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Distributed Systems

4. Synchronization 
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Causality (1)
• Distributed systems lack of a global state, their nature is 

asynchronous

• Non-instantaneous communication
Different observers may observe the same event at different 
times and different events at the same time
Reason: propagation delay, contention for network resources, 
retransmission (due to lost messages) etc.

• Relativistic effects
Synchronizing by time is unreliable
Reason: clocks tend to drift apart

• Interruptions
Even if two computers receive a message at the same time, 
their reaction may need different time
Reason: Complex computer systems with unpredictable 
execution times due to CPU contention, interrupts, page faults, 
cache misses, garbage collection etc.
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Causality (2)
• Distributed systems are causal

The cause precedes the effect
Traveling backward in time is excluded

• Physical and logical clocks
Synchronization of the physical (wall) clocks is 
possible, but hard and often not necessary
A logical clock cares only for the proper order

• Basic notions for logical clocks
Suppose the distributed system is composed of the 
set of processors P = {p1, . . ., pm}. 
The set of all events of a distributed system is E, the 
set of all events of processor p is Ep.
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Universal Coordinated Time (UTC)

• Abbreviation from French: 
UTC – not UCT

• International Atomic Time 
(TAI): cesium clock 

• UTC is based on a 
combination of TAI and 
mean solar second

• Radio and satellite servers 
provide periodically UTC

• Electricity 50 (Eu.) resp. 60 
Hz (USA) is based on UTC

Frequency raised to 51/61 
at leap seconds

• Clock time (C) and UTC 
may differ, as clocks tick at 
different rates (drift)

1-p ≤ dC/dt ≤ 1+p
p: max. drift rate
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Cristian's Algorithm for Physical Clock Synch.
• Getting the current time from a passive time server

If CUTC > Tclient ⇒Tclient := CUTC  (or speed up, if the difference is big)
If CUTC < Tclient ⇒ the client’s clock slows down (time must go forward)
The answer of the server costs time

The difference of two time values are still quite accurate
The average of a series of queries should be taken (disregard extreme values)
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Berkeley Algorithm for Physical Clock Synch.

a) The active time daemon (TS) asks all the other machines for their clock
b) The machines answer
c) The TS computes average and tells everyone how to adjust their clock
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Happens-before (1)
• If event e1 occurred before e2, we write:

e1 < e2 (or e1 → e2)
We say: e1 happened before e2

• If this is based on information X, we write: 
e1 <X e2

• Events of the same processor are totally ordered
If e1 ∈ Ep and e2 ∈ Ep: either e1 <p e2 or e2 <p e1

• Sending of a message happens always before 
receiving it

If es is the sending of message m and er the receipt of 
m, then es <m er
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Happens-before (2)
• Happened-before relation: The transitive closure 

of the processor and message passing orderings:
If e1 <p e2 then e1 <H e2

If e1 <m e2 then e1 <H e2

If e1 <H e2 and e2 <H e3 then e1 <H e3

• Causation
If e1 happened before e2 than e1 might have caused e2

• The happened-before relation is a partial order :
It is possible to have two events e1 and e2 that 
neither e1 <H e2 nor e2 <H e1

Such events are called concurrent (or disjoint)
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Example Happens-before

p1 p2 p3

e1

e4

e7

e2

e5

e3

e6

e8

time

e1 <p1 e4 <p1 e7 (∀ events on same proc.)
e2 <p2 e3 <p2 e5  (∀ events on same proc.)
…
e1 <m e3 (send and receipt of same mess.)
e5 <m e8 (send and receipt of same mess.)
…
e1 <H e3 <H e5 <H e8, etc. ⇒ e1 <H e8 

(transitivity)

{e1, e6}, {e1 , e2} {e2, e6}, are concurrent

• Happens-before DAG (H-DAG)
The vertices are the events in E
The directed edge (e1, e2) is in the edge 
set, EH iff (if and only if) 
e1 <p e2 or e1 <m e2.
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Lamport Time Stamps (1)

• A logical global clock assigns a total order over all events
• The happened-before relation defines a partial order

Theoretically we can just apply topological sort on <H

• Leslie Lamport’s algorithm 
creates total order “on the fly”
entirely distributed
fault tolerant
efficient
orders concurrent events arbitrarily

Each event e has a timestamp e.TS
Each processor maintains a local timestamp my_TS
Processor address (or number) is used for the lowest order bits of 
the timestamp (to avoid identical stamps in different processors)
Each event and each message get a timestamp assigned as:
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Lamport Time Stamps (2)

