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Abstract - The emerging MPEG standard Dynamic 
Adaptive Streaming over HTTP (MPEG-DASH) is designed 
for media delivery over the top of existing infrastructures 
and enables smooth multimedia streaming towards 
heterogeneous devices including both wired and wireless 
environments. The MPEG-DASH standard was designed to 
work with HTTP-URLs but mandates neither the actual 
version nor which underlying protocols to be used. This 
paper will provide a detailed introduction into emerging 
protocols (HTTP/2.0 and beyond) to be used in the context 
of adaptive media streaming, specifically DASH. 

INTRODUCTION 

The Hypertext Transfer Protocol (HTTP) is currently one of 
most used protocols on the application layer as shown in [1]. 
In particular, real-time entertainment is one of the major 
drivers and currently accounting for more than 60% of the 
Internet traffic in North America’s fixed access networks. 

The adaptive delivery of multimedia content over HTTP 
is gaining more and more momentum, which resulted in the 
standardization of MPEG’s Dynamic Adaptive Streaming 
over HTTP (DASH) [2]. The MPEG-DASH standard is 
designed for media delivery over the top of existing 
infrastructures and enables smooth multimedia streaming 
towards heterogeneous devices. In particular, it adopts the 
usage of HTTP-URLs to identify the segments available for 
the clients but neither mandates the actual version nor which 
underlying protocols to be used. 

In this paper we describe the usage of MPEG-DASH 
within emerging protocols, namely HTTP/2.0 and Content-
Centric Networking (CCN) based on [3][4]. 

   

DASH OVER HTTP/2.0 

I. Introduction 

This section describes HTTP/2.0 which is based on Google’s 
SPDY protocol and at the time of writing of this paper 
available as Internet draft by the IETF [5]. 

The protocol is based on the Transmission Control 
Protocol (TCP) and maintains a single persistent connection 
for each session. During a session multiple streams can be 
opened between the client and the server in full-duplex 
mode. Typically, only one HTTP/2.0 connection between a 
server and a client exists until the client navigates to another 
server. The servers should leave connections open as long as 
possible until a given threshold timeout or when a client 
initiates a connection close. 

The advantage of HTTP/2.0 is that it is fully compatible 
with HTTP/1.1 and can be integrated as a session layer 
between HTTP and TCP, hence, enabling incremental 
deployment. The HTTP request will be mapped into a 
HTTP/2.0 frame and vice versa for the HTTP response. 
Additionally, it is also possible to send multiple requests in 
parallel to support pipelining. Therefore, HTTP/2.0 offers an 
interface for HTTP which simplifies its integration for 
already existing HTTP applications. After this handover 
from HTTP/1.1 to HTTP/2.0 the whole communication will 
be handled on the HTTP/2.0 framing layer until a response 
arrives which will be passed to the HTTP/1.1 layer. 

The HTTP/2.0 network communication is based on 
frames that are exchanged between the client and the server 
for a given TCP connection. The frame header is depicted in 
Figure 2. 

The fields indicated with R are reserved, with undefined 
semantics, must be set to zero, and ignored when receiving. 
The Length (14-bit) provides the length of the frame 
payload. The Type (8-bit) determines how the remainder of 
the frame header and the payload are interpreted. That is, 

 
Figure 1. Peak Period Aggregation Traffic Composition - 

North America, Fixed Access [1]. 

 
Figure 2. HTTP/2.0 Frame Header [5]. 



also the Flags (8-bit) provide a set of frame-type specific 
Boolean flags. The Stream Identifier (31-bit) provides a 
mechanism to identify each stream within the persistent 
connection that may host multiple streams. Finally, the 
actual Frame Payload depends on the frame type. 

Google further developed SPDY which is currently 
available as Draft 3.1 and still maintains two frame types for 
control and data frames but with similar functionality as 
within HTTP/2.0. 

II. MPEG-DASH Client supporting HTTP/2.0 

On the client side we have extended our open source MPEG-
DASH VLC plugin with the most complete SPDY library, 
spdylay. The flexible architecture of the VLC plugin enabled 
a straightforward integration of SPDY and SSL-encrypted 
SPDY connections. Therefore, it is possible to objectively 
compare the performance of the MPEG-DASH client with 
different network protocols, i.e., HTTP 1.0, HTTP/1.1, 
SPDY, and SPDY with SSL encryption while maintaining 
the same behavior of the adaptation logic, buffer, etc. 

Additionally, we have added a HTTP/2.0 branch to the 
MPEG-DASH reference access client libdash which now 
also supports SPDY and HTTP/2.0 respectively1. 

