
László Böszörményi Distributed Systems Synchronization - 1

Distributed Systems

4. Synchronization

László Böszörményi Distributed Systems Synchronization - 2

Causality (1)
• Distributed systems lack of a global state, their nature is

asynchronous

• Non-instantaneous communication
Different observers may observe the same event at different
times and different events at the same time
Reason: propagation delay, contention for network resources,
retransmission (due to lost messages) etc.

• Relativistic effects
Synchronizing by time is unreliable
Reason: clocks tend to drift apart

• Interruptions
Even if two computers receive a message at the same time,
their reaction may need different time
Reason: Complex computer systems with unpredictable
execution times due to CPU contention, interrupts, page faults,
cache misses, garbage collection etc.

László Böszörményi Distributed Systems Synchronization - 3

Causality (2)
• Distributed systems are causal

The cause precedes the effect
Traveling backward in time is excluded

• Physical and logical clocks
Synchronization of the physical (wall) clocks is
possible, but hard and often not necessary
A logical clock cares only for the proper order

• Basic notions for logical clocks
Suppose the distributed system is composed of the
set of processors P = {p1, . . ., pm}.
The set of all events of a distributed system is E, the
set of all events of processor p is Ep.

László Böszörményi Distributed Systems Synchronization - 4

Universal Coordinated Time (UTC)

• Abbreviation from French:
UTC – not UCT

• International Atomic Time
(TAI): cesium clock

• UTC is based on a
combination of TAI and
mean solar second

• Radio and satellite servers
provide periodically UTC

• Electricity 50 (Eu.) resp. 60
Hz (USA) is based on UTC

Frequency raised to 51/61
at leap seconds

• Clock time (C) and UTC
may differ, as clocks tick at
different rates (drift)

1-p ≤ dC/dt ≤ 1+p
p: max. drift rate

László Böszörményi Distributed Systems Synchronization - 5

Cristian's Algorithm for Physical Clock Synch.
• Getting the current time from a passive time server

If CUTC > Tclient ⇒Tclient := CUTC (or speed up, if the difference is big)
If CUTC < Tclient ⇒ the client’s clock slows down (time must go forward)
The answer of the server costs time

The difference of two time values are still quite accurate
The average of a series of queries should be taken (disregard extreme values)

László Böszörményi Distributed Systems Synchronization - 6

Berkeley Algorithm for Physical Clock Synch.

a) The active time daemon (TS) asks all the other machines for their clock
b) The machines answer
c) The TS computes average and tells everyone how to adjust their clock

László Böszörményi Distributed Systems Synchronization - 7

Happens-before (1)
• If event e1 occurred before e2, we write:

e1 < e2 (or e1 → e2)
We say: e1 happened before e2

• If this is based on information X, we write:
e1 <X e2

• Events of the same processor are totally ordered
If e1 ∈ Ep and e2 ∈ Ep: either e1 <p e2 or e2 <p e1

• Sending of a message happens always before
receiving it

If es is the sending of message m and er the receipt of
m, then es <m er

László Böszörményi Distributed Systems Synchronization - 8

Happens-before (2)
• Happened-before relation: The transitive closure

of the processor and message passing orderings:
If e1 <p e2 then e1 <H e2

If e1 <m e2 then e1 <H e2

If e1 <H e2 and e2 <H e3 then e1 <H e3

• Causation
If e1 happened before e2 than e1 might have caused e2

• The happened-before relation is a partial order :
It is possible to have two events e1 and e2 that
neither e1 <H e2 nor e2 <H e1

Such events are called concurrent (or disjoint)

László Böszörményi Distributed Systems Synchronization - 9

Example Happens-before

p1 p2 p3

e1

e4

e7

e2

e5

e3

e6

e8

time

e1 <p1 e4 <p1 e7 (∀ events on same proc.)
e2 <p2 e3 <p2 e5 (∀ events on same proc.)
…
e1 <m e3 (send and receipt of same mess.)
e5 <m e8 (send and receipt of same mess.)
…
e1 <H e3 <H e5 <H e8, etc. ⇒ e1 <H e8

(transitivity)

{e1, e6}, {e1 , e2} {e2, e6}, are concurrent

• Happens-before DAG (H-DAG)
The vertices are the events in E
The directed edge (e1, e2) is in the edge
set, EH iff (if and only if)
e1 <p e2 or e1 <m e2.