• A logical global clock assigns a total order over all 
events

my_TS = 0; // inital assignment
On event e, 

if e is the receipt of message m,
my_TS = max(m.TS, my_TS) 

//local stamp “jumps” forward, if m is in the “future”
my_TS++
e.TS = my_TS
if e is the sending of message m,

m.TS = my_TS
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Example Lamport Time Stamps

p1 p2 p3

1.1 e1

2.1 e4

3.1 e7

1.2 e2

3.2 e5

2.2 e3

1.3 e6

4.3 e8

e8 must be labeled 4.3,
(not 2.3!),  because 
it follows event 3.2 

5.3 e 9

6.1 e10

Total order on all events:
1.1, 1.2, 1.3, ↔ 2.1, 2.2, 
3.1, 3.2, 4.3, 5.3, 6.1...

Events along happens 
before build a sequence, e.g.
1.1, 2.2, 3.2, 4.3, 5.3, 6.1...
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Time Stamp Implementation (1)
import java.io.*;
public class TimeStamp implements Serializable {

// A time stamp object cannot be changed
private final int time;
private final int host;

TimeStamp (int timeStamp, int hostNum) {
time = timeStamp; host = hostNum; }

public int getTime() { return time; }
public int getHost() { return host; }
public String toString () { return time + "." + host; }

} // TimeStamp
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Time Stamp Implementation (2)
import java.util.*;
public class Lamport { 

static private int time = new Random().nextInt(100);
static private int host = MyHost.NameToNum(MyHost.Name());
static private TimeStamp lastReceived = new TimeStamp(time, host);

public static synchronized void Adapt (TimeStamp received) {
lastReceived = received;
if (time < lastReceived.getTime()) 

time = lastReceived.getTime();
} // Adapt

public static synchronized TimeStamp Next () {
return new TimeStamp(++time, host);

} // Next
} // Lamport
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Time Stamp Producer
class Producer extends Thread {

private MessagePassing buf = null;
private String target; private boolean stopped = false;
Producer (MessagePassing sendBuf, String targetName)  {

buf = sendBuf; target = targetName;} 
public void stopp () {stopped = true;}
public void run ()  { // produces and sends time stamps in a loop

while (!stopped)  {
TimeStamp nextTS = Lamport.Next(); // Sets a time stamp
System.out.println("sends= " +  nextTS.toString()); 
try { buf.send(nextTS); } 
catch (java.rmi.RemoteException e)  

{System.out.println("send-error" + e); }
try { Thread.sleep(1000);}
catch (java.lang.InterruptedException e) { }

} } } // while, run, Producer
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Time Stamp Consumer
class Consumer extends Thread {

private MessagePassing buf = null; 
private boolean stopped = false;
Consumer (MessagePassing recBuf)  {buf = recBuf;}
public void stopp () {stopped = true;}
public void run ()  { // receives time stamps in a loop

while (!stopped)  {
TimeStamp receivedTS = null;
try { receivedTS = (TimeStamp) buf.receive();

Lamport.Adapt(receivedTS);
System.out.println("rcvd= "+receivedTS.toString());

}  catch (java.rmi.RemoteException e) 
{System.out.println("receive-error" + e); }

try { Thread.sleep(1000);}
catch (java.lang.InterruptedException e) { }

} } } // while, run, Consumer
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Time Stamp Execution
Connection established to 
rmi://lpc1/MessagePassing
Connection established to 
rmi://lpc2/MessagePassing
Connection established to 
rmi://lpc3/MessagePassing
sends = 47.1
sends = 48.1
sends = 49.1
sends = 50.1
received = 74.2
sends = 75.1
received = 75.2
sends = 76.1
received = 76.2
sends = 77.1
received = 78.3
received = 77.2
received = 80.3
received = 82.3
received = 85.3
sends = 86.1
received = 79.2
sends = 87.1
received = 87.3
received = 88.3
sends = 89.1

Connection established to 
rmi://lpc2/MessagePassing
Connection established to 
rmi://lpc3/MessagePassing
Connection established to 
rmi://lpc1/MessagePassing
sends = 73.2
sends = 74.2
received = 47.1
sends = 75.2
received = 49.1
sends = 76.2
received = 75.1
sends = 77.2
received = 76.1
sends = 78.2
sends = 79.2
received = 79.3
sends = 80.2
received = 81.3
sends = 82.2
received = 83.3
sends = 84.2
received = 84.3
sends = 85.2
sends = 86.2
received = 77.1

