
Adaptive Media Streaming over Emerging Protocols

Christian Timmerer, Christopher Mueller, and Stefan Lederer
bitmovin GmbH
Klagenfurt, Austria

{firstname.lastname}@bitmovin.net

Abstract - The emerging MPEG standard Dynamic
Adaptive Streaming over HTTP (MPEG-DASH) is designed
for media delivery over the top of existing infrastructures
and enables smooth multimedia streaming towards
heterogeneous devices including both wired and wireless
environments. The MPEG-DASH standard was designed to
work with HTTP-URLs but mandates neither the actual
version nor which underlying protocols to be used. This
paper will provide a detailed introduction into emerging
protocols (HTTP/2.0 and beyond) to be used in the context
of adaptive media streaming, specifically DASH.

INTRODUCTION

The Hypertext Transfer Protocol (HTTP) is currently one of
most used protocols on the application layer as shown in [1].
In particular, real-time entertainment is one of the major
drivers and currently accounting for more than 60% of the
Internet traffic in North America’s fixed access networks.

The adaptive delivery of multimedia content over HTTP
is gaining more and more momentum, which resulted in the
standardization of MPEG’s Dynamic Adaptive Streaming
over HTTP (DASH) [2]. The MPEG-DASH standard is
designed for media delivery over the top of existing
infrastructures and enables smooth multimedia streaming
towards heterogeneous devices. In particular, it adopts the
usage of HTTP-URLs to identify the segments available for
the clients but neither mandates the actual version nor which
underlying protocols to be used.

In this paper we describe the usage of MPEG-DASH
within emerging protocols, namely HTTP/2.0 and Content-
Centric Networking (CCN) based on [3][4].

DASH OVER HTTP/2.0

I. Introduction

This section describes HTTP/2.0 which is based on Google’s
SPDY protocol and at the time of writing of this paper
available as Internet draft by the IETF [5].

The protocol is based on the Transmission Control
Protocol (TCP) and maintains a single persistent connection
for each session. During a session multiple streams can be
opened between the client and the server in full-duplex
mode. Typically, only one HTTP/2.0 connection between a
server and a client exists until the client navigates to another
server. The servers should leave connections open as long as
possible until a given threshold timeout or when a client
initiates a connection close.

The advantage of HTTP/2.0 is that it is fully compatible
with HTTP/1.1 and can be integrated as a session layer
between HTTP and TCP, hence, enabling incremental
deployment. The HTTP request will be mapped into a
HTTP/2.0 frame and vice versa for the HTTP response.
Additionally, it is also possible to send multiple requests in
parallel to support pipelining. Therefore, HTTP/2.0 offers an
interface for HTTP which simplifies its integration for
already existing HTTP applications. After this handover
from HTTP/1.1 to HTTP/2.0 the whole communication will
be handled on the HTTP/2.0 framing layer until a response
arrives which will be passed to the HTTP/1.1 layer.

The HTTP/2.0 network communication is based on
frames that are exchanged between the client and the server
for a given TCP connection. The frame header is depicted in
Figure 2.

The fields indicated with R are reserved, with undefined
semantics, must be set to zero, and ignored when receiving.
The Length (14-bit) provides the length of the frame
payload. The Type (8-bit) determines how the remainder of
the frame header and the payload are interpreted. That is,

Figure 1. Peak Period Aggregation Traffic Composition -

North America, Fixed Access [1].

Figure 2. HTTP/2.0 Frame Header [5].

also the Flags (8-bit) provide a set of frame-type specific
Boolean flags. The Stream Identifier (31-bit) provides a
mechanism to identify each stream within the persistent
connection that may host multiple streams. Finally, the
actual Frame Payload depends on the frame type.

Google further developed SPDY which is currently
available as Draft 3.1 and still maintains two frame types for
control and data frames but with similar functionality as
within HTTP/2.0.

