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What is Distributed?
• “A distributed system is a collection of independent 

computers that appear to the users of the system as a 
single coherent system.” – Tanenbaum & Enslow

• “A distributed system is a system designed to support 
the development of applications and services which can 
exploit a physical architecture consisting of multiple, 
autonomous processing elements that do not share 
primary memory but cooperate by sending 
asynchronous messages over a communication 
network” – Blair & Stefani

• “A distributed system is one that stops you getting any 
work done when a machine you’ve never even heard of 
crashes” – Leslie Lamport
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Why Distributed?
• Resource and Data Sharing

Printers, databases, multimedia servers etc.
• Availability, Reliability

The loss of some instances can be hidden
• Scalability, Extensibility

System grows with demands (e.g. extra servers)
• Performance

Huge power (CPU, memory etc.) available
Horizontal distribution (same logical level is distr.)

• Inherent distribution, communication
Organizational distribution, e-mail, video conference
Vertical distribution (corresponding to org. struct.)
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Problems of Distribution
• Concurrency, Security

Clients must not disturb each other
• Partial failure

We often do not know, where is the error (e.g. RPC)
• Location, Migration, Replication

Clients must be able to find their servers
• Heterogeneity

Hardware, platforms, languages, management
• Convergence

Between distributed systems and telecommunication
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Distribution Transparencies
• Access

Hide differences in data representation (big/little “endians” etc.)
• Location

Resources are found by name, regardless from the location
• Migration

Resources can move and still be found by name
• Relocation

Resources can move while in use and still be found by name
• Replication

Arbitrary num. of copies can exist, automatic consistency is guaranteed
• Persistence

Hide whether a (software) resource is in memory or on disk
• Failure

Hide failure and recovery of a resource – fairly difficult
• Parallelism

Automatically distribute work among processing units – very difficult
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Concurrent, Distributed, Parallel Progr.
• Common features

The program consists of more than one thread of control
No explicit assumption about time (as opposed to real-time prog.)

• Concurrent Programming
Main goal: Inherent parallelism (concurrency)
Based on (generally quasi-parallel) lightweight threads, normally 
uses common memory, often well supported by general-purpose 
programming languages (e.g. Concurrent Pascal, Java)

• Parallel Programming
Main goal: Speed-up and efficiency (Sn = T1/Tn, En = Sn/n)
Mostly based on threads, uses common or distributed memory, 
support by hardware and special languages (High-Speed Fortran)

• Distributed Programming
Main goal: Physical distribution (for several reasons)
Sometimes supported by special languages (Orca), uses 
distributed shared memory, socket or RPC-based communication
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Scalability – example (1)
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Scalability – example (2)
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Openness
• Well-defined Interfaces

1. Black box with no public interfaces
2. Black box with a well-defined public external interface
3. White box with well-defined public internal interfaces

• Interoperability
Components of different origin can communicate

• Portability
Components work on different platforms

• Separation of Concerns
• Standards – a necessity

Should allow competition in non-normative areas
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Hardware Concepts
• Multiprocessors (Tight coupling; fast, expensive system-bus or -switch based)

Shared memory
Gets new dimension with multi-core (e.g. 64 processors)

• Multicomputers (Loose coupling; off-the shelf connections, e.g. switched LAN)
Message passing – no shared memory, no snoopy cache

snoopy cache
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Software Concepts

System Description Main Goal

True 
Distributed 
Systems 

Tightly coupled software on loosely coupled 
hardware

Single system 
image (does NOT 
exist in pure form)

DOS 
(Distributed 
Operating 
Systems)

Tightly-coupled operating system for tightly 
coupled or at least homogeneous hardware 
(multi-processors and homogeneous multi- 
computers)

Hide and manage 
hardware 
resources

NOS 
(Network 
Operating 
Systems)

Loosely-coupled operating system for 
loosely-coupled, heterogeneous 
multicomputers (LAN and WAN)

Offer local 
services to remote 
clients

Middleware Additional layer atop of NOS implementing 
general-purpose services

Provide 
distribution 
transparency
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Network Operating System (1)
• Coupling is typically restricted to the file system (also called Network 

File System) 
• Different underlying Operating Systems (Unix, Windows, etc.)
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Network Operating System (2)
• File access is uniform (almost)
• NFS (Network File System, SUN), SMB (Server Message Block, 

Microsoft), Andrew file system …
• Client / Server Model
• Example: Two clients and a server in a NOS
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Network Operating System (3)
• Servers export and clients import (mount) files
• Different clients may mount the servers in different places
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Positioning Middleware
• Middleware is the practical compromise among “true” distributed and 

network file system
• Additional layer provides interoperability
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Middleware and Openness
• In an open middleware-based system following should be the same

The protocols used by each middleware layer
The services and interfaces they offer to applications
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Comparison between Systems

Item
Distributed OS

Network OS Middleware- 
based OS

Multiproc. Multicomp.

Degree of transparency Very High High Low High

Same OS on all nodes Yes Yes No No

Number of copies of OS 1 N N N

Basis for communication Shared 
memory Messages Files Model specific

Resource management Global, central Global, 
distributed Per node Per node

Scalability No Moderately Yes Varies

Openness Closed Closed Open Open
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Multitiered Architectures (1)
• Alternative client-server organizations

In (a) only half of the user interface is running at the client, in (e) even half 
of the database management
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Multitiered Architectures (2)
• An example of a server acting as a client along the usual vertical 

distribution
User interface, business logic, data
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Modern Architectures
• An example of horizontal distribution of a Web service

The replication serves for scalability and enhanced performance
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Middleware Protocols

• An adapted reference model for networked communication
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Persistence and Synchronicity in Communication (1)

• The communication is persistent if the message is stored in the 
communication system, transient otherwise

• The communication is synchronous if the sender is blocked until the 
message reached “some” target (see later), asynchronous otherwise

• General architecture:
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Persistence and Synchronicity in Communication (2)

a) Persistent asynchronous communication
b) Persistent synchronous communication
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Persistence and Synchronicity in Communication (3)

c) Transient asynchronous communication
d) Receipt-based transient synchronous communication
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Persistence and Synchronicity in Communication (4)

e) Delivery-based transient synchronous communication
f) Response-based transient synchronous communication
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