László Böszörményi Distributed Systems Synchronization - 10

Lamport Time Stamps (1)

• A logical global clock assigns a total order over all events
• The happened-before relation defines a partial order

Theoretically we can just apply topological sort on <H

• Leslie Lamport’s algorithm
creates total order “on the fly”
entirely distributed
fault tolerant
efficient
orders concurrent events arbitrarily

Each event e has a timestamp e.TS
Each processor maintains a local timestamp my_TS
Processor address (or number) is used for the lowest order bits of
the timestamp (to avoid identical stamps in different processors)
Each event and each message get a timestamp assigned as:

László Böszörményi Distributed Systems Synchronization - 11

Lamport Time Stamps (2)

• A logical global clock assigns a total order over all
events

my_TS = 0; // inital assignment
On event e,

if e is the receipt of message m,
my_TS = max(m.TS, my_TS)

//local stamp “jumps” forward, if m is in the “future”
my_TS++
e.TS = my_TS
if e is the sending of message m,

m.TS = my_TS

László Böszörményi Distributed Systems Synchronization - 12

Example Lamport Time Stamps

p1 p2 p3

1.1 e1

2.1 e4

3.1 e7

1.2 e2

3.2 e5

2.2 e3

1.3 e6

4.3 e8

e8 must be labeled 4.3,
(not 2.3!), because
it follows event 3.2

5.3 e 9

6.1 e10

Total order on all events:
1.1, 1.2, 1.3, ↔ 2.1, 2.2,
3.1, 3.2, 4.3, 5.3, 6.1...

Events along happens
before build a sequence, e.g.
1.1, 2.2, 3.2, 4.3, 5.3, 6.1...

László Böszörményi Distributed Systems Synchronization - 13

Time Stamp Implementation (1)
import java.io.*;
public class TimeStamp implements Serializable {

// A time stamp object cannot be changed
private final int time;
private final int host;

TimeStamp (int timeStamp, int hostNum) {
time = timeStamp; host = hostNum; }

public int getTime() { return time; }
public int getHost() { return host; }
public String toString () { return time + "." + host; }

} // TimeStamp

László Böszörményi Distributed Systems Synchronization - 14

Time Stamp Implementation (2)
import java.util.*;
public class Lamport {

static private int time = new Random().nextInt(100);
static private int host = MyHost.NameToNum(MyHost.Name());
static private TimeStamp lastReceived = new TimeStamp(time, host);

public static synchronized void Adapt (TimeStamp received) {
lastReceived = received;
if (time < lastReceived.getTime())

time = lastReceived.getTime();
} // Adapt

public static synchronized TimeStamp Next () {
return new TimeStamp(++time, host);

} // Next
} // Lamport

László Böszörményi Distributed Systems Synchronization - 15

Time Stamp Producer
class Producer extends Thread {

private MessagePassing buf = null;
private String target; private boolean stopped = false;
Producer (MessagePassing sendBuf, String targetName) {

buf = sendBuf; target = targetName;}
public void stopp () {stopped = true;}
public void run () { // produces and sends time stamps in a loop

while (!stopped) {
TimeStamp nextTS = Lamport.Next(); // Sets a time stamp
System.out.println("sends= " + nextTS.toString());
try { buf.send(nextTS); }
catch (java.rmi.RemoteException e)

{System.out.println("send-error" + e); }
try { Thread.sleep(1000);}
catch (java.lang.InterruptedException e) { }

} } } // while, run, Producer

László Böszörményi Distributed Systems Synchronization - 16

Time Stamp Consumer
class Consumer extends Thread {

private MessagePassing buf = null;
private boolean stopped = false;
Consumer (MessagePassing recBuf) {buf = recBuf;}
public void stopp () {stopped = true;}
public void run () { // receives time stamps in a loop

while (!stopped) {
TimeStamp receivedTS = null;
try { receivedTS = (TimeStamp) buf.receive();

Lamport.Adapt(receivedTS);
System.out.println("rcvd= "+receivedTS.toString());