Process on lpc3 starts
Connection established to 
rmi://lpc3/MessagePassing
Connection established to 
rmi://lpc1/MessagePassing
Connection established to 
rmi://lpc2/MessagePassing
sends = 78.3
sends = 79.3
received = 48.1
sends = 80.3
received = 73.2
sends = 81.3
received = 78.2
sends = 82.3
sends = 83.3
received = 80.2
sends = 84.3
sends = 85.3
received = 82.2
sends = 86.3
sends = 87.3
received = 84.2
received = 85.2
sends = 88.3
received = 87.2
sends = 89.3
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Vector Time Stamps (1)

• Lamport algorithm guarantees: 
If e1 happens before e2 then it has a smaller time stamp:
e1 <H e2 ⇒ e1.TS < e2.TS

• It does not guarantee:
If e1 has a smaller time stamp than e2 then it happened 
before:
e1.TS < e2.TS ⇒ e1 <H e2
Because: concurrent events are ordered arbitrarily

• We often need the causality relation 
E.g. to test causality violation:
the effect arrives earlier than the (potential) cause
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Vector Time Stamps (2)

Example (object O
can migrate 
between 
processors)
The request of p3
causally follows the 
transfer of O from 
p1 to p2, but is 
processed before 
the transfer at p2
s(m1) <H s(m3) but 
r(m3) <p2 r(m1)

p1 p2 p3

Migrate
O to p2

Where is O?

On p2 Where is O?

I don’t know O

O on p2 Error!

m1

m2

m3

s(m1)

s(m3)

r(m1)

r(m3)
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Vector Time Stamps (3)

• Let s(m) be the sending and r(m) the receipt of message m
• m1 causally precedes m2 (m1 <c m2) if s(m1) <H s(m2)
• Causality violation: m1 <c m2, but r(m2) <p r(m1):

Message m1 is sent before m2, but m2 received on p before m1

• To detect causality violation, a timestamp VT is needed with 
comparison function <V such that e1 <H e2 iff e1.VT <V e2.VT

<V must be a partial order (since <H is)
e.VT must contain information about the other processors
We need a vector of integers of size N (no. of processors)
If e.VT[i] = k then e causally follows the first k events of processori (per 
definition, an event follows itself)
e1.VT ≤V e2.VT iff e2 follows every event that e1 follows

e1.VT ≤VT e2.VTiff e1.VT[i] ≤ e2.VT[i]  ∀ i = 1, ... , N
e1.VT <V e2.VT iff e1.VT ≤VT e2.VT and e1.VT # e2.VT
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Vector Time Stamps (4)

my_VT = [0, ..., 0]; // inital assignment
On event e,

if e is the receipt of message m,
for i = 1 to N

my_VT[i] = max(m.VT[i], my_VT[i]) 
// VT[i] “jumps” forward, if m is in the “future”

my_VT[self]++
e.VT = my_VT
if e is the sending of message m,

m.VT = my_VT
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Vector Time Stamps (5)

• Proof
e1 <H e2 ⇒ e1.VT <VT e2.VT, because the algorithm 
ensures that for every event e1 <p e2 or e1 <m e2:
e1.VT <VT e2.VT (very similar to Lamport’s algorithm)
Suppose: e1 ¬<H e2. Is to show: e1.VT ¬<VT e2.VT

Suppose e2 is the kth event on processor p and that e1.VT[p] = j, 
j > k
Then, there must be a path in the H-DAG from the jth event on 
processor p to event e1

So, if e1 ¬<H e2 then e1.VT ¬<VT e2.VT
If e1 and e2 are concurrent then
e1.VT ¬<VT e2.VT and e2.VT ¬<VT e1.VT

0, 11, 0

0, 0 0, 0

1, 22, 3
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Vector Time Stamps (6)

e1.VT = (5, 4, 1, 3)
e2.VT = (3, 6, 4, 2)
e3.VT = (0, 0, 1, 3)
e1 and e2 are concurrent
(no path e1 → e2 or 

e2 → e1)
e1.VT[1] > e2.VT[1], but
e1.VT[2] < e2.VT[2]

e3 <H e1 (e1 follows e3):
e3.VT <V e1.VT

p1 p2 p3 p4

2

1

4

5

3

1

2
3

4
5

6

1

3

2

4

1

2

3

e1 e2

e3
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Vector Time Stamps (7)

Example (object 
O can migrate 
between 
processors)
We still do not 
avoid causality 
violation, but we 
detect it
To avoid it, we 
could e.g. buffer 
all messages 
that are not in 
order

p1 p2 p3

Migrate
O to p2

Where is O?