III. Experimental Results 

In [3] we have performed various evaluations using the 
implementations outlined above in terms of overhead 
analysis and link utilization compared to existing HTTP 
versions. In this paper we focus on the client’s media 
throughput given a predefined bandwidth trajectory within a 
test-bed comprising an HTTP/SPDY server, a DASH client, 
and intermediate network nodes to emulate the network 
conditions using a bandwidth shaper. For the details of the 

                                                             
1 http://www.bitmovin.net/libdash.html (January 2014). 

test-bed and evaluations in terms of overhead and link 
utilization, the interested reader is referred to [3]. 

Figure 3(a) shows the predefined bandwidth trajectory 
where the vertical axis describes the available bandwidth in 
kbps and the horizontal axis describes the time in seconds. 
Each experiment lasts exactly 160 seconds and the available 
bandwidth which is available during the experiment ranges 
from 1 Mbps to 6 Mbps. The content set provides 14 
different media qualities ranging from 100 kbps to 4500 
kbps which the client could individually choose at segment 
boundaries. All experiments have been performed with the 
same adaptation logic that is based on the buffer fill state 
and the measured throughput of the last segment. The buffer 
has been restricted for all experiments to 40 seconds. Each 
solution has been tested several times with different RTTs = 
0, 25, 50, 100, and 150 ms and the average of each 
experiment is depicted in Figure 3(b). The vertical axis of 
Figure 3(b) shows the media throughput in kbps. It has been 
measured with the VLC MPEG-DASH plugin. The average 
maximum throughput has been calculated from the pre-
defined bandwidth trajectory in Figure 3(a) which could be 
seen as the maximum achievable throughput. This line 
depicts the maximal achievable throughput without any 
overhead and optimal adaptation decisions, which is the 
upper bound for all transferring mechanisms in this 
laboratory setup. 

Figure 3(b) shows that HTTP/1.1, SPDY, and SPDY 
with SSL encryption perform equally well and quite stable 
over all RTTs. As expected, HTTP 1.0 could not achieve the 
same media throughput especially for high RTTs due to the 
usage of one TCP connection per segment and slow start. 

IV. Conclusions 

HTTP/2.0 and SPDY operate on roughly the same 
performance as HTTP/1.1 with features such as persistent 
connections and request pipelining enabled. However, 

 
Figure 3. Average Media Throughput using SPDY given a predefined Bandwidth Trajectory for different RTTs [3]. 



SPDY implicitly solves the Head-of-Line blocking problem 
of HTTP 1.0 and due to the lack of proper adoption of 
certain HTTP/1.1 features on caches it could definitely 
enhance the streaming performance of future networks. 
Interestingly, SPDY and SPDY with SSL encryption are 
very robust against increasing RTT because they are 
maintaining only one single TCP connection during the 
whole communication. 

DASH OVER CONTENT-CENTRIC NETWORKING 

I. Introduction 

A variety of new Internet architectures have been proposed 
in the last decade and some of them seem to overcome the 
current limitations of today’s Internet. One of these new 
Internet architectures is the Content Centric Network (CCN) 
approach [7], which moves the focus of traditional end-to-
end connections to the content, rather than on addressing its 
location, i.e., devices in a network. CCN could eventually 
replace IP in the future, but it is also possible to deploy it on 
top of IP. In comparison to IP, where clients set up 
connections between each other to exchange content, CCN is 
directly requesting the content without any connection setup. 
This means that a client, which wants to consume content, 
simply sends an interest for this content into the network and 
the network responds with the corresponding content, 
wherever it may be located. Additionally, CCN is meant to 
provide security and trust as an integral part of the network. 

Interestingly, CCN and DASH have several elements in 
common like, e.g., the client-initiated pull approach as well 
as the content being dealt with in pieces, and, thus, we have 
explored the possibility to integrate DASH with CCN. 

In the CCN approach, there exist only two types of 
packets: interest and data. Interest packets are used for 
requesting the content whereas data packets are used for the 
actual data delivery. The maximum payload of a data packet 
is 4096 bytes and also referred to as a CCN chunk. Data 
packets are handled efficiently on the network nodes, e.g., to 
satisfy consolidated interest packets originating from 
multiple clients and, thus, providing implicit support for 
multicast and caching of data packets on CCN nodes within 
the delivery network. 

II. Integration of DASH and CCN 

In principle, there are two options to integrate DASH and 
CCN: (a) a proxy service acting as a broker between HTTP 
and CCN, and (b) the DASH client implementing a native 
CCN interface. The former transforms an HTTP request to a 
corresponding interest packet as well as a data packet to an 
HTTP response, including reliable transport as offered by 
TCP. The latter adopts a CCN naming scheme (CCN URIs) 
to denote segments in the Media Presentation Description 
(MPD). This requires an update to the MPD – including 
mitigating the requirement that only HTTP-URLs are 
allowed within the MPD – and the actual network 
component requesting the segments through CCN interest 
packets as well as handling the data packets. 