} catch (java.rmi.RemoteException e)
{System.out.println("receive-error" + e); }

try { Thread.sleep(1000);}
catch (java.lang.InterruptedException e) { }

} } } // while, run, Consumer

László Böszörményi Distributed Systems Synchronization - 17

Time Stamp Execution
Connection established to
rmi://lpc1/MessagePassing
Connection established to
rmi://lpc2/MessagePassing
Connection established to
rmi://lpc3/MessagePassing
sends = 47.1
sends = 48.1
sends = 49.1
sends = 50.1
received = 74.2
sends = 75.1
received = 75.2
sends = 76.1
received = 76.2
sends = 77.1
received = 78.3
received = 77.2
received = 80.3
received = 82.3
received = 85.3
sends = 86.1
received = 79.2
sends = 87.1
received = 87.3
received = 88.3
sends = 89.1

Connection established to
rmi://lpc2/MessagePassing
Connection established to
rmi://lpc3/MessagePassing
Connection established to
rmi://lpc1/MessagePassing
sends = 73.2
sends = 74.2
received = 47.1
sends = 75.2
received = 49.1
sends = 76.2
received = 75.1
sends = 77.2
received = 76.1
sends = 78.2
sends = 79.2
received = 79.3
sends = 80.2
received = 81.3
sends = 82.2
received = 83.3
sends = 84.2
received = 84.3
sends = 85.2
sends = 86.2
received = 77.1

Process on lpc3 starts
Connection established to
rmi://lpc3/MessagePassing
Connection established to
rmi://lpc1/MessagePassing
Connection established to
rmi://lpc2/MessagePassing
sends = 78.3
sends = 79.3
received = 48.1
sends = 80.3
received = 73.2
sends = 81.3
received = 78.2
sends = 82.3
sends = 83.3
received = 80.2
sends = 84.3
sends = 85.3
received = 82.2
sends = 86.3
sends = 87.3
received = 84.2
received = 85.2
sends = 88.3
received = 87.2
sends = 89.3

László Böszörményi Distributed Systems Synchronization - 18

Vector Time Stamps (1)

• Lamport algorithm guarantees:
If e1 happens before e2 then it has a smaller time stamp:
e1 <H e2 ⇒ e1.TS < e2.TS

• It does not guarantee:
If e1 has a smaller time stamp than e2 then it happened
before:
e1.TS < e2.TS ⇒ e1 <H e2
Because: concurrent events are ordered arbitrarily

• We often need the causality relation
E.g. to test causality violation:
the effect arrives earlier than the (potential) cause

László Böszörményi Distributed Systems Synchronization - 19

Vector Time Stamps (2)

Example (object O
can migrate
between
processors)
The request of p3
causally follows the
transfer of O from
p1 to p2, but is
processed before
the transfer at p2
s(m1) <H s(m3) but
r(m3) <p2 r(m1)

p1 p2 p3

Migrate
O to p2

Where is O?

On p2 Where is O?

I don’t know O

O on p2 Error!

m1

m2

m3

s(m1)

s(m3)

r(m1)

r(m3)

László Böszörményi Distributed Systems Synchronization - 20

Vector Time Stamps (3)

• Let s(m) be the sending and r(m) the receipt of message m
• m1 causally precedes m2 (m1 <c m2) if s(m1) <H s(m2)
• Causality violation: m1 <c m2, but r(m2) <p r(m1):

Message m1 is sent before m2, but m2 received on p before m1

• To detect causality violation, a timestamp VT is needed with
comparison function <V such that e1 <H e2 iff e1.VT <V e2.VT

<V must be a partial order (since <H is)
e.VT must contain information about the other processors
We need a vector of integers of size N (no. of processors)
If e.VT[i] = k then e causally follows the first k events of processori (per
definition, an event follows itself)
e1.VT ≤V e2.VT iff e2 follows every event that e1 follows

e1.VT ≤VT e2.VTiff e1.VT[i] ≤ e2.VT[i] ∀ i = 1, ... , N
e1.VT <V e2.VT iff e1.VT ≤VT e2.VT and e1.VT # e2.VT

László Böszörményi Distributed Systems Synchronization - 21

Vector Time Stamps (4)

my_VT = [0, ..., 0]; // inital assignment
On event e,

if e is the receipt of message m,
for i = 1 to N

my_VT[i] = max(m.VT[i], my_VT[i])
// VT[i] “jumps” forward, if m is in the “future”

my_VT[self]++
e.VT = my_VT
if e is the sending of message m,

m.VT = my_VT

László Böszörményi Distributed Systems Synchronization - 22

Vector Time Stamps (5)