On p2 Where is O?

I don’t know O

O on p2

(1,0,0) <V (3,2,3) !

m1

m2

m3

(1,0,0)

(2,0,1)

(3,0,1)

(0,0,1)

(3,0,2)

(3,0,3)(3,1,3)
(3,2,3)

(3,2,4)
(3,3,3)
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Vector Stamp Implementation (1)
public class VectorStamp { // Implements vector stamp algorithm

public static final int Nodes = 3;
private static int myHost = MyHost.NameToNum(MyHost.Name());
public static int [] myVector = Create(Nodes);
public static int [] receivedVector = Create(Nodes);
public static int [] Create (int N)  {

int [] tsVector = new int [N+1];
for (int i = 1; i <= N; i++) tsVector[i] = 0;
tsVector[0] = myHost; // help information for traces
return tsVector;

} // Create
public static void Adapt ()   {

for (int i = 1; i < myVector.length; i++)
if (receivedVector[i] > myVector[i]) 

myVector[i] = receivedVector[i];
} // Adapt

public static void Next ()   { myVector[myHost]++;  }
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Vector Stamp Implementation (2)
public static boolean CausalError ()   {return Less(receivedVector, myVector); } 

public static boolean Equals (int [] v1, int [] v2)   {
for (int i = 1; i < v1.length; i++) if (v1[i] != v2[i]) return false; 
return true;

} // Equals
public static boolean Less (int [] v1, int [] v2)   {

if (Equals (v1, v2)) return false;
for (int i = 1; i < v1.length; i++) if (v1[i] > v2[i]) return false;
return true;

} // Less
public static String ToString (int [] vector)  {

String t = "("; for (int i = 1; i < (vector.length-1); i++) t = t + vector[i] + ","; 
t = t + vector[vector.length-1] + ")";
return t;

} // ToString

} // VectorStamp
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Vector Stamp Producer
class Producer extends Thread {

private MessagePassing buf = null;
private boolean stopped = false;
private String target = null;
Producer (MessagePassing sendBuf, String targetName)  

{  buf = sendBuf; target = targetName; } 

public void stopp () { stopped = true; }
public void run ()  {

while (!stopped)  {
VectorStamp.Next();
System.out.println("sends to " + target + " = " + 

VectorStamp.ToString(VectorStamp.myVector)); 
try { buf.send(VectorStamp.myVector); } 
catch (java.rmi.RemoteException e)  {System.out.println("send-error" + e);}
try { Thread.sleep(1000); } catch (java.lang.InterruptedException e) { }

} } } // while, run, Producer
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Time Stamp Consumer
class Consumer extends Thread {

private MessagePassing buf = null; private boolean stopped = false;
Consumer (MessagePassing recBuf) { buf = recBuf;}
public void stopp () {stopped = true;}
public void run ()  {

while (!stopped)  {
try { VectorStamp.receivedVector = (int []) buf.receive();

System.out.println("received from " +
MyHost.NumToName(VectorStamp.receivedVector[0])     +

" = " + VectorStamp.ToString(VectorStamp.receivedVector));
if (VectorStamp.CausalError ()) 

System.out.println("Causality Violation, my v. =" + 
VectorStamp.ToString(VectorStamp.myVector));

VectorStamp.Adapt (); VectorStamp.Next();
}  catch (java.rmi.RemoteException e) {System.out.println("receive-err" + e); }
try { Thread.sleep(1000);}  catch (java.lang.InterruptedException e) { }