II. MPEG-DASH Client supporting HTTP/2.0

On the client side we have extended our open source MPEG-
DASH VLC plugin with the most complete SPDY library,
spdylay. The flexible architecture of the VLC plugin enabled
a straightforward integration of SPDY and SSL-encrypted
SPDY connections. Therefore, it is possible to objectively
compare the performance of the MPEG-DASH client with
different network protocols, i.e., HTTP 1.0, HTTP/1.1,
SPDY, and SPDY with SSL encryption while maintaining
the same behavior of the adaptation logic, buffer, etc.

Additionally, we have added a HTTP/2.0 branch to the
MPEG-DASH reference access client libdash which now
also supports SPDY and HTTP/2.0 respectively1.

III. Experimental Results

In [3] we have performed various evaluations using the
implementations outlined above in terms of overhead
analysis and link utilization compared to existing HTTP
versions. In this paper we focus on the client’s media
throughput given a predefined bandwidth trajectory within a
test-bed comprising an HTTP/SPDY server, a DASH client,
and intermediate network nodes to emulate the network
conditions using a bandwidth shaper. For the details of the

1 http://www.bitmovin.net/libdash.html (January 2014).

test-bed and evaluations in terms of overhead and link
utilization, the interested reader is referred to [3].

Figure 3(a) shows the predefined bandwidth trajectory
where the vertical axis describes the available bandwidth in
kbps and the horizontal axis describes the time in seconds.
Each experiment lasts exactly 160 seconds and the available
bandwidth which is available during the experiment ranges
from 1 Mbps to 6 Mbps. The content set provides 14
different media qualities ranging from 100 kbps to 4500
kbps which the client could individually choose at segment
boundaries. All experiments have been performed with the
same adaptation logic that is based on the buffer fill state
and the measured throughput of the last segment. The buffer
has been restricted for all experiments to 40 seconds. Each
solution has been tested several times with different RTTs =
0, 25, 50, 100, and 150 ms and the average of each
experiment is depicted in Figure 3(b). The vertical axis of
Figure 3(b) shows the media throughput in kbps. It has been
measured with the VLC MPEG-DASH plugin. The average
maximum throughput has been calculated from the pre-
defined bandwidth trajectory in Figure 3(a) which could be
seen as the maximum achievable throughput. This line
depicts the maximal achievable throughput without any
overhead and optimal adaptation decisions, which is the
upper bound for all transferring mechanisms in this
laboratory setup.

Figure 3(b) shows that HTTP/1.1, SPDY, and SPDY
with SSL encryption perform equally well and quite stable
over all RTTs. As expected, HTTP 1.0 could not achieve the
same media throughput especially for high RTTs due to the
usage of one TCP connection per segment and slow start.

IV. Conclusions

HTTP/2.0 and SPDY operate on roughly the same
performance as HTTP/1.1 with features such as persistent
connections and request pipelining enabled. However,

Figure 3. Average Media Throughput using SPDY given a predefined Bandwidth Trajectory for different RTTs [3].

SPDY implicitly solves the Head-of-Line blocking problem
of HTTP 1.0 and due to the lack of proper adoption of
certain HTTP/1.1 features on caches it could definitely
enhance the streaming performance of future networks.
Interestingly, SPDY and SPDY with SSL encryption are
very robust against increasing RTT because they are
maintaining only one single TCP connection during the
whole communication.

DASH OVER CONTENT-CENTRIC NETWORKING

I. Introduction

A variety of new Internet architectures have been proposed
in the last decade and some of them seem to overcome the
current limitations of today’s Internet. One of these new
Internet architectures is the Content Centric Network (CCN)
approach [7], which moves the focus of traditional end-to-
end connections to the content, rather than on addressing its
location, i.e., devices in a network. CCN could eventually
replace IP in the future, but it is also possible to deploy it on
top of IP. In comparison to IP, where clients set up
connections between each other to exchange content, CCN is
directly requesting the content without any connection setup.
This means that a client, which wants to consume content,
simply sends an interest for this content into the network and
the network responds with the corresponding content,
wherever it may be located. Additionally, CCN is meant to
provide security and trust as an integral part of the network.