• Proof
e1 <H e2 ⇒ e1.VT <VT e2.VT, because the algorithm
ensures that for every event e1 <p e2 or e1 <m e2:
e1.VT <VT e2.VT (very similar to Lamport’s algorithm)
Suppose: e1 ¬<H e2. Is to show: e1.VT ¬<VT e2.VT

Suppose e2 is the kth event on processor p and that e1.VT[p] = j,
j > k
Then, there must be a path in the H-DAG from the jth event on
processor p to event e1

So, if e1 ¬<H e2 then e1.VT ¬<VT e2.VT
If e1 and e2 are concurrent then
e1.VT ¬<VT e2.VT and e2.VT ¬<VT e1.VT

0, 11, 0

0, 0 0, 0

1, 22, 3

László Böszörményi Distributed Systems Synchronization - 23

Vector Time Stamps (6)

e1.VT = (5, 4, 1, 3)
e2.VT = (3, 6, 4, 2)
e3.VT = (0, 0, 1, 3)
e1 and e2 are concurrent
(no path e1 → e2 or

e2 → e1)
e1.VT[1] > e2.VT[1], but
e1.VT[2] < e2.VT[2]

e3 <H e1 (e1 follows e3):
e3.VT <V e1.VT

p1 p2 p3 p4

2

1

4

5

3

1

2
3

4
5

6

1

3

2

4

1

2

3

e1 e2

e3

László Böszörményi Distributed Systems Synchronization - 24

Vector Time Stamps (7)

Example (object
O can migrate
between
processors)
We still do not
avoid causality
violation, but we
detect it
To avoid it, we
could e.g. buffer
all messages
that are not in
order

p1 p2 p3

Migrate
O to p2

Where is O?

On p2 Where is O?

I don’t know O

O on p2

(1,0,0) <V (3,2,3) !

m1

m2

m3

(1,0,0)

(2,0,1)

(3,0,1)

(0,0,1)

(3,0,2)

(3,0,3)(3,1,3)
(3,2,3)

(3,2,4)
(3,3,3)

László Böszörményi Distributed Systems Synchronization - 25

Vector Stamp Implementation (1)
public class VectorStamp { // Implements vector stamp algorithm

public static final int Nodes = 3;
private static int myHost = MyHost.NameToNum(MyHost.Name());
public static int [] myVector = Create(Nodes);
public static int [] receivedVector = Create(Nodes);
public static int [] Create (int N) {

int [] tsVector = new int [N+1];
for (int i = 1; i <= N; i++) tsVector[i] = 0;
tsVector[0] = myHost; // help information for traces
return tsVector;

} // Create
public static void Adapt () {

for (int i = 1; i < myVector.length; i++)
if (receivedVector[i] > myVector[i])

myVector[i] = receivedVector[i];
} // Adapt

public static void Next () { myVector[myHost]++; }

László Böszörményi Distributed Systems Synchronization - 26

Vector Stamp Implementation (2)
public static boolean CausalError () {return Less(receivedVector, myVector); }

public static boolean Equals (int [] v1, int [] v2) {
for (int i = 1; i < v1.length; i++) if (v1[i] != v2[i]) return false;
return true;

} // Equals
public static boolean Less (int [] v1, int [] v2) {

if (Equals (v1, v2)) return false;
for (int i = 1; i < v1.length; i++) if (v1[i] > v2[i]) return false;
return true;

} // Less
public static String ToString (int [] vector) {

String t = "("; for (int i = 1; i < (vector.length-1); i++) t = t + vector[i] + ",";
t = t + vector[vector.length-1] + ")";
return t;

} // ToString

} // VectorStamp

László Böszörményi Distributed Systems Synchronization - 27

Vector Stamp Producer
class Producer extends Thread {

private MessagePassing buf = null;
private boolean stopped = false;
private String target = null;
Producer (MessagePassing sendBuf, String targetName)

{ buf = sendBuf; target = targetName; }

public void stopp () { stopped = true; }
public void run () {

while (!stopped) {
VectorStamp.Next();
System.out.println("sends to " + target + " = " +

VectorStamp.ToString(VectorStamp.myVector));
try { buf.send(VectorStamp.myVector); }
catch (java.rmi.RemoteException e) {System.out.println("send-error" + e);}
try { Thread.sleep(1000); } catch (java.lang.InterruptedException e) { }

