of clients

Useful, when read/write ratio is high
Many clients read the same cached data
Can be combined well with multicast
Updates can be aggregated and sent together



László Böszörményi Distributed Systems Replication - 41

How to propagate? (2)

• Pull-based (or client-based) protocols
On requests, cache polls the server for modifications
If no modification, send cached data, otherwise reload
Useful, when read/write ratio is relatively low

E.g. with non-shared cache at the client

Disadv.: the response time is high if reload is needed

Fetch timeImmediate (or fetch time)Response time
Poll and maybe fetchUpdate (maybe fetch later)Messages sent
NoneList of client replicasState at server 

Pull-basedPush-basedIssue



László Böszörményi Distributed Systems Replication - 42

How to propagate? (3)

• Lease-based protocols
A combination of push and pull
Lease: The server must push changes for a specified 
expiration time
After this time the client has to pull or take a new lease
Age-based lease

Data, possibly unchanged for long, get a long-lasting lease

State-space based lease
If the state-space at the server becomes large, it sinks the 
expiration times. It tends to a stateless mode (exp. time = 0)

Renewal-frequency based lease
Often asked data get long-lasting lease to improve cache hit 
rate (data are refreshed only where they are popular)



László Böszörményi Distributed Systems Replication - 43

“Epidemic” protocols (1)
• Spreads updates with minimal network load
• Especially useful for eventually consistent data
• Holder of a new update that should be spread: infective
• Not yet updated (“infected”): susceptible
• Server not willing or able to spread its update: removed
• Anti-entropy propagation

Entropy: A measure of the loss of information
Server A picks B randomly and exchange updates. 3 ways:
A only pushes its updates to B

Bad, if many serves are infective: they cannot push each other
A only pulls new updates from B

Good, if many servers are already infective
A and B send updates to each other
Infects everyone in O(log n) effort for uniformly chosen sites



László Böszörményi Distributed Systems Replication - 44

“Epidemic” protocols (2)

Push and Pull Propagation



László Böszörményi Distributed Systems Replication - 45

“Epidemic” protocols (3)

• Rumor spreading or gossiping
If a server P contacts Q who already “knows” the new 
value of x then P loses interest in spreading the 
update, with probability 1/k

It makes no “fun” to spread a gossip, many people know 
already

Gossiping is a rapid way to spread updates
Cannot guarantee that all s servers will be updated

Remaining-susceptible rs = e-(k + 1)(1 - s)

If k = 3, rs < 0,02, i.e. less than 2%
Gossiping must be combined e.g. with anti-entropy to finish 
the job



László Böszörményi Distributed Systems Replication - 46

“Epidemic” protocols (4)

• Removing data
If we simply delete data then this will not be propagated
A server might get old copies and interpret them as 
new data
Deleted data must be recorded as normal data, but 
marked as deleted
Spreading of “death certificates”
After a certain time such records may be deleted finally



László Böszörményi Distributed Systems Replication - 47

Consistency Protocols
• Implement consistency models
• Most important models are globally realized

Sequential consistency
Weak consistency with synchronization variables
Atomic transactions

1. Primary-Based Protocols
Each data item x has a primary server which is 
responsible for coordinating its changes

2. Replicated-Write Protocols
Writes can be carried out on multiple replicas



László Böszörményi Distributed Systems Replication - 48

Remote-Write Protocols (1)

• All read and write 
operations on x at the 
same server

Client/server systems
Sequential 
consistency is trivial
No replication, no fault 
tolerance

R4

C1

W1
W2

W3

W4

C2

R1
R2

R3

W1: Write request R1: Read request
W2: Forward request server R2: Forward req. to serv.
W3: Ack. Write compl. R3: Return response
W4: Ack. Write compl. R4: Return response

R/W Server



László Böszörményi Distributed Systems Replication - 49

Remote-Write Protocols (2)

• Primary-backup protocols
Fault tolerance is enhanced by backup copies
Reads can be served locally
All writes are propagated to all backups
A write is acknowledged only after this propagation –
Actually a blocking operation!
Sequential consistency is straightforward

The primary can order the writes
Performance of writes maybe poor

Long waiting time for propagation
Non-blocking primary-backup

As soon as the primary is updated the write is acknowledged
Fast, but fault tolerance is difficult



László Böszörményi Distributed Systems Replication - 50

Remote-Write Protocols (3)

W1: Write request W5: Ack. Write compl.
W2: Forward request to primary
W3: Tell backups to update R1, R3: Read request
W4: Acknowledge update R2, R4: Response to read

R4

C1

W1

W4
W3

C2

R1

W4
W3 W3

W4W2

Primary (for x)

Backup

W5

C3

R3R2

Backup



László Böszörményi Distributed Systems Replication - 51

Local-Write Protocols (1)

• Full migration (used mostly in DSM)
There is one single copy of each x
At a write request x is sent to the requester
Hard to know where is the actual instance

