
László Böszörményi Distributed Systems Introduction - 1

Distributed Systems
(Operating Systmes for Networks)

Introduction

László Böszörményi Distributed Systems Introduction - 2

Literature
• Andrew Tanenbaum

Distributed Systems, Prentice Hall, 2002
• George Coulouris, Jean Dollimore, Tim Kindberg

Verteilte Systeme – Konzepte und Design, 3. Auflage
• Randy Chow and Theodore Johnson

Distributed Operating Systems & Algorithms
• Doug Lea

Concurrent Programming in Java
• Henry Bal

Programming Distributed Systems
• Gregory Andrews

Concurrent Programming
• Laszlo Böszörmenyi and Carsten Weich

Programming in Modula-3 (chapter 16)
• Andrew Tanenbaum

Distributed Operating Systems

László Böszörményi Distributed Systems Introduction - 3

What is Distributed?
• “A distributed system is a collection of independent

computers that appear to the users of the system as a
single coherent system.” – Tanenbaum & Enslow

• “A distributed system is a system designed to support
the development of applications and services which can
exploit a physical architecture consisting of multiple,
autonomous processing elements that do not share
primary memory but cooperate by sending
asynchronous messages over a communication
network” – Blair & Stefani

• “A distributed system is one that stops you getting any
work done when a machine you’ve never even heard of
crashes” – Leslie Lamport

László Böszörményi Distributed Systems Introduction - 4

Why Distributed?
• Resource and Data Sharing

Printers, databases, multimedia servers etc.
• Availability, Reliability

The loss of some instances can be hidden
• Scalability, Extensibility

System grows with demands (e.g. extra servers)
• Performance

Huge power (CPU, memory etc.) available
Horizontal distribution (same logical level is distr.)

• Inherent distribution, communication
Organizational distribution, e-mail, video conference
Vertical distribution (corresponding to org. struct.)

László Böszörményi Distributed Systems Introduction - 5

Problems of Distribution
• Concurrency, Security

Clients must not disturb each other
• Partial failure

We often do not know, where is the error (e.g. RPC)
• Location, Migration, Replication

Clients must be able to find their servers
• Heterogeneity

Hardware, platforms, languages, management
• Convergence

Between distributed systems and telecommunication

László Böszörményi Distributed Systems Introduction - 6

Distribution Transparencies
• Access

Hide differences in data representation (big/little “endians” etc.)
• Location

Resources are found by name, regardless from the location
• Migration

Resources can move and still be found by name
• Relocation

Resources can move while in use and still be found by name
• Replication

Arbitrary num. of copies can exist, automatic consistency is guaranteed
• Persistence

Hide whether a (software) resource is in memory or on disk
• Failure

Hide failure and recovery of a resource – fairly difficult
• Parallelism

Automatically distribute work among processing units – very difficult

László Böszörményi Distributed Systems Introduction - 7

Concurrent, Distributed, Parallel Progr.
• Common features

The program consists of more than one thread of control
No explicit assumption about time (as opposed to real-time prog.)

• Concurrent Programming
Main goal: Inherent parallelism (concurrency)
Based on (generally quasi-parallel) lightweight threads, normally
uses common memory, often well supported by general-purpose
programming languages (e.g. Concurrent Pascal, Java)

• Parallel Programming
Main goal: Speed-up and efficiency (Sn = T1/Tn, En = Sn/n)
Mostly based on threads, uses common or distributed memory,
support by hardware and special languages (High-Speed Fortran)

• Distributed Programming
Main goal: Physical distribution (for several reasons)
Sometimes supported by special languages (Orca), uses
distributed shared memory, socket or RPC-based communication

László Böszörményi Distributed Systems Introduction - 8

Scalability – example (1)

László Böszörményi Distributed Systems Introduction - 9

Scalability – example (2)

László Böszörményi Distributed Systems Introduction - 10

Openness
• Well-defined Interfaces

1. Black box with no public interfaces
2. Black box with a well-defined public external interface
3. White box with well-defined public internal interfaces

• Interoperability
Components of different origin can communicate

• Portability
Components work on different platforms

• Separation of Concerns
• Standards – a necessity

Should allow competition in non-normative areas

László Böszörményi Distributed Systems Introduction - 11

Hardware Concepts
• Multiprocessors (Tight coupling; fast, expensive system-bus or -switch based)

Shared memory
Gets new dimension with multi-core (e.g. 64 processors)