} } } // while, run, Producer

László Böszörményi Distributed Systems Synchronization - 28

Time Stamp Consumer
class Consumer extends Thread {

private MessagePassing buf = null; private boolean stopped = false;
Consumer (MessagePassing recBuf) { buf = recBuf;}
public void stopp () {stopped = true;}
public void run () {

while (!stopped) {
try { VectorStamp.receivedVector = (int []) buf.receive();

System.out.println("received from " +
MyHost.NumToName(VectorStamp.receivedVector[0]) +

" = " + VectorStamp.ToString(VectorStamp.receivedVector));
if (VectorStamp.CausalError ())

System.out.println("Causality Violation, my v. =" +
VectorStamp.ToString(VectorStamp.myVector));

VectorStamp.Adapt (); VectorStamp.Next();
} catch (java.rmi.RemoteException e) {System.out.println("receive-err" + e); }
try { Thread.sleep(1000);} catch (java.lang.InterruptedException e) { }

} } } // while, run, Consumer

László Böszörményi Distributed Systems Synchronization - 29

Causality Violation
to lpc2 = (1,0,0)
to lpc3 = (2,0,0)
to lpc2 = (3,0,0)
to lpc3 = (4,0,0)
from lpc2 = (0,2,0)
from lpc2 = (1,4,0)
to lpc2 = (7,4,0)
from lpc2 = (3,6,0)
to lpc2 = (9,6,0)
from lpc3 = (0,0,1)
to lpc2 = (11,6,1)
from lpc2 = (7,8,0)
from lpc3 = (2,0,4)
from lpc3 = (9,10,8)
from lpc3 = (9,13,11)
from lpc3 = (9,15,14)
…
from lpc3 = (9,35,44)
to lpc2 = (27,35,44)
from lpc3 = (9,37,47)
from lpc3 = (9,39,49)
to lpc2 = (30,39,49)
from lpc3 = (11,41,52)
to lpc2 = (32,41,52)
from lpc2 = (9,11,0)
Causality Violation,
my vector = (32,41,52)

to lpc3 = (0,1,0)
to lpc1 = (0,2,0)
from lpc1 = (1,0,0)
to lpc1 = (1,4,0)
from lpc1 = (3,0,0)
to lpc1 = (3,6,0)
from lpc1 = (7,4,0)
to lpc1 = (7,8,0)
from lpc1 = (9,6,0)
to lpc3 = (9,10,0)
to lpc1 = (9,11,0)
from lpc3 = (0,0,2)
to lpc3 = (9,13,2)
from lpc3 = (2,1,6)
to lpc3 = (9,15,6)
from lpc3 = (9,10,9)
to lpc3 = (9,17,9)
from lpc3 = (9,13,12)
to lpc3 = (9,19,12)
from lpc3 = (9,15,15)
to lpc3 = (9,21,15)
from lpc3 = (9,17,18)
to lpc3 = (9,23,18)
…

to lpc1 = (0,0,1)
to lpc2 = (0,0,2)
from lpc1 = (2,0,0)
to lpc1 = (2,0,4)
from lpc2 = (0,1,0)
to lpc2 = (2,1,6)
from lpc2 = (9,10,0)
to lpc1 = (9,10,8)
to lpc2 = (9,10,9)
from lpc2 = (9,13,2)
to lpc1 = (9,13,11)
to lpc2 = (9,13,12)
from lpc2 = (9,15,6)
to lpc1 = (9,15,14)
to lpc2 = (9,15,15)
from lpc2 = (9,17,9)
to lpc1 = (9,17,17)
to lpc2 = (9,17,18)
from lpc2 = (9,19,12)
to lpc1 = (9,19,20)
to lpc2 = (9,19,21)
from lpc2 = (9,21,15)
to lpc1 = (9,21,23)
…

László Böszörményi Distributed Systems Synchronization - 30

Distributed Mutual Exclusion (DME)
• Centralized algorithm

Simulates the one-
processor algorithm
One process is elected
(see later) as coordinator
If a process wants to enter
the critical section it sends
a message to the
coordinator
If the critical section is free
the coordinator sends a
grant
If it is busy it may send a
reject or simply block the
sender in a FIFO queue
and delays the grant until it
may enter

