Quality Controlled Temporal Video Adaptation

Klaus Leopold

Introduction

- Temporal Scalability ⇔ Frame Rate Reduction
 - Reduce bandwidth consumption
- Cut out scenes
- Reduce complexity in decoding
- Content priorities
- Can be realized in the compressed domain
 - Can be handled in realtime

- Easy to perform
- Good for intermediate network nodes
- Motion in the video does not look smooth
- Video quality suffers if temporal scalability is performed permanently

Theoretical Background (1/2)

- Three different frame types in MPEG-2/4:
 - I-Frames , intra coded pictures: Independent pictures
 - P-Frames, predictive coded pictures: Need previous I or P frame for encoding/decoding
 - B-Frames , bidirectionally predictive coded pictures: Need previous and next I or P-Frame for encoding/decoding

Theoretical Background (1/2)

- Three different frame types in MPEG-2/4:
 - I-Frames , intra coded pictures: Independent pictures
 - P-Frames, predictive coded pictures: Need previous I or P frame for encoding/decoding
 - B-Frames , bidirectionally predictive coded pictures: Need previous and next I or P-Frame for encoding/decoding
- Impact of frame dropping (MPEG-2/4):

Theoretical Background (2/2)

- Just B-Frame dropping makes sense
- Nowadays temporal scalability approaches: Frame dropping regardless of quality
- Aspects to take care of:
 - Quality after dropping
 - Timely distribution

- Frame sizes
- Importance

ullet PSNR value for two single images where I is the original and L the loss induced image with dimension X imes Y

$$psnr = 20 \log_{10} \left(\frac{255}{\sqrt{\frac{1}{XY} \sum_{x=1}^{X} \sum_{y=1}^{Y} (I_{x,y} - L_{x,y})^2}} \right)$$

ullet PSNR value for two single images where I is the original and L the loss induced image with dimension X imes Y

$$psnr = 20 \log_{10} \left(\frac{255}{\sqrt{\frac{1}{XY} \sum_{x=1}^{X} \sum_{y=1}^{Y} (I_{x,y} - L_{x,y})^2}} \right)$$

• For two frame sequences (GOPs, patterns) F and G with n single frames $F = \{F_1, \ldots, F_n\}$ and $G = \{G_1, \ldots, G_n\}$, the quality Q_P is:

$$Q_P = \frac{\sum_{i=1}^{n} psnr(F_i, G_i)}{n}$$

$$\boxed{\textbf{G1}} \boxed{\textbf{G2}} \boxed{\textbf{G3}} \boxed{\textbf{G4}}$$

$$psnr(F_1,G_1) psnr(F_2,G_2) psnr(F_3,G_3) psnr(F_4,G_4)$$

Single Dropped Frame

Quality of two patterns F and G with n frames, where frame k is missing:

$$Q_{P} = \frac{\sum_{i=1}^{k-1} psnr(F_{i}, G_{i}) + psnr(F_{k}, G_{k-1}) + \sum_{j=k+1}^{n} psnr(F_{j}, G_{j})}{n}$$

No_F	$Type_{F}$	No_G	$Type_G$	psnr(F,G)
1	[1	I	35.342
2	В	2	В	33.993
3	В	3	В	33.984
4	В	4	В	34.191
5	В	5	В	34.032
6	Р	6	Р	35.561
7	В	6	Р	14.432
8	В	8	В	34.331
9	В	9	В	34.531
10	В	10	В	34.667
11	В	11	Р	34.123
Overall Q_P			32.835	

Given two patterns F and G with n frames where m frames are sequentially dropped starting with frame G_k , the quality Q_P is calculated with:

$$\forall k, m \in \mathbb{N} : k + m \le n$$

$$Q_{P} = \frac{\sum_{i=1}^{k-1} psnr(F_{i}, G_{i}) + \sum_{l=k}^{k+m-1} psnr(F_{l}, G_{k-1}) + \sum_{j=k+m}^{n} psnr(F_{j}, G_{j})}{n}$$

No_F	$Type_{F}$	No_G	$Type_G$	psnr(F,G)
1		1		35.342
2	В	2	В	33.993
3	В	2	В	23.984
4	В	2	В	19.191
5	В	2	В	14.032
6	Р	6	Р	35.561
7	В	7	Р	34.432
8	В	8	В	34.331
9	В	9	В	34.531
10	В	10	В	34.667
11	В	11	Р	34.123
Overall Q_P			30.562	

No_F	$Type_F$	No_G	$Type_G$	psnr(F,G)
1		1		35.342
2	В	2	В	33.993
3	В	2	В	23.984
4	В	2	В	19.191
5	В	2	В	14.032
6	Р	6	Р	35.561
7	В	6	Р	14.432
8	В	8	В	34.331
9	В	9	В	34.531
10	В	9	В	14.667
11	В	11	Р	34.123
	Overall Q_P			26.7443

A single frame sequence has a lot of different dropping patterns

- Master Pattern is the original frame sequence
- Modifications are frame dropping sequences of the master pattern
- Modifications with the same number of dropped frames are labeled as Layers

• The Modification with *no B-Frames* is the Base Layer

Modification Lattice

Quality Estimation

- The formula for arbritrary frame sequences is applied for every modification and its **original** sequence
- Quality measure is assigned to every node in the lattice

- The formula for arbritrary frame sequences is applied for every modification and its original sequence
- Quality measure is assigned to every node in the lattice

Modification Lattice

BFE - Best First Expansion Heuristic (1/2)

- Building the full lattice needs a lot of computational power and thus, time consuming
- BFE heuristic does not fully expand the lattice
- Only the qualitative best patterns are expanded further

- Building the full lattice needs a lot of computational power and thus, time consuming
- BFE heuristic does not fully expand the lattice
- Only the qualitative best patterns are expanded further

Given a lattice where MP is the master pattern, BL is the base layer, and N is a singleton set of any node in the lattice then the set of BFE nodes is defined as:

$$B_P = B'_P(\{MP\})$$

$$B'_P(N) = \begin{cases} N \cup B'_P(max(expand(N))) & N \neq BL, \\ N & N = BL \end{cases}$$

- ullet expand(N) expands a node in the singleton set N and returns a set of all its children
- ullet max takes a set of patterns as input and returns the singleton set of patterns with the maximum quality

Frame Prioritization

- ullet Frame prioritization only possible with total order of modifications \Longrightarrow Path
- I-Frame priority always 1
- P-Frame priority always 2
- B-Frame priority depends on dropping behavior

No	Туре	Prio	PSNR	Size	FrOffset
0	I-VOP	 1	29.0496	 7908	0
-		_			•
1	P-VOP	2	29.0496	2677	7908
2	B-AOb	6	35.3546	1579	10585
3	B-AOb	3	31.1014	1540	12164
4	P-VOP	2	29.0106	2785	13704
5	B-AOb	4	32.962	1538	16489
6	B-AOb	5	34.329	1485	18027
7	P-VOP	2	29.0106	2810	19512

. . .

The QCTVA Mechanism

- Offline analysis of MPEG-4 video elementary streams
- Find the qualitative best temporal scalability
- Quality measured value is Peak Signal to Noise Ratio PSNR
- C++ API : Easy to integrate in a wide range of applications
- Output:
 - Modification lattices
 - Statistical information
 - Frame prioritization
 - Streaming simulation
 - Playback
 - **–** . . .

The QCTVA API (1/2)

The QCTVA API (2/2)

⁻ Typeset by FoilTEX and P^4 -