Broadcasting can be used on a LAN
Forwarding pointers may point to the proper place

Block-bouncing danger
• The primary copy migrates to the requester

Multiple, successive writes can be done locally
A non-blocking protocol must update all replicas
The primary may even go disconnected (mobile device) 
and complete updating
Other sites may complete reads, but not writes



László Böszörményi Distributed Systems Replication - 52

Local-Write Protocols (2)

W3

C1

R1

C2

W1
W5

W4

Old primary Backup

R2
W5

W4

W2W4
W5

New primary

W1: Write request W5: Ack. update
W2: Move x to new primary
W3: Ack. write compl. R1: Read request
W4: Tell backups update R2: Response to read



László Böszörményi Distributed Systems Replication - 53

Active Replication
• Not the data but the operations are propagated
• The order of the operations must be the same everywhere
• A totally ordered multicast is necessary. Implementation by

Sequencer
All operations are sent first to a sequencer
The sequencer assigns unique sequence numbers
Does not scale well 
Improvement by combination with Lamport time stamps

Replicated invocations must be prohibited
Operation A is propagated to the replicas R1, R2, R3
Operation A calls an operation m on an object Q
Q would receive 3 calls instead of 1 (1 from each replica)
Responses can be replicated in a similar way
One of the replicas must play the role of a coordinator in order to 
suppress unnecessary calls and responses



László Böszörményi Distributed Systems Replication - 54

The problem of replicated invocations



László Böszörményi Distributed Systems Replication - 55

A solution for replicated invocations

Forwarding requests Returning replies



László Böszörményi Distributed Systems Replication - 56

Quorum-Based Protocols (1)

• Based on voting
• Read quorum (NR) 

Num. of servers must agree on version num. for a read
• Write quorum (NW) 

Num. of servers must agree on version num. for a write
• If N is the total number of replicas, 

NR and NW must fulfill:
NR + NW  > N

Prevents read-write conflicts
NW  > N/2

Prevents write-write conflicts
Examples (N = 12)



László Böszörményi Distributed Systems Replication - 57

Quorum-Based Protocols (1)

 
A B C D
E F G H
 I J K L

 
      NW  = 10   NR = 3   (read sees last update) 

A B C D
E F G H
 I J K L



László Böszörményi Distributed Systems Replication - 58

Quorum-Based Protocols (2)

 
 

A B C D
E F G H
 I J K L

 
      NW  = 12 NR = 1  (ROWA: read one, write all) 

A B C D
E F G H
 I J K L



László Böszörményi Distributed Systems Replication - 59

Quorum-Based Protocols (3)

A B C D
E F G H
 I J K L

 
      NW  = 6 NR = 7  (bad choice: NW  > N/2 not true) 
      May cause write-write conflicts 

 
 

A B C D
E F G H
 I J K L 


	Distributed Systems
	Moving Data – What?
	Moving Data – Who, When, How?
	Replication
	1. Data-Centric Consistency Models (1) 
	Data-Centric Consistency Models (2) 
	1.1. General Access Consistency Models
	Sequential Consistency - Lamport (1)
	Sequential Consistency - Lamport (2)
	Sequential Consistency - Lamport (3)
	Causal Consistency 
	Processor (FIFO) Consistency
	Slow Memory Consistency
	1.2. Synchronization Access Consistency 
	Weak Consistency
	Release Consistency 
	Lazy Release and Entry  Consistency 
	Summary of Data-Centric Consistency
	2. Client-Centric Consistency Models 
	Eventual Consistency (1)
	Eventual Consistency (2)
	Monotonic Read Consistency (1) 
	Monotonic Read Consistency (2) 
	Monotonic Write Consistency (1) 
	Monotonic Write Consistency (2) 
	Read Your Writes Consistency (1) 
	Read Your Writes Consistency (2) 
	Write Follows Reads Consistency (1) 
	Write Follows Reads Consistency Consistency (2)
	Implementing Client-centric Consistency (1)
	Implementing Client-centric Consistency (2)
	Improved Implementation of Client-centric Cons. (1)
	Improved Implementation of Client-centric Cons. (2)
	Implementation of Data-Centric Replication 
	Permanent replicas
	Server-initiated replicas (1) 
	Server-initiated replicas (2) 
	Client-initiated replicas
	What to propagate?
	How to propagate? (1)
	How to propagate? (2)
	How to propagate? (3)
	“Epidemic” protocols (1)
	“Epidemic” protocols (2)
	“Epidemic” protocols (3)
	“Epidemic” protocols (4)
	Consistency Protocols 
	Remote-Write Protocols (1)
	Remote-Write Protocols (2)
	Remote-Write Protocols (3)
	Local-Write Protocols (1)
	Local-Write Protocols (2)
	Active Replication
	The problem of replicated invocations
	A solution for replicated invocations
	Quorum-Based Protocols (1)
	Quorum-Based Protocols (1)
	Quorum-Based Protocols (2)
	Quorum-Based Protocols (3)