Interestingly, CCN and DASH have several elements in
common like, e.g., the client-initiated pull approach as well
as the content being dealt with in pieces, and, thus, we have
explored the possibility to integrate DASH with CCN.

In the CCN approach, there exist only two types of
packets: interest and data. Interest packets are used for
requesting the content whereas data packets are used for the
actual data delivery. The maximum payload of a data packet
is 4096 bytes and also referred to as a CCN chunk. Data
packets are handled efficiently on the network nodes, e.g., to
satisfy consolidated interest packets originating from
multiple clients and, thus, providing implicit support for
multicast and caching of data packets on CCN nodes within
the delivery network.

II. Integration of DASH and CCN

In principle, there are two options to integrate DASH and
CCN: (a) a proxy service acting as a broker between HTTP
and CCN, and (b) the DASH client implementing a native
CCN interface. The former transforms an HTTP request to a
corresponding interest packet as well as a data packet to an
HTTP response, including reliable transport as offered by
TCP. The latter adopts a CCN naming scheme (CCN URIs)
to denote segments in the Media Presentation Description
(MPD). This requires an update to the MPD – including
mitigating the requirement that only HTTP-URLs are
allowed within the MPD – and the actual network
component requesting the segments through CCN interest
packets as well as handling the data packets.

Initially, the DASH client retrieves the MPD containing
the CCN URIs for the media segments. The naming scheme
of the segments may reflect intrinsic features of CCN like
versioning and segmentation support. Such segmentation
support is already compulsory for multimedia streaming in
CCN and, thus, can also be leveraged for DASH-based
streaming over CCN. The CCN versioning can be adopted to
signal different representations of the DASH-based content,
which enables an implicit adaptation of the requested
content to the client’s bandwidth conditions. That is, the
interest packet already provides the desired characteristics of
a segment (such as bit rate, resolution, etc.) within the
content name. Additionally, if bandwidth conditions of the
corresponding interfaces or routing paths allow so, DASH
media segments could be aggregated automatically by the
CCN nodes, which reduces the amount of interest packets
needed to request the content. However, such approaches
need further research, specifically in terms of additional
intelligence and processing power needed at the CCN nodes.

After requesting the MPD, the DASH client will start to
request particular segments. Therefore, CCN interest packets
are generated by the CCN access component and forwarded
to the available interfaces. Within the CCN, these interest
packets leverage the efficient interest aggregation for, e.g.,
popular content, as well as the implicit multicast support.
Finally, interest packets are satisfied by the corresponding
data packets containing the video segment data, which are
stored on the origin server or any CCN node, respectively.
With an increasing popularity of the content, it will be
distributed across the network resulting in lower
transmission delays and reduced bandwidth requirements for
origin servers and content providers respectively.

III. Experimental Results

We have performed similar experiments as with HTTP/2.0
and detailed evaluation setup and results are available in [4].
The results for the average media throughput using the same
predefined bandwidth trajectory as in the previous
evaluation is depicted in Figure 4.

Considering that CCN is a new as well as experimental
concept and the used CCNx implementation is a prototype
and not integrated, e.g., into the system’s kernel like TCP,
the overall performance of DASH over CCN in terms of
average media bitrate is relatively good. The difference of

Figure 4. Average Media Throughput using CCN given a
predefined Bandwidth Trajectory for different RTTs [4].

117 kbps, or 6 %, to HTTP 1.0 and of 219 kbps, or 11 %, to
HTTP/1.1 in the case of RTT = 0 ms is lower than expected,
especially when considering the previously shown protocol
overhead as well as the computational overhead at the CCN
nodes, introduced by cache lookup, bloom filters, etc.
Furthermore, the performance of DASH over CCN
decreases monotonically in contrast to conventional DASH
over HTTP 1.0, which finally leads to a 1 % better
performance of CCN than HTTP 1.0 when the RTT
increases to 150 ms. However, the CCN performance at this
high network delay is still 735 kbps, or 39 % lower than
HTTP/1.1 (i.e., using persistent connection and pipelining).