C

0 1 2

request ok

Queue is empty

C

0 1 2

request

2

C

0 1 2

release ok

Queue is empty

“2” is blocked

“2” may enter

László Böszörményi Distributed Systems Synchronization - 31

Distributed DME Algorithm (1)
• Distributed Algorithm with Timestamp

Basic idea: the oldest requester wins (a “polite” protocol)
We assume that the communication is free of failures
All requests get a Lamport timestamp. As Lamport timestamps
define a total order, it is always possible to agree which is the
oldest request (lowest timestamp)
If a processor needs to enter a critical section it sends a request
to all other processors
If a processor receives a request than it answers with its own
timestamp, or with “youngest”, if it has no need for a CS
In this way, all processors can create the same priority queue
The processor, finding itself on the top (oldest request, smallest
timestamp), may enter
When a processor exits the CS, it informs all others

László Böszörményi Distributed Systems Synchronization - 32

Distributed DME Algorithm (2)
• The timestamp based algorithm is inefficient, because

We send more messages than necessary: 3(N – 1)
“Denial” messages (with higher timestamp) are waste, as the other processor
must wait anyway
Even without denial messages: 2(N – 1) messages

We delay more than necessary
• With further improvements, it still remains in the O(N) message

complexity class
• The centralized algorithm is more efficient and even more fault

tolerant:

Algorithm Messages per
entry/exit

Min. delay bef.
entry

Problems

Centralized 3 2 message time Coordinator crash
Distributed 2 (N – 1) 2 (N – 1) m.t. Any crash

László Böszörményi Distributed Systems Synchronization - 33

Ricart & Agrawala DME Alg. (1)

a) Two processes (0 and 2) want to enter the same critical region at
the same moment

b) Process 0 has the lowest timestamp, so it wins
c) When process 0 is done, it sends an OK also, so 2 can now enter

the critical region

László Böszörményi Distributed Systems Synchronization - 34

Ricart & Agrawala DME Alg. (2)
Data structures+algorithms are in every node the same: symmetric

timestamp current_time Current Lamport time
timestamp my_timestamp
integer reply_pending No. of pending permissions
boolean is_requesting True if CS requested or used
boolean reply_defferred[N] True for younger requests

Request_CS()
my_timestamp = current_time
is_requesting = TRUE
reply_pending = N – 1
for every other processor j,

send (j, REMOTE_REQUEST; my_timestamp)
wait until reply_pending = 0

László Böszörményi Distributed Systems Synchronization - 35

Ricart & Agrawala DME Alg. (3)
Release_CS()

is_requesting = FALSE
for j = 1 to N

if reply_defferred[j] = TRUE
send(j, REPLY); reply_defferred[j] = FALSE

CS.Monitor()
Wait until REMOTE_REQUEST or REPLY arrives

REMOTE_REQUEST(sender; request_timestamp):
if (not is_requesting or my_timestamp > request_timestamp)

send(sender, REPLY)
else

reply_defferred[sender] = TRUE
REPLY (sender)

reply_pending--

László Böszörményi Distributed Systems Synchronization - 36

Naive Voting Algorithm for DME (1)
Basic idea: it is enough to have a majority of votes.
• If a process wants to enter a critical section it sends a

request to all other processes
• If a processor gets a request and it does not want to enter

then it sends a grant
• If a processor gets at least ⎡(N + 1) / 2⎤ (e.g. 3 of 4 or 5)

votes then it may enter – no other processor may get as
many votes

• If a processor leaves the CS it releases its vote
• Advantage

Much more fault tolerant than the timestamp algorithm
It tolerates that even half of the processors fail – except the lock
holder

László Böszörményi Distributed Systems Synchronization - 37

Naive Voting Algorithm for DME (2)
• Problems

The algorithm tends to deadlock
E.g. each of 3 processors get 1/3 of the votes

It is not substantially more efficient than the timestamp
algorithm – still O(N)

• Improvements of the basic idea
Not all messages are the same important

E.g., two candidates are competing for N = 2n + 1 votes and
both have already received n:
The last message decides

We may try to concentrate on “swing” voters

László Böszörményi Distributed Systems Synchronization - 38

Maekawa’s voting algorithm (1)
• Every processor p has a voting district Sp∈{S1 , ... , SN}
• The set {S1 , ... , SN} is a coterie
• We assume that

Sp is fixed (some algorithms can handle dynamic districts)
Processor p must acquire the votes of all processors in Sp

• The districts must not be distinct (“swing voters”):
Si ∩ Sj ≠ ∅, ∀ i, j: 1 ≤ i, j ≤ N