Initially, the DASH client retrieves the MPD containing 
the CCN URIs for the media segments. The naming scheme 
of the segments may reflect intrinsic features of CCN like 
versioning and segmentation support. Such segmentation 
support is already compulsory for multimedia streaming in 
CCN and, thus, can also be leveraged for DASH-based 
streaming over CCN. The CCN versioning can be adopted to 
signal different representations of the DASH-based content, 
which enables an implicit adaptation of the requested 
content to the client’s bandwidth conditions. That is, the 
interest packet already provides the desired characteristics of 
a segment (such as bit rate, resolution, etc.) within the 
content name. Additionally, if bandwidth conditions of the 
corresponding interfaces or routing paths allow so, DASH 
media segments could be aggregated automatically by the 
CCN nodes, which reduces the amount of interest packets 
needed to request the content. However, such approaches 
need further research, specifically in terms of additional 
intelligence and processing power needed at the CCN nodes. 

After requesting the MPD, the DASH client will start to 
request particular segments. Therefore, CCN interest packets 
are generated by the CCN access component and forwarded 
to the available interfaces. Within the CCN, these interest 
packets leverage the efficient interest aggregation for, e.g., 
popular content, as well as the implicit multicast support. 
Finally, interest packets are satisfied by the corresponding 
data packets containing the video segment data, which are 
stored on the origin server or any CCN node, respectively. 
With an increasing popularity of the content, it will be 
distributed across the network resulting in lower 
transmission delays and reduced bandwidth requirements for 
origin servers and content providers respectively. 

III. Experimental Results 

We have performed similar experiments as with HTTP/2.0 
and detailed evaluation setup and results are available in [4]. 
The results for the average media throughput using the same 
predefined bandwidth trajectory as in the previous 
evaluation is depicted in Figure 4. 

Considering that CCN is a new as well as experimental 
concept and the used CCNx implementation is a prototype 
and not integrated, e.g., into the system’s kernel like TCP, 
the overall performance of DASH over CCN in terms of 
average media bitrate is relatively good. The difference of 

 
Figure 4. Average Media Throughput using CCN given a 
predefined Bandwidth Trajectory for different RTTs [4]. 



117 kbps, or 6 %, to HTTP 1.0 and of 219 kbps, or 11 %, to 
HTTP/1.1 in the case of RTT = 0 ms is lower than expected, 
especially when considering the previously shown protocol 
overhead as well as the computational overhead at the CCN 
nodes, introduced by cache lookup, bloom filters, etc. 
Furthermore, the performance of DASH over CCN 
decreases monotonically in contrast to conventional DASH 
over HTTP 1.0, which finally leads to a 1 % better 
performance of CCN than HTTP 1.0 when the RTT 
increases to 150 ms. However, the CCN performance at this 
high network delay is still 735 kbps, or 39 % lower than 
HTTP/1.1 (i.e., using persistent connection and pipelining). 

V. Conclusions 

According to these results, the current CCN implementation 
has the potential to compete with DASH over HTTP 1.0, 
however, it definitely needs some work to come closer to the 
performance of HTTP/1.1. Therefore, the high overhead and 
the lower link utilization have to be addressed. In particular, 
the link utilization of DASH over CCN is influenced directly 
by the network delay. This influence can be reduced by 
improving the pipelining of CCN interest packets on the 
transport layer, as it is done by TCP. Furthermore, the 
performance can be increased by eliminating unnecessary 
interest packets at the end of the data transfer of a DASH 
segment. 

The interest packets are requested in a pipelined 
manner, so non-existing data packets are requested while the 
last data packet containing the FinalBlockID field is 
received and processed by the client. These unnecessary 
interest packets can be easily avoided by sending the 
FinalBlockID field in an earlier data packet, e.g., the first 
one of the transfer, to notify the requesting node which is the 
last data packet. Of course, this also effects the bandwidth 
utilization in networks with higher delays, as instead of 
sending unnecessary interest packets, the client can already 
request data packets of the subsequent DASH segment and, 
therefore, reduce the time in which the link is unused. 
Additionally, research has to focus on a more efficient 
possibility for content encryption and signing which is 
currently mainly responsible for most of the header size and 
as a consequence also for the protocol overhead. 

CONCLUSIONS 

In this paper we have presented means for adaptive media 
streaming – specifically in the context of MPEG-DASH – 
over emerging protocols, i.e., HTTP/2.0 and CCN. The 
former is based on SPDY and is currently developed towards 
RFC within the IETF httpbis working group. Expected 
publication date of HTTP/2.0 is end of 2014. The latter is a 
hot research topic within the Future Internet research activity 

and pre-standardization efforts are conducted within the 
IRTF’s Information-Centric Networking Research Group  
(ICNRG). 

We conducted various evaluations based on a 
predefined test-bed and evaluation criteria showing the 
benefits of emerging protocols in the context of MPEG-
DASH. The findings presented in this paper provide useful 
insights for current and future deployments of adaptive 
media streaming services over the top of existing 
infrastructures using HTTP and beyond. 
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