V. Conclusions

According to these results, the current CCN implementation
has the potential to compete with DASH over HTTP 1.0,
however, it definitely needs some work to come closer to the
performance of HTTP/1.1. Therefore, the high overhead and
the lower link utilization have to be addressed. In particular,
the link utilization of DASH over CCN is influenced directly
by the network delay. This influence can be reduced by
improving the pipelining of CCN interest packets on the
transport layer, as it is done by TCP. Furthermore, the
performance can be increased by eliminating unnecessary
interest packets at the end of the data transfer of a DASH
segment.

The interest packets are requested in a pipelined
manner, so non-existing data packets are requested while the
last data packet containing the FinalBlockID field is
received and processed by the client. These unnecessary
interest packets can be easily avoided by sending the
FinalBlockID field in an earlier data packet, e.g., the first
one of the transfer, to notify the requesting node which is the
last data packet. Of course, this also effects the bandwidth
utilization in networks with higher delays, as instead of
sending unnecessary interest packets, the client can already
request data packets of the subsequent DASH segment and,
therefore, reduce the time in which the link is unused.
Additionally, research has to focus on a more efficient
possibility for content encryption and signing which is
currently mainly responsible for most of the header size and
as a consequence also for the protocol overhead.

CONCLUSIONS

In this paper we have presented means for adaptive media
streaming – specifically in the context of MPEG-DASH –
over emerging protocols, i.e., HTTP/2.0 and CCN. The
former is based on SPDY and is currently developed towards
RFC within the IETF httpbis working group. Expected
publication date of HTTP/2.0 is end of 2014. The latter is a
hot research topic within the Future Internet research activity

and pre-standardization efforts are conducted within the
IRTF’s Information-Centric Networking Research Group
(ICNRG).

We conducted various evaluations based on a
predefined test-bed and evaluation criteria showing the
benefits of emerging protocols in the context of MPEG-
DASH. The findings presented in this paper provide useful
insights for current and future deployments of adaptive
media streaming services over the top of existing
infrastructures using HTTP and beyond.

REFERENCES

[1] Sandvine, "Global Internet Phenomena Report 2H
2013", Sandvine Intelligent Broadband Networks, 2013.

[2] Sodogar, I., "The MPEG-DASH Standard for
Multimedia Streaming over the Internet", IEEE
Multimedia, Vol. 18, No. 4, Oct.-Dec. 2011, pp. 62-67.

[3] Mueller, C., Lederer, S., Timmerer, C., Hellwagner, H.,
"Dynamic Adaptive Streaming over HTTP/2.0", Proc.
of International Conference on Multimedia and Expo
(ICME) 2013, San Jose, CA, USA, July 2013.

[4] Lederer, S., Mueller, C., Rainer, B., Timmerer, C.,
Hellwagner, H., "An Experimental Analysis of Dynamic
Adaptive Streaming over Content Centric Networks",
Proc. of International Conference on Multimedia and
Expo (ICME) 2013, San Jose, CA, USA, July 2013.

[5] Belshe, M., et al., "Hypertext Transfer Protocol version
2.0", draft-ietf-httpbis-http2-09, Dec. 2013,
http://tools.ietf.org/search/draft-ietf-httpbis-http2-09.

[6] Belshe, M., et al., "SPDY Protocol - Draft 3.1",
http://www.chromium.org/spdy/spdy-protocol/spdy-
protocol-draft3-1.

[7] Jacobson, V., et al., "Networking Named Content",
Proc. of the 5th Int. Conf. on Emerging Netw.
Experiments and technologies (CoNEXT '09), ACM,
New York, NY, USA, 2009.

AUTHOR INFORMATION

Christian Timmerer, bitmovin GmbH / Alpen-Adria-
Universität Klagenfurt, Austria, Klagenfurt,
christian.timmerer@bitmovin.net.

Christopher Mueller, bitmovin GmbH, Klagenfurt, Austria,
christopher.mueller@bitmovin.net.

Stefan Lederer, bitmovin GmbH, Klagenfurt, Austria,
stefan.lederer@bitmovin.net.