• To be fair, the following should hold:
every voting district be about the same size (|Si| = K)
every processor be ca. in the same number of districts (D)

• The smaller D and K are, the more efficient is the
algorithm

• Let N = n² and label the processors (i, j) for 1 ≤ i, j ≤ N
• Voting district for pr,s is: rth row and sth column
• K = O(2√N) – this is good, if N is fairly large

László Böszörményi Distributed Systems Synchronization - 39

Maekawa’s voting algorithm (2)
• The algorithm is similar to the naive algorithm

When a processor wants to enter a critical section, it sends a
request to all members of its district
It may enter, if it gets a grant from all members
When a processor receives a request it answers with yes, if it has
not already cast its vote
On exit it informs its district to enable a new voting

• Still deadlock danger – two polls may block each other
Assign each request a timestamp (Sanders)
The voters prefer the earliest candidate

Actually, we use ordering as deadlock prevention
If a processor V gave its vote for a processor B and then a
processor C asks for V’s vote with an earlier timestamp:

V tries to retrieve its vote by an inquire message
If it succeeds: C will win, if not: B has already won
One candidate can enter in any case → no deadlock

László Böszörményi Distributed Systems Synchronization - 40

Maekawa’s voting algorithm (3)

• A voting district consists of 2√36 – 1 = 11 processors (n = 6, N = 36)
• If processor p14 enters the critical section then no other processor may enter
• If e.g. processor6 tries to enter, it will not get its vote from processor2 and

processor18

1 2

7 8

3 4

9 10

5 6

11 12

13 14

19 20

15 16

21 22

17 18

23 24

25 26

31 32

27 28

33 34

29 30

35 36

László Böszörményi Distributed Systems Synchronization - 41

Election
• We often need a coordinator

for centralized mutual exclusion
for a holder of the primary copy of replicated data

• The coordinator and the other participants form a
group

• Election is similar to synchronization
Processors must come to an agreement

• Election is different from synchronization
All participants must know who is the leader
Fault tolerance is a central issue

László Böszörményi Distributed Systems Synchronization - 42

The Bully Algorithm for Election (1)
• Basic assumptions

Delivery time < Tm (all messages are delivered within Tm)
Message handling time < Tp (all nodes respond within Tp)
Reliable failure detection

If a node does not respond within T = 2Tm + Tp, it must have failed
All processors are able to detect a failure
The failed processor knows upon recovery that it failed

• A distributed system with such constraints is called
synchronous

• Problem: Assumptions may not hold always
E.g. buffer overflows, temporary overloads etc.
The algorithm works in such a case incorrectly (e.g. 2 coordinators)
Or we have to work with too large time-outs

• Basic idea of the bully algorithm (Garcia-Molina)
The strongest processor (bull) wins
The processor with the highest number is the coordinator

László Böszörményi Distributed Systems Synchronization - 43

The Bully Algorithm for Election (2)
Example
• The actual coordinator

(process7) crashes
• Process4 notices this

and starts an election
• If a process gets an

election it sends an ok
to the weaker ones and
an election to the
stronger ones

• If a process gets an ok
then it knows that there
is a stronger one and
exits the election

• At last there is one
single processor that
does not get any ok

• It broadcasts that he is
the new boss

2

4

3
6

5

1

7Coordinator
crashed

Starts
election 2

4

3
6

5

1

7

ok

ok

No answer,
crashed

2

4

3
6

5

1

7

election

election

election

election election

2

4

3
6

5

1

7election
wins

Brodcasts
itself to all

ok

László Böszörményi Distributed Systems Synchronization - 44

Formal Correctness of the Bully Algorithm

• Definitions
Status ∀ pi: one of {Down, Election, Normal, Reorganization}

Reorganization: after election, but not yet normal
Coordinator: Variable, containing the elected coordinator
Definition: State information for the actual task

• Correctness Assertions
∀ pi, pj in a consistent state, G:
(Statusi ∈ {Normal, Reorganization}) ∧ (Statusj ∈ {Normal,
Reorganization}) ⇒ Coordinatori = Coordinatorj
(Statusi = Normal) ∧ (Statusj = Normal) ⇒
Definitioni = Definitionj

• Liveness Assertions
Let be R the set of unfailed nodes. Eventually must hold in any run:

∃ pi ∈ R, such that Statei = Normal ∧ Coordinatori = pi
∀ pj ∈ R such that Statej = Normal ∧ Coordinatorj = pi

László Böszörményi Distributed Systems Synchronization - 45

The Invitation Algorithm (1)
• Invitation Algorithm (Garcia-Molina)
• We cannot make safe assumptions about the

timing of the events: asynchronous system
• The coordinator function makes only sense in

relation to a certain group
• A group is identified by a unique group number
• Basic idea of the invitation algorithm:

Instead of electing a new coordinator, form a new group
under the leadership of the new coordinator

László Böszörményi Distributed Systems Synchronization - 46

The Invitation Algorithm (2)
• Correctness Assertions

∀ pi, pj in a consistent state, G:
(Statusi ∈ {Normal, Reorganization}) ∧ (Statusj ∈
{Normal, Reorganization}) ∧ (Groupi = Groupj) ⇒
Coordinatori = Coordinatorj

(Statusi = Normal) ∧ (Statusj = Normal) ∧ (Groupi =
Groupj) ⇒ Definitioni = Definitionj

These are easy to satisfy
If a process p establishes itself as a coordinator then it creates a
new, unique group number
Next, it suggests to the others to join the new group, with p as
coordinator
Those, who join, accept its suggestion

László Böszörményi Distributed Systems Synchronization - 47

The Invitation Algorithm (3)
• Liveness Assertions

Let be R the maximal set of nodes that can communicate
in consistent state G0.
Starting at G0, eventually must hold:

∃ pi ∈ R, such that Statei = Normal ∧ Coordinatori = pi

∀ pj ∈ R (unfailed pj), Statej = Normal ∧ Coordinatorj = pi

These are difficult to satisfy
Competing coordinators may repeatedly “steal”
participants from each other, which may never end
Such groups can be merged into a global group – based
on invitation

László Böszörményi Distributed Systems Synchronization - 48

The Invitation Algorithm (3)
• Processor p1 executes

an invitation (a merge
procedure) for joining the
group “led” by it

• Processor p2 accepts
immediately

• Processor p3 was a
coordinator itself, so
forwards the invitation to
p4 and p5

• All send an accept and
enter the Reorganization
state

• Processor p1 sends a
ready message, taking
the participants into the
Normal state

• The coordinator may
execute an invitation
periodically

• Coordinators may have
different priority

• The algorithm does not
rely on error-free time-
out

p1 p2 p3 p4 p5

Merge()

Accept
ok Accept Accept

Accept

ok

ok

ok

Invitation

Ready

T

T

	Distributed Systems
	Causality (1)
	Causality (2)
	Universal Coordinated Time (UTC)
	Cristian's Algorithm for Physical Clock Synch.
	Berkeley Algorithm for Physical Clock Synch.
	Happens-before (1)
	Happens-before (2)
	Example Happens-before
	Lamport Time Stamps (1)
	Lamport Time Stamps (2)
	Example Lamport Time Stamps
	Time Stamp Implementation (1)
	Time Stamp Implementation (2)
	Time Stamp Producer
	Time Stamp Consumer
	Time Stamp Execution
	Vector Time Stamps (1)
	Vector Time Stamps (2)
	Vector Time Stamps (3)
	Vector Time Stamps (4)
	Vector Time Stamps (5)
	Vector Time Stamps (6)
	Vector Time Stamps (7)
	Vector Stamp Implementation (1)
	Vector Stamp Implementation (2)
	Vector Stamp Producer
	Time Stamp Consumer
	Causality Violation
	Distributed Mutual Exclusion (DME)
	Distributed DME Algorithm (1)
	Distributed DME Algorithm (2)
	Ricart & Agrawala DME Alg. (1)
	Ricart & Agrawala DME Alg. (2)
	Ricart & Agrawala DME Alg. (3)
	Naive Voting Algorithm for DME (1)
	Naive Voting Algorithm for DME (2)
	Maekawa’s voting algorithm (1)
	Maekawa’s voting algorithm (2)
	Maekawa’s voting algorithm (3)
	Election
	The Bully Algorithm for Election (1)
	The Bully Algorithm for Election (2)
	Formal Correctness of the Bully Algorithm
	The Invitation Algorithm (1)
	The Invitation Algorithm (2)
	The Invitation Algorithm (3)
	The Invitation Algorithm (3)