• Multicomputers (Loose coupling; off-the shelf connections, e.g. switched LAN)
Message passing – no shared memory, no snoopy cache

snoopy cache

László Böszörményi Distributed Systems Introduction - 12

Software Concepts

System Description Main Goal

True
Distributed
Systems

Tightly coupled software on loosely coupled
hardware

Single system
image (does NOT
exist in pure form)

DOS
(Distributed
Operating
Systems)

Tightly-coupled operating system for tightly
coupled or at least homogeneous hardware
(multi-processors and homogeneous multi-
computers)

Hide and manage
hardware
resources

NOS
(Network
Operating
Systems)

Loosely-coupled operating system for
loosely-coupled, heterogeneous
multicomputers (LAN and WAN)

Offer local
services to remote
clients

Middleware Additional layer atop of NOS implementing
general-purpose services

Provide
distribution
transparency

László Böszörményi Distributed Systems Introduction - 13

Network Operating System (1)
• Coupling is typically restricted to the file system (also called Network

File System)
• Different underlying Operating Systems (Unix, Windows, etc.)

László Böszörményi Distributed Systems Introduction - 14

Network Operating System (2)
• File access is uniform (almost)
• NFS (Network File System, SUN), SMB (Server Message Block,

Microsoft), Andrew file system …
• Client / Server Model
• Example: Two clients and a server in a NOS

László Böszörményi Distributed Systems Introduction - 15

Network Operating System (3)
• Servers export and clients import (mount) files
• Different clients may mount the servers in different places

László Böszörményi Distributed Systems Introduction - 16

Positioning Middleware
• Middleware is the practical compromise among “true” distributed and

network file system
• Additional layer provides interoperability

László Böszörményi Distributed Systems Introduction - 17

Middleware and Openness
• In an open middleware-based system following should be the same

The protocols used by each middleware layer
The services and interfaces they offer to applications

László Böszörményi Distributed Systems Introduction - 18

Comparison between Systems

Item
Distributed OS

Network OS Middleware-
based OS

Multiproc. Multicomp.

Degree of transparency Very High High Low High

Same OS on all nodes Yes Yes No No

Number of copies of OS 1 N N N

Basis for communication Shared
memory Messages Files Model specific

Resource management Global, central Global,
distributed Per node Per node

Scalability No Moderately Yes Varies

Openness Closed Closed Open Open

László Böszörményi Distributed Systems Introduction - 19

Multitiered Architectures (1)
• Alternative client-server organizations

In (a) only half of the user interface is running at the client, in (e) even half
of the database management

László Böszörményi Distributed Systems Introduction - 20

Multitiered Architectures (2)
• An example of a server acting as a client along the usual vertical

distribution
User interface, business logic, data

László Böszörményi Distributed Systems Introduction - 21

Modern Architectures
• An example of horizontal distribution of a Web service

The replication serves for scalability and enhanced performance

László Böszörményi Distributed Systems Introduction - 22

Middleware Protocols

• An adapted reference model for networked communication

László Böszörményi Distributed Systems Introduction - 23

Persistence and Synchronicity in Communication (1)

• The communication is persistent if the message is stored in the
communication system, transient otherwise

• The communication is synchronous if the sender is blocked until the
message reached “some” target (see later), asynchronous otherwise

• General architecture:

László Böszörményi Distributed Systems Introduction - 24

Persistence and Synchronicity in Communication (2)

a) Persistent asynchronous communication
b) Persistent synchronous communication

László Böszörményi Distributed Systems Introduction - 25

Persistence and Synchronicity in Communication (3)

c) Transient asynchronous communication
d) Receipt-based transient synchronous communication

László Böszörményi Distributed Systems Introduction - 26

Persistence and Synchronicity in Communication (4)

e) Delivery-based transient synchronous communication
f) Response-based transient synchronous communication

	Distributed Systems�(Operating Systmes for Networks)
	Literature
	What is Distributed?
	Why Distributed?
	Problems of Distribution
	Distribution Transparencies
	Concurrent, Distributed, Parallel Progr.
	Scalability – example (1)
	Scalability – example (2)
	Openness
	Hardware Concepts
	Software Concepts
	Network Operating System (1)
	Network Operating System (2)
	Network Operating System (3)
	Positioning Middleware
	Middleware and Openness
	Comparison between Systems
	Multitiered Architectures (1)
	Multitiered Architectures (2)
	Modern Architectures
	Middleware Protocols
	Persistence and Synchronicity in Communication (1)
	Persistence and Synchronicity in Communication (2)
	Persistence and Synchronicity in Communication (3)
	Persistence and Synchronicity in Communication (4)