} } } // while, run, Consumer
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Causality Violation
to lpc2 = (1,0,0)
to lpc3 = (2,0,0)
to lpc2 = (3,0,0)
to lpc3 = (4,0,0)
from lpc2 = (0,2,0)
from lpc2 = (1,4,0)
to lpc2 = (7,4,0)
from lpc2 = (3,6,0)
to lpc2 = (9,6,0)
from lpc3 = (0,0,1)
to lpc2 = (11,6,1)
from lpc2 = (7,8,0)
from lpc3 = (2,0,4)
from lpc3 = (9,10,8)
from lpc3 = (9,13,11)
from lpc3 = (9,15,14)
…
from lpc3 = (9,35,44)
to lpc2 = (27,35,44)
from lpc3 = (9,37,47)
from lpc3 = (9,39,49)
to lpc2 = (30,39,49)
from lpc3 = (11,41,52)
to lpc2 = (32,41,52)
from lpc2 = (9,11,0)
Causality Violation, 
my vector = (32,41,52)

to lpc3 = (0,1,0)
to lpc1 = (0,2,0)
from lpc1 = (1,0,0)
to lpc1 = (1,4,0)
from lpc1 = (3,0,0)
to lpc1 = (3,6,0)
from lpc1 = (7,4,0)
to lpc1 = (7,8,0)
from lpc1 = (9,6,0)
to lpc3 = (9,10,0)
to lpc1 = (9,11,0)
from lpc3 = (0,0,2)
to lpc3 = (9,13,2)
from lpc3 = (2,1,6)
to lpc3 = (9,15,6)
from lpc3 = (9,10,9)
to lpc3 = (9,17,9)
from lpc3 = (9,13,12)
to lpc3 = (9,19,12)
from lpc3 = (9,15,15)
to lpc3 = (9,21,15)
from lpc3 = (9,17,18)
to lpc3 = (9,23,18)
…

to lpc1 = (0,0,1)
to lpc2 = (0,0,2)
from lpc1 = (2,0,0)
to lpc1 = (2,0,4)
from lpc2 = (0,1,0)
to lpc2 = (2,1,6)
from lpc2 = (9,10,0)
to lpc1 = (9,10,8)
to lpc2 = (9,10,9)
from lpc2 = (9,13,2)
to lpc1 = (9,13,11)
to lpc2 = (9,13,12)
from lpc2 = (9,15,6)
to lpc1 = (9,15,14)
to lpc2 = (9,15,15)
from lpc2 = (9,17,9)
to lpc1 = (9,17,17)
to lpc2 = (9,17,18)
from lpc2 = (9,19,12)
to lpc1 = (9,19,20)
to lpc2 = (9,19,21)
from lpc2 = (9,21,15)
to lpc1 = (9,21,23)
…
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Distributed Mutual Exclusion (DME)
• Centralized algorithm

Simulates the one-
processor algorithm
One process is elected 
(see later) as coordinator
If a process wants to enter 
the critical section it sends 
a message to the 
coordinator
If the critical section is free 
the coordinator sends a 
grant
If it is busy it may send a 
reject or simply block the 
sender in a FIFO queue 
and delays the grant until it 
may enter

C

0 1 2

request ok

Queue is empty

C

0 1 2

request

2

C

0 1 2

release ok

Queue is empty

“2” is blocked

“2” may enter
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Distributed DME Algorithm (1)
• Distributed Algorithm with Timestamp

Basic idea: the oldest requester wins (a “polite” protocol)
We assume that the communication is free of failures
All requests get a Lamport timestamp. As Lamport timestamps 
define a total order, it is always possible to agree which is the 
oldest request (lowest timestamp)
If a processor needs to enter a critical section it sends a request 
to all other processors
If a processor receives a request than it answers with its own 
timestamp, or with “youngest”, if it has no need for a CS
In this way, all processors can create the same priority queue
The processor, finding itself on the top (oldest request, smallest 
timestamp), may enter
When a processor exits the CS, it informs all others
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Distributed DME Algorithm (2)
• The timestamp based algorithm is inefficient, because 

We send more messages than necessary: 3(N – 1) 
“Denial” messages (with higher timestamp) are waste, as the other processor 
must wait anyway
Even without denial messages: 2(N – 1) messages 

We delay more than necessary
• With further improvements, it still remains in the O(N) message 

complexity class
• The centralized algorithm is more efficient and even more fault 

tolerant:

Algorithm Messages per 
entry/exit

Min. delay bef. 
entry

Problems

Centralized 3 2 message time Coordinator crash
Distributed 2 (N – 1) 2 (N – 1) m.t. Any crash
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Ricart & Agrawala DME Alg. (1)

a) Two processes (0 and 2) want to enter the same critical region at 
the same moment

b) Process 0 has the lowest timestamp, so it wins
c) When process 0 is done, it sends an OK also, so 2 can now enter 

the critical region
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Ricart & Agrawala DME Alg. (2)
Data structures+algorithms are in every node the same: symmetric

timestamp current_time Current Lamport time
timestamp my_timestamp
integer reply_pending No. of pending permissions
boolean is_requesting True if CS requested or used
boolean reply_defferred[N] True for younger requests

Request_CS()
my_timestamp = current_time
is_requesting = TRUE
reply_pending = N – 1
for every other processor j,

send (j, REMOTE_REQUEST; my_timestamp)
wait until reply_pending = 0
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Ricart & Agrawala DME Alg. (3)
Release_CS()

is_requesting = FALSE
for j = 1 to N

if reply_defferred[j] = TRUE
send(j, REPLY); reply_defferred[j] = FALSE

CS.Monitor()
Wait until REMOTE_REQUEST or REPLY arrives

REMOTE_REQUEST(sender; request_timestamp):
if (not is_requesting or  my_timestamp > request_timestamp)

send(sender, REPLY)
else

reply_defferred[sender] = TRUE
REPLY (sender)

reply_pending--
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Naive Voting Algorithm for DME (1)
Basic idea: it is enough to have a majority of votes.
• If a process wants to enter a critical section it sends a 

request to all other processes
• If a processor gets a request and it does not want to enter 

then it sends a grant
• If a processor gets at least ⎡(N + 1) / 2⎤ (e.g. 3 of 4 or 5) 

votes then it may enter – no other processor may get as 
many votes

• If a processor leaves the CS it releases its vote
• Advantage

Much more fault tolerant than the timestamp algorithm
It tolerates that even half of the processors fail – except the  lock 
holder
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Naive Voting Algorithm for DME (2)
• Problems

The algorithm tends to deadlock
E.g. each of 3 processors get 1/3 of the votes

It is not substantially more efficient than the timestamp 
algorithm – still O(N)

• Improvements of the basic idea
Not all messages are the same important

E.g., two candidates are competing for N = 2n + 1 votes and 
both have already received n: 
The last message decides

We may try to concentrate on “swing” voters
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Maekawa’s voting algorithm (1)
• Every processor p has a voting district Sp∈{S1 , ... , SN}
• The set {S1 , ... , SN} is a coterie
• We assume that 

Sp is fixed (some algorithms can handle dynamic districts)
Processor p must acquire the votes of all processors in Sp

• The districts must not be distinct (“swing voters”):
Si ∩ Sj ≠ ∅, ∀ i, j: 1 ≤ i, j ≤ N

• To be fair, the following should hold:
every voting district be about the same size (|Si| = K)
every processor be ca. in the same number of districts (D)

• The smaller D and K are, the more efficient is the 
algorithm

• Let N = n² and label the processors (i, j) for 1 ≤ i, j ≤ N
• Voting district for pr,s is: rth row and sth column
• K = O(2√N) – this is good, if N is fairly large
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Maekawa’s voting algorithm (2)
• The algorithm is similar to the naive algorithm

When a processor wants to enter a critical section, it sends a 
request to all members of its district
It may enter, if it gets a grant from all members
When a processor receives a request it answers with yes, if it has 
not already cast its vote
On exit it informs its district to enable a new voting

• Still deadlock danger – two polls may block each other
Assign each request a timestamp (Sanders)
The voters prefer the earliest candidate

Actually, we use ordering as deadlock prevention
If a processor V gave its vote for a processor B and then a 
processor C asks for V’s vote with an earlier timestamp:

V tries to retrieve its vote by an inquire message
If it succeeds: C will win, if not: B has already won
One candidate can enter in any case → no deadlock
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Maekawa’s voting algorithm (3)

• A voting district consists of 2√36 – 1 = 11 processors (n = 6, N = 36)
• If processor p14 enters the critical section then no other processor may enter
• If e.g. processor6 tries to enter, it will not get its vote from processor2 and 

processor18

1 2

7 8

3 4

9 10

5 6

11 12

13 14

19 20

15 16

21 22

17 18

23 24

25 26

31 32

27 28

33 34

29 30

35 36
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Election
• We often need a coordinator

for centralized mutual exclusion
for a holder of the primary copy of replicated data

• The coordinator and the other participants form a 
group

• Election is similar to synchronization
Processors must come to an agreement

• Election is different from synchronization
All participants must know who is the leader
Fault tolerance is a central issue
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The Bully Algorithm for Election (1)
• Basic assumptions

Delivery time < Tm (all messages are delivered within Tm)
Message handling time < Tp (all nodes respond within Tp)
Reliable failure detection

If a node does not respond within T = 2Tm + Tp, it must have failed
All processors are able to detect a failure
The failed processor knows upon recovery that it failed 

• A distributed system with such constraints is called 
synchronous

• Problem: Assumptions may not hold always
E.g. buffer overflows, temporary overloads etc.
The algorithm works in such a case incorrectly (e.g. 2 coordinators)
Or we have to work with too large time-outs

• Basic idea of the bully algorithm (Garcia-Molina)
The strongest processor (bull) wins
The processor with the highest number is the coordinator
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The Bully Algorithm for Election (2)
Example
• The actual coordinator 

(process7) crashes
• Process4 notices this 

and starts an election
• If a process gets an 

election it sends an ok
to the weaker ones and 
an election to the 
stronger ones

• If a process gets an ok
then it knows that there 
is a stronger one and 
exits the election

• At last there is one 
single processor that 
does not get any ok

• It broadcasts that he is 
the new boss
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6

5

1

7Coordinator 
crashed

Starts 
election 2

4

3
6

5

1

7

ok

ok

No answer, 
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4

3
6
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1

7

election

election

election

election election

2
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6
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7election
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ok
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Formal Correctness of the Bully Algorithm

• Definitions
Status ∀ pi: one of {Down, Election, Normal, Reorganization}

Reorganization: after election, but not yet normal
Coordinator: Variable, containing the elected coordinator
Definition: State information for the actual task

• Correctness Assertions
∀ pi, pj in a consistent state, G:
(Statusi ∈ {Normal, Reorganization}) ∧ (Statusj ∈ {Normal, 
Reorganization}) ⇒ Coordinatori = Coordinatorj
(Statusi = Normal) ∧ (Statusj = Normal) ⇒
Definitioni = Definitionj

• Liveness Assertions
Let be R the set of unfailed nodes. Eventually must hold in any run:

∃ pi ∈ R, such that Statei = Normal ∧ Coordinatori = pi
∀ pj ∈ R such that Statej = Normal ∧ Coordinatorj = pi
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The Invitation Algorithm (1)
• Invitation Algorithm (Garcia-Molina)
• We cannot make safe assumptions about the 

timing of the events: asynchronous system
• The coordinator function makes only sense in 

relation to a certain group
• A group is identified by a unique group number
• Basic idea of the invitation algorithm: 

Instead of electing a new coordinator, form a new group 
under the leadership of the new coordinator
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The Invitation Algorithm (2)
• Correctness Assertions

∀ pi, pj in a consistent state, G:
(Statusi ∈ {Normal, Reorganization}) ∧ (Statusj ∈
{Normal, Reorganization}) ∧ (Groupi = Groupj) ⇒
Coordinatori = Coordinatorj

(Statusi = Normal) ∧ (Statusj = Normal) ∧ (Groupi = 
Groupj) ⇒ Definitioni = Definitionj

These are easy to satisfy
If a process p establishes itself as a coordinator then it creates a 
new, unique group number
Next, it suggests to the others to join the new group, with p as 
coordinator
Those, who join, accept its suggestion
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The Invitation Algorithm (3)
• Liveness Assertions

Let be R the maximal set of nodes that can communicate 
in consistent state G0. 
Starting at G0, eventually must hold:

∃ pi ∈ R, such that Statei = Normal ∧ Coordinatori = pi

∀ pj ∈ R (unfailed pj), Statej = Normal ∧ Coordinatorj = pi

These are difficult to satisfy
Competing coordinators may repeatedly  “steal”
participants from each other, which may never end
Such groups can be merged into a global group – based 
on invitation
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The Invitation Algorithm (3)
• Processor p1 executes 

an invitation (a merge 
procedure) for joining the 
group “led” by it

• Processor p2 accepts 
immediately

• Processor p3 was a 
coordinator itself, so 
forwards the invitation to 
p4 and p5

• All send an accept and 
enter the Reorganization
state

• Processor p1 sends a 
ready message, taking 
the participants into the 
Normal state

• The coordinator may 
execute an invitation 
periodically

• Coordinators may have 
different priority

• The algorithm does not 
rely on error-free time-
out

p1 p2 p3 p4 p5

Merge()

Accept
ok Accept Accept

Accept

ok

ok

ok

Invitation

Ready

T

